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Using Aggregated Relational Data to Feasibly Identify
Network Structure without Network Data’

By EMILY BREZA, ARUN G. CHANDRASEKHAR,
TYLER H. McCORMICK, AND MENGIJIE PAN¥

Social network data are often prohibitively expensive to collect, lim-
iting empirical network research. We propose an inexpensive and
feasible strategy for network elicitation using Aggregated Relational
Data (ARD): responses to questions of the form “how many of your
links have trait k?” Our method uses ARD to recover parameters of
a network formation model, which permits sampling from a distri-
bution over node- or graph-level statistics. We replicate the results
of two field experiments that used network data and draw similar
conclusions with ARD alone. (JEL C81, C93, D85, Z13)

There has been a groundswell of empirical research on social and economic
networks.! Nonetheless, a major barrier to entry into this space is access to net-
work data, which are often extremely costly to collect. A typical network elicita-
tion exercise requires (i) enumerating every member of the network in a census,
(ii) asking each subject to name those individuals with whom they have a rela-
tionship and in what capacity, and (iii) matching each individual’s list of social
connections back to the census. In field work, this can be difficult and expensive.
Further, in other contexts, such as measuring networks of financial intermediar-
ies or high-risk populations, proprietary data and privacy concerns may render
steps (ii) and (iii) impossible. Moreover, this process needs to be repeated across
many networks to conduct convincing inference. These barriers place significant
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limitations on conducting high-quality work in this space and discourage research,
especially by those without access to considerable resources.

The contribution of this paper is to present a technique that makes network
research scalable and accessible on a budget. We propose that researchers collect
aggregated relational data (ARD). ARD are responses to questions of the form:

Think of all of the households in your village with whom you «INSERT
ACTIVITY ». How many of these have trait k?

ARD is considerably cheaper to obtain than full or even partial network data.
We show, using J-PAL South Asia cost estimates, that collecting ARD leads to a
70-80 percent cost reduction.’

Our proposed method is intuitive and comes down to the following three simple
observations. First, ARD is considerably cheaper and easier to collect than network
data. Second, ARD provides the researcher with enough information to identify
parameters of an oft-used and standard network formation model in the statistics lit-
erature (see, e.g., Hoff, Raftery, and Handcock 2002). The argument builds on prior
work by McCormick and Zheng (2015), which shows how the network formation
model is related to a likelihood that depends only on ARD. We describe this and
present an identification argument. We prove consistency of the estimation of the
model parameters in Breza et al. (2020a).

Third, this parametric model of network formation is sufficiently rich to capture
a number of features of real-world network structures. We provide two examples of
recent research where either full or partial network data had been collected. Breza
and Chandrasekhar (2019a) studies how the observation of one’s savings behavior
by more central individuals in the network leads to greater savings in order to main-
tain a reputation for being responsible. We show, with constructed ARD, we can
replicate the paper’s findings. Banerjee et al. (2019¢) used network data to study
how exposure to microcredit erodes social capital by reducing support. The authors
in part, in their Hyderabad sample, collected survey ARD and we show we can
replicate the findings. Further, the ARD enables conclusions about how microcre-
dit exposure affected the neighborhood-level informal financial network structure.
These examples show the effectiveness of our approach across different contexts
and how ARD would have helped in policy-relevant empirical work. Researchers
could have reached their conclusions without collecting full network data, which
also means that the financial barrier to entry for such research would be consider-
ably lower, thereby democratizing in part this research frontier.

We present a sample budget for survey data collection of full network data in
120 villages. Collecting ARD reduces the costs by approximately 70-80 percent,
depending on the sampling rate, using budgets prepared by J-PAL South Asia.
While direct measurements of the network are always preferable to any estimation
protocol, our calculations demonstrate that our proposed method can substantially
expand the scope for and access to empirical networks research.

2While we present empirical evidence from village and neighborhood networks in India, the method can also be
extended to other settings. See Section VI for a discussion of applications to firm and banking networks.
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Overview of Method.—For the bulk of the paper, we consider settings where
we have ARD for a randomly selected subset of nodes in the network and a basic
vector of covariates for the full set of nodes. ARD counts the number of links an
agent has to members of different subgroups in the population. The core insight
of our approach is that by combining ARD with a network formation model, we
can derive the posterior distribution for the graph. To do this, we assume a net-
work formation model, which we refer to as the latent distance model, where the
probability of a connection depends on individual heterogeneity and the positions
of nodes in a latent social space (Hoff, Raftery, and Handcock 2002). The dis-
tance between nodes in the space is a pair-specific latent variable that is inversely
related to the probability of a tie: nodes that are closer together in the latent space
are more likely to form ties. The propensity to form ties across pairs is assumed
conditionally independent given the latent variables. ARD gives us information
on where different subgroups lie relative to one another in this latent space. That
is, ARD allows us to triangulate the relative locations of nodes. In prior work,
McCormick and Zheng (2015) shows how to relate the network formation model
to a likelihood that depends only on ARD. We extend that result and show how
we can recover the parameters of the network formation model. In our case, this
consists of both individual-level effects for every node in the sample as well as
the location of all nodes in the latent-space. Using a Bayesian framework for
inference, we show that the choice of prior distribution has minimal impact on
our ability to accurately recover moments for a variety of network configurations.
We note that, equipped with estimates of the degree distribution as well as the
latent space locations in the ARD sample, we can use the demographic covari-
ates for the entire sample to estimate the posterior distributions of the degrees,
fixed effects, and latent locations for the entire population. We can then gener-
ate graphs from the posterior distribution over formation model parameters given
the ARD response vector and compute network statistics for each generated
graph.

provides a simple illustration from one neighborhood in Hyderabad,
India, where we collected ARD. The figure plots the positions on the latent surface,
here a sphere, of six characteristic groups: households with histories of arrests, remar-
riages, members working abroad (likely in the Middle East), polygamy, government
employees, and twins. Several patterns emerge in this example. First, people tend
to have joint knowledge of households with arrests and remarriages, consistent with
both characteristics carrying negative social stigma. Second, the arrested population
is tightly correlated in space in comparison to other groups, indicating more extreme
heterogeneity in the number of arrested individuals respondents know. Third, peo-
ple who know individuals with government employment also often know people
who have household members abroad, again consistent with the local context where
both government jobs and foreign migration require connections and lead to higher
incomes.

The attractive features of our approach are not without costs. Our approach is
parametric, relying on guessing the network structure through the pseudo-true
parameters of the latent distance formation model estimated from ARD. It can do
no better than the best latent distance model at capturing the likely distribution that
generated the network. It cannot, for example, represent clustering in a way that
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FIGURE 1. PLOT OF THE POSTERIOR DENSITIES FOR SIX ARD CHARACTERISTIC GROUPS FROM HYDERABAD

Notes: The latent surface, a sphere, is represented by a cylindrical projection, with the vertical and horizontal axes
representing latitude and longitude. Positions of the groups indicate similarity in the networks of respondents that
report connections with the group. Concentration of the posterior density represents heterogeneity in the number
known by respondents.

violates the triangle inequality.” To see this, consider a two-dimensional Euclidean
space with four groups that have equal probability of cross-group interaction. If the
data-generating process has this feature, we will not capture it well. Importantly, the
approach can generate clustering patterns among nodes in close proximity in the
latent space so whether this is sufficient to mimic real-world data is an empirical
question. Further, the parameters of the formation model give a distribution over
possible graphs that are consistent with the observed ARD. This is, of course, a
distinct exercise from recovering the single, realized graph of connections between
individuals.

Relation to the Literature.—Our work contributes to and builds on several lit-
eratures. First, there is a nascent literature that seeks to apply the lessons from the
economics of networks without having access to network data (e.g., Beaman et al.
2016, Banerjee et al. 2019a, and Chassang et al. 2017). These methods are lim-
ited because they only speak to identifying central individuals or focus on proxies.
Prior work shows that proxies such as geography or ethnic divisions do not capture
the network well and augmenting sampled network data, which works, can still
be expensive (Chandrasekhar and Lewis 2016). Our approach does not restrict the
researcher to inferences about one specific aspect of the data, instead providing a
blueprint to recover a distribution over the entire graph at minimal cost.

Second, our work builds on a sizable literature on ARD, but expands both the
context and inferential quantities of interest. In contrast to our work, most previ-
ous work on ARD focused on estimating the size of “hard-to-reach” populations

3For an example of a network formation model which can do this, see Chandrasekhar and Jackson (2016).
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(see, e.g., Killworth et al. 1998 or Bernard et al. 2010). These groups consist of indi-
viduals who are outside the sampling frame of most surveys. Rather than needing to
reach these individuals directly, using ARD allows researchers to study individuals
through their interactions with others who are captured by more traditional sampling
strategies. Bernard et al. (2010) uses ARD to estimate the number of individuals
impacted by an earthquake whereas Kadushin et al. (2006) uses ARD to estimate the
number of individuals using heroin.’

The primary tool for estimating population size with ARD is the Network
Scale-up Method (N-Sum) and variations thereof. Say the goal is to estimate the
number of injection drug users in the population. If a respondent reports knowing
2 injection drug users out of 100 total contacts, then approximately 2 percent of the
respondent’s network consists of individuals who are injection drug users. If the
respondent’s network is characteristic, then in a population of 300,000,000 individ-
uals, this would mean there are about 6,000,000 injection drug users. Recent work
has paid attention to estimating other features of the network,’ but the majority of
work on ARD still focuses on estimating population sizes. As we do not focus on
populations that are hard to reach, we can ask directly about whether a respondent
is a member of a group to estimate population sizes. This distinction is essential for
“scaling” a respondent’s degree. If the size of each ARD group and the total popula-
tion are known, we can use the N-Sum logic to estimate individuals’ degrees.

The closest related work from the ARD literature is McCormick and Zheng
(2015): here, we use the same network formation model and build on derivations that
are the key contribution of that work. Specifically, McCormick and Zheng (2015)
shows that, for a specific formation model, it is possible to arrive at a likelihood that
is informed by information in ARD. That is, they interpret and do inference on a
likelihood for ARD. While we also have this likelihood, in our work it is merely an
intermediate step. In our paper, we perform inferences about the parameters of the
formation model itself. By explicitly making the link to the formation model, we can
generate graphs and compute both graph- and individual-level statistics.

Third, our latent surface model? is closely related to the $-model (Holland
and Leinhardt 1981, Hunter 2004, Park and Newman 2004, Blitzstein and Diaconis
2011) and the properties examined in Chatterjee, Diaconis, and Sly (2010) and
Graham (2017). Every node has a fixed effect. Links form conditionally inde-
pendently given the fixed effects of the nodes involved, modulated by a function
of distance between the nodes in a latent space. Relative to the Graham (2017) and
Chatterjee, Diaconis, and Sly (2010) models, our model places nodes in a latent
space (as in Hoff, Raftery, and Handcock 2002), which we are trying to estimate,
whereas the former only allows for observable covariates, and the latter has none.
Whereas previous approaches consider an asymptotic frame based on a growing
graph, we consider an explicitly sampling-based framework.

4Perhaps the most common use of ARD is to estimate the number of individuals who are considered high risk
for HIV /AIDS (e.g., Maghsoudi et al. 2014, Guo et al. 2013, Ezoe et al. 2012, Salganik et al. 2011).

5Zheng, Salganik, and Gelman (2006) estimates heterogeneity in the propensity to know members of groups,
or overdispersion.

SIn the context where the goal is inference about a regression coefficient that varies based on network connec-
tions, Auerbach (2016) presents a more general framework that links network formation to a function of distance
between unobservable social characteristics that drive formation.
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Organization—We begin with an overview of our method for an applied
researcher in Section I. Section II presents the full framework, model, and esti-
mation algorithm. In Section III, we apply our results to two empirical examples.
Section IV demonstrates the 70-80 percent cost savings of ARD versus full network
elicitation. Section V provides a discussion of how an applied researcher could nav-
igate the model’s limitations. Section VI concludes.

I. Overview of Method

We begin with a simple overview of the proposed method. Suppose that a
researcher is interested in studying networks in a set of rural villages. A village net-
work with n households is given by g, which is a collection of links ij where g; = 1
if and only if households i and j are linked and g;; = 0 otherwise. To fix ideas, sup-
pose that the researcher wants to learn how some outcome variable W is related to a
network statistic (or a vector of statistics) of interest S(g). Or, perhaps the researcher
is interested in how a treatment (such as exposure to microcredit) affects features of
network structure, S(g).

Our procedure takes five steps.

(i) Conduct ARD Survey: Sample a share v (e.g., 30 percent) of households.
Have each enumerate a list of their network links.” Ask 5-8 ARD questions,
such as

How many households among your network list do you know where any
adult has had typhoid, malaria, or cholera in the past six months?

The ARD response for a household i is
Yie = 2_&; - 1{jhas had one of those diseases in past 6 mo.}
J

where trait k denotes the disease question. This just adds up all friends who
have had the diseases over the last six months. We include a sample ARD
questionnaire in online Appendix Section A.

(ii) Conduct Census Exercise: Obtain basic information about the full set
of households in the village in a very rapid survey (denoted X; for all
i =1,....n).

* Minimal demographics: e.g., GPS coordinates, caste/subcaste.
* ARD traits: e.g., whether the household has had typhoid, malaria, or chol-

era in the past six months.

A sample census questionnaire is in online Appendix Section A.

7Note that this gives a direct estimate of the respondent’s degree. The method laid out in Section II does not
require this and can also produce estimates for expected degree based on the ARD responses alone.



2460 THE AMERICAN ECONOMIC REVIEW AUGUST 2020

(iii) Estimate Network Formation Model with ARD: Use the information from
the ARD survey and the population counts from the census to estimate the
parameters of a network formation model. In this model, the probability that
two households i and j are linked depends on household fixed effects (1), and
distance in some latent space (latent locations z;) with

Pr(gij = 1|y, v, C,zi,zj) x exp(yi +v+ ¢ distance(zi,zj)).

* Fit a model to predict v;, z; using X; in the ARD sample.
* Predict v;, z; using X; for all households in the census but not in the ARD
sample.

Equipped with estimated fixed effects and latent locations for all » households
in the network, the probability of any network g being drawn is fully com-
puted. The code is freely available and discussed in online Appendix Section
B.

(iv) Compute Network Statistics of Interest: Use the estimated probability
model (using ¢, fixed effects v; and latent locations z;) to compute E[S(g)|Y].
The code is freely available and discussed in online Appendix Section B.?

(v) Estimate Economic Parameter of Interest: e.g., run regressions such as
W, = a+ B'E[S(gv) |YV] +e€, or E[S(gv) |YV] = «a+ [Treatment,+¢€,,

though clearly one can do more complex exercises once one has estimated
the network formation model above.

II. Model and Estimation

In this section, we present formally the procedure outlined above. This includes
defining ARD, introducing the network formation model, linking explicitly the for-
mation model to the ARD, and finally, outlining how to generate graphs from that
network formation model. The result is a distribution over graphs (and therefore
graph statistics) based on the observed ARD.

A. Setup

We begin by describing the underlying graph and the ARD. Let g = (V,E) be
an undirected, unweighted graph with vertex set V and edge set E, with |V| = n
nodes. We let g; = 1{ijj € E}. We also assume that researchers have a vector of
demographic characteristics, X; forevery i € V.

Finally, we assume that the researcher has an ARD sample of m < nnodes which
are selected uniformly at random (where we define ¢» = m/n). These could be the

8Note that here, the method produces estimates of the latent locations of each node, which may themselves be
useful for some research questions.
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whole sample, with ¢) = 1, or a smaller share, and will depend on the context. It is
useful to define V,,, to be the ARD sample set and V,,,, = V\V,,,.

Formally, an ARD response is a count y;; to a question “How many households
with trait k do you know?”” which we can write as

Yik = Z 8ij »
JEG,
where G; C Vis the set of nodes with trait k. That is, y; is a count of the number
of households in group k that person i knows. Note that throughout we assume that
we observe y;, and, in some cases, additional information about the group of people
with trait k (e.g., the number of households with this trait in the population), but we
do not observe any links in the network.

It is easy to see how this could be applied to firm or banking network data. In
the firm case, g is the directed, weighted supply-chain network, which is of course
not observed by the researcher. Further, G; would be set of firms in sector k and g;
would be the volume of transactions between firms i and j. Here yo = ZjeGk gij
and yi} = ZjeGk gji are the total volume of directed transactions (inputs/outputs)
between firm i and firms in sector k. For the remainder of the paper, we proceed with
the example of a social network survey, however.

B. Latent Surface Model

The setup and model we use is from McCormick and Zheng (2015), motivated
by, among others, Hoff, Raftery, and Handcock (2002). We model the underlying
network as

(1) Pr(gij = HVi’Vj’CaZi’Zj) x exp(Vi + v+ CZij)>

where 1; are person-specific random effects that capture heterogeneity in linking
propensity.’| The set V of nodes occupy positions on the surface of a latent geom-
etry. As in previous latent geometry models in the statistics and machine learning
literatures, the distance between nodes on the latent surface is inversely proportional
to their propensity for interaction, parsimoniously encoding homophily. Using a
distance measure preserves the triangle inequality, thereby generating likely triadic
closure. That is, if the position of node i is close to that of node j and node j is close
to node k, then the triangle inequality limits the distance between i and k. As we
show below, equipped with the latent space terms, the model has features akin to
random geometric graphs where clusters of nodes that are nearby are more likely to
link, capturing realistic clustering patterns (Penrose 2003). For further discussion
of the properties of this class of model, see Hoff (2008). In our case, we use latent
space positions on the surface of p + 1 dimensional hypersphere, Z = S”*!, cen-
tered at the origin. As described below, the hypersphere has both conceptual and

9While we develop our methodology for this specific network formation model, we should note that it is likely
possible to use ARD and other components of our method alongside a range of other formation models. While
generalizing the method is outside the scope of this paper, we do view it as an avenue for future work, especially in
real-world settings where researchers have a strong preference for alternative models.
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computational advantages when working with ARD. Finally, ( > 0 modulates the
intensity of the latent component.

We use a Bayesian framework and, therefore, complete the model by specifying
priors on the model components. We begin with the latent space. As in McCormick
and Zheng (2015), we model priors for latent positions on S”*! as

zlvan, = 0 ~ M(v,0) and  zlj € Gupm ~ M(vem),

where M denotes the von Mises-Fisher distribution across S” 1.’ Here v, denotes
the location on the sphere and 7, is the intensity: = 0 means that the location is
uniform at random, which makes sense since the ARD respondents are assumed to
be drawn uniformly at random. The z;|j € G terms describe the latent positions of
individuals who have a particular trait k. For these groups, we estimate the center
and spread of the distribution. The positions of these groups then triangulate the
positions of individuals who have ARD. For individuals in the population without
ARD data, we assign their positions based on the positions of individuals with ARD
that have similar covariates.

Equipped with this, McCormick and Zheng (2015) shows that the expected ARD
response by i for category k can be expressed as

Cp+1(<) Cp+1("7k)
Cp1(0) Coia (/€ + 1 + 20003 (0,0,)) )

(2) X = E[yik] = diby

B

where d; is the respondent degree and b, is the share of ties made with members
of group k, C,.(-) is the normalizing constant of the von Mises-Fisher distribu-
tion (which is a ratio depending on modified Bessel functions that is easy to com-
pute with standard statistical software), ¢, ,,) is the angle between the two vectors
(McCormick and Zheng 2015). The expected number of nodes of type k known by i
is roughly its expected degree scaled by the population share of the group, adjusted
by a factor that captures the relative proximity of the node to the type in question
in latent-space. Note that, in the expression above, both the distance between an
individual and the center of the latent trait distributions as well as the concentration
of the latent trait distribution influence the (expected) number of individuals know.
Recall that our formation model only relies on the distance between individuals in
the latent space. The positions of individuals, however, are estimated using the like-
lihood above, meaning that both the position and concentration are relevant for our
formation model.

A key assumption in our formation model is that the propensities for individuals
to form ties are conditionally independent given the latent variables. The likelihood

9Tnformally, the von Mises-Fisher distribution can be thought of as follows. If the concentration parameteris large,
itis similar to a normal distribution on the sphere in that it is unimodal and symmetrically dissipating in distance from
the center (though it should not be confused with the wrapped normal distribution or other projection of the normal to a
sphere). If the concentration parameter is small, it is essentially uniform over the sphere’s surface. Formally, the proba-
bility distribution function is given by M(z;v,1) = C,(n) exp(nv'z), where the normalizing constant depends on
the modified Bessel function and simplifies to 1/2m(e” — e~") when p = 2. Here v is the mean direction, which
we call center for simplicity, and 7 is the concentration parameter. See also Fisher, Lewis, and Embleton (1993) or
Mardia and Jupp (2009) for a formal definition and properties.
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for the formation model, conditional on the latent variables, is a Bernoulli trial for
each pair. ARD, then, is the sum of (conditionally) independent Bernoulli trials,
which we can approximate with a Poisson distribution. This allows us to compute
the distribution of the ARD response, which will be distributed Poisson,

Yikldis b G Mo 012,09 ~ Poisson(Ay).

Though the likelihood above relies only on ARD, it does not uniquely identify
the formation model since \; estimates on the degree, d;, rather than the individual
heterogeneity parameter ;. We can compute the expected degree as in McCormick
and Zheng (2015),

o) 4, = nexp(v)E[exp(y, ]@:8)

The virtue here is that this allows us to estimate v, fori € V,,,."! The logic is similar
to that in Chatterjee, Diaconis, and Sly (2010) or Graham (2017): in a model like the
(#-model, having a vector of degrees essentially provides the researcher with enough
information to recover the vector of fixed effects. If we take the expression above for
each individual, then we have a system of n equations with n + 1 unknown terms
(nv; terms and one Efexp(v;)]). Assuming that E[exp(1;)] is well approximated by
the average of the exp(v;) terms, we have a system with n equations and n unknowns
and can, therefore, recover individual v; terms using degree and the latent scaling
term, C.

To complete the model, we need priors for the remaining parameters. We propose
Gamma priors for ¢ and 7; with conjugate priors on the hyperparameters. Then if 0
is the shorthand for all parameters, the posterior is

K n
0y kljl Ulexp( i) )\y”‘HNormal(log( ,-)\,ud,af,)

K
X H Normal(log (be) | 12 ab) HNormal(log )| o ,]k)Gamma(C\’yC, 1/1()

Given the data, we can compute posteriors over degrees of nodes, their unob-
served heterogeneity, population shares of categories, intensity of the latent space
component in the network formation model, relative locations of categories on the
sphere, and how intensely they are concentrated at these locations. So with any draw
of (z1,.--52,)s (V1 ---,1,), and 1, we can generate a graph from the distribution
in (1).

"'Note that if in our ARD elicitation, we also collect information on each node’s degree, which we recommend,
then we can use that information here, without needing to first estimate d; above.
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FIGURE 2

Notes: Identification of vy and 7, for k € {Red,Blue, Green} holding fixed locations and degrees of nodes in the
ARD sample. Identification of E[d;] holding fixed locations and concentration parameters.

C. Identification

Before explaining how we go from the ARD sample to the full sample, we explain
identification of the parameters in the model.'” Here we provide a simple intuition,
followed by a formal statement with proof in the Appendix.

shows how the location v; and the concentration 7, for category £ is intu-
itively identified assuming the latent geometry is a plane. Holding the location of
three nodes fixed (here Tyler, Emily, and Mengjie), and holding fixed their degree,
the relative locations of categories (here Red, Green, and Blue) can be identified by
placing their centers and controlling the concentration to match the Poisson rates
observed in the ARD. To see that the concentrations of the Red, Green, and Blue
trait groups are identified, consider what would happen if we changed the concen-
tration of one of the groups. If we increased the concentration of the Blue group
(i.e., decreased the variance), then we would need to move Mengjie (and Tyler and
Emily) closer to the Blue group to preserve the overlap between Emily’s disc and
the Blue group. Moving Emily closer to the Blue group, though, necessitates mov-
ing her away from the Red group, reducing her overlap with the Red group. We
could try to compensate by decreasing the concentration (increasing the variance)
of the Red group. We can’t do this, though, because doing so would change the
overlap between Tyler’s disc and the Red group. Similarly the figure shows how
the E[dyy,,] can be identified holding fixed the location and concentration of the

12 Also see McCormick and Zheng (2015) for a discussion of identification as well as recommendations for the
number of populations to fix based on the dimension of the hypersphere.
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various categories, since this affects A7y, ;. Because the likelihood only depends
on the latent space through the distances between individuals and groups, we fix
the location of the center of a small number of groups to address the invariance to
distance-preserving rotations.

To see the formal statement, it is useful to recall that we say two points on a sphere
are antipodal if there are indefinitely many great circles passing through them.

ASSUMPTION 1: K > 3 and the centers of the von Mises-Fisher distributions
representing three of the alter groups are fixed.

ASSUMPTION 2: The fixed centers are not all on the same great circle.
ASSUMPTION 3: For some k, k', n;, # np.
ASSUMPTION 4: ¢ > 0.

THEOREM 1: Under Assumptions 14, for any n by K matrix of ARD responses
Y, we have that L(d;,bg, (0003 Y) = L(dinbiConis00:0,,Y) only if
e = 77//0 e(z,-,vk) = 9{1,-,11,()7C = C/’ Vi = Vl{’ and i = Zl{‘

We provide a formal proof of the theorem in the Appendix.

Assumption 1, that K > 3 and are fixed, is innocuous. The content of
Assumption 2 is as follows. Let the traits be “red,” “blue,” and “green.” If you know
the likelihood of say a “red” and a “blue” type linking on average (i.e., distance
between the centers) and you know the likelihood of a “red” and a “green” type
linking on average, it does not entirely determine the likelihood of a “blue” and
“green” linking. Practically this means that essentially knowing two features (some-
one having a migrant, someone having a tenth standard pass family member) does
not determine the third (on average). Assumption 3 requires that at least one trait
has a different concentration parameter. In some sense both Assumptions 2 and 3
can be interpreted as ruling out “measure zero” events if one thinks of trait centers
and concentration parameters themselves being generated according to any smooth
distribution on a sphere. Assumption 4 means that the latent space has content for
the model (by assumption { # 0): distance in the space indeed reduces the odds of
being linked. Put another way, it means that there is network structure not explained
by the individual effects.'”

D. From ARD Sample to Non-ARD Sample

Thus far we only have posteriors for our ARD sample V,,;. We now turn to pre-
dicting v; and z; forj € V,,,. We use k-nearest neighbors to draw this distribution.

13We could check this assumption using the residuals obtained by fitting a model with no latent space term
(i.e., where the expected number known in trait & is d;b;). In a world where ¢ = 0, the residual number known
in the “green” group shouldn’t depend on whether person i is in the “red” or “blue” group. If, however, there is an
increased linking probability between the “green” and “red” groups then the same residual exercise should reveal,
overall, larger residuals for “red” group individuals asked about the “green” group. We could formalize this intuition
by running regressions where the outcome is the aforementioned residual and the regressors are traits.
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Given demographic covariates X; for all i € V, we define a distance between nodes
in the feature space d(X;,X;) fori,j € V.Foreachj € V,,,, we picki' € V,,such
that d(X;,X;) is among the k smallest distances. We then take a weighted average
of v; and z; with weights inversely proportional to d(X;,X;), to estimate v; and z,
respectively. We normalize z; such that |z;| = 1 to map it to the surface of the sphere.
Thus, we have described a framework that a researcher can use with only ARD data
and demographic covariates to take a sample of draws from a network formation

latent surface model.
E. Drawing a Graph

We now describe the algorithm used to generate a distribution of graphs {gs}f= 1
The algorithm for drawing graphs requires specifying the dimension of the latent
hypersphere. Throughout the paper we follow McCormick and Zheng (2015) and
use p = 2, for a three-dimensional hypersphere.'“ This choice also facilitates visu-
alizing latent structure. The posterior distribution is not available in closed form.
We therefore use a Metropolis-within-Gibbs algorithm to obtain samples from the
posterior. In the description below, the jumping scale'? is tuned adaptively through-
out the course of sampling. Specifically, every 50 draws we look at the acceptance
rate of these draws and then adjust the scale of the jumping distribution. We follow
the guidelines given in Gelman et al. (2013) and perform checks to ensure that our
sampler has converged.

ALGORITHM 1 (Drawing Graphs): Input: y; Vi € V,. X; Vi € V.
Assume ARD groups, k = 1, ...,K, such that K > p. We propose fitting the model
as follows (noting that steps (i) and (ii) follow from McCormick and Zheng 2015):

(i) For a subset of the ARD groups, k¥ = 1, ..., K", fix v,(:).
(ii) Repeat to convergence fort = 1,...,T.

(a) For each i, update z; using a random walk Metropolis step with proposal
7~ ./\/l(zl(t_l), Jumping distribution scale). Use the algorithm proposed
by Wood (1994) to simulate proposals implemented in the R package Rfast
(Papadakis et al. 2017).

(b) Update v, wusing a conditionally conjugate Gibbs step vy
~ M(my/[|my ||, [[my||y), where my = nijeij- (See, e.g., Mardia
and El-Atoum 1976, Guttorp and Lockhart 1988, Hornik and Griin 2013,
Straub et al. 2015).

14We also investigated the performance of the method in real-world networks for p = 3 and p = 4 and found
similar performance. We thus use p = 2 to facilitate visualization.

15For Metropolis steps in the Markov chain Monte Carlo (MCMC), the procedure for updating parameters
involves proposing a new potential value based on the current parameter value and then probabilistically deciding
whether to accept or reject the new candidate value. The jumping scale refers to the variance of the distribution we
used to propose a new parameter. Intuitively, selecting a larger jumping scale will produce candidates that are less
similar to the current value (and possibly larger differences between the current and subsequent parameter values).
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(¢) Update d; with a Metropolis step with log(d}) ~ N(log(d;) ", jumping
distribution scale).

Update b, with a Metropolis step with log(b;) ~ N(log(by)V "/, jumping
d) Update by with ! h log (b log (b)Y
distribution scale).

(e) Update 1, with a Metropolis step with 1y ~ N(ngfl), Jjumping distribu-
tion scale).

(f) Update ¢ with a Metropolis step with * ~ N(C"™Y, jumping distribution
scale).

(§) Update ju, ~ N(fi,,a) where fi,, = ) i log(by) /K.

(h) Update o3 ~ Inv-x*(K —1,67%) where 63 = ﬁ YK (log(by) — mp)*

(i) Update pig ~ N(figsoq) where ji; = Y1 log(d,)/n.

(j) Update o ~ Inv-x*(n — 1,6) where 65 = ﬁZ?:l(lOg(di) — pa)*

(iii) Repeatfort € {T/2 +1,...,T}

(a) Calculate Vi Yi € V., such that V! satisfies (d;)' = exp(v}))_;exp(v!)
x (Cp—&-l(o)/Cp—&-l(C))'

(b) Use method described in Section IID to estimate Vi and z; Vj € V.

(¢) Sample graph g, using the the procedure described below.

OMttht: {gv}§= 1

To  generate  graphs, recall that the formation model has
Pr(g; = 1|v,v;(ziz) o< exp(y; + v + (zfz;). We estimate ¢ and z;,7; using
the likelihood derived in McCormick and Zheng (2015). The expression (3)
relates degree to the unobserved gregariousness parameters, v;. If we approximate
Elexp(v;)] as the average of the v; terms, then we can view (3) as a system with
n equations and n unknowns and obtain estimates for v; for each respondent.

We then normalize the exp(v; + v; + ¢ zfzj’) terms to produce probabilities. Define

exp(v; + v; + Cziz)) ) iE[d)]
Zi,jeXP(Vi + v; + (ziz)

Pr(g; = 1|zp2,vv)) =

Normalizing in this way ensures ) ;E[d] £ Y, ;Pr(g; = 1|z.z,v;1;). Since
the formation model assumes that the propensities to form ties between pairs are
conditionally independent given the latent variables, we can now generate graphs by
taking draws from a Bernoulli distribution for each pair with probability defined by
Pr(g; = 1]2525v 7).
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E. Discussion

We have provided a simple algorithm to go from ARD questions to draws from
the posterior distribution of the graph that would have given rise to ARD answers
by respondents with characteristics similar to those we observed in the data. The
model leverages a latent surface model similar to Hoff, Raftery, and Handcock
(2002), used in McCormick and Zheng (2015), which is intimately related to
the $-model studied in Chatterjee and Diaconis (2011) and Graham (2017). One
issue that has arisen from both the Bayesian and frequentest perspectives is the
notion of density in the limit, or the rate at which the number of edges grows com-
pared to the number of nodes. The Bayesian paradigm uses the Aldous-Hoover
theorem (Hoover 1979; Aldous 1981) for node-exchangeable graphs to justify
representing dependence in the network through latent variables, though this theo-
rem only gives the existence of a latent variable representation and not the specific
form we use. The exchangeability assumption implies that a graph can be sparse
if and only if it is empty (Lovédsz and Szegedy 2006, Diaconis and Janson 2007,
Orbanz and Roy 2015, Crane and Dempsey 2015). From a frequentist perspec-
tive, Chatterjee and Diaconis (2011) shows that the individual fixed effects (cor-
responding to, for example, gregariousness) can only be consistently estimated
when the network sequence is dense.

In contrast to this previous work, however, we assume that our sample of egos
arises from a population with fixed n. That is, in our paradigm there is a network
of finite size, n, and we observe a small 7 number of actors. We see the reliance on
this assumption in, for example, our expression relating degree to the individual
heterogeneity parameters, v;. Put a different way, there is no asymptotic sequence
of networks. The number of edges in a graph still impacts estimation, however.
Even when the number of nodes is large, we do not expect d; to uniformly converge
to E[d;] if the graph is not dense. This additional variability propagates through the
model and inflates the posteriors of ;. These may be quite poor in practice, though it
is difficult to derive the finite sample distribution. Nonetheless, what this suggests is
that in cases where the network is too sparse, the ARD approach may be uninforma-
tive, and the researcher will see this plainly. This is the case for two reasons. First,
by definition, anyone in the ARD sample will know fewer alters with trait k since
the network has fewer links on average. Second, there will be too much variation
in our location estimates and degree estimates, which then will also affect our node
heterogeneity estimates. This means that when the researcher faces rather diffuse
posteriors, the network may be too sparse to convey much information.

II1. How Well Does the Procedure Perform with Real Data?

We now present two empirical applications that use ARD techniques. They build
upon prior work by the authors, in part. The goal is to illustrate here that a researcher
could have done this sort of economic analysis using ARD only, equipped with our
method.

The first example looks at what would have happened if the researchers had
obtained ARD for an experiment on savings and reputation. The second example
actually looks at a setting where survey ARD was collected.
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A. Encouraging Savings Behavior in Rural Karnataka

Our first application builds on Breza and Chandrasekhar (2019a). The authors
study social reputation through the lens of savings. In a field experiment, savers
set six-month targets for themselves. They do so knowing they may be assigned a
“monitor,” a villager who will be notified biweekly about their progress. Progressing
toward a self-set target exhibits more responsibility, providing an avenue for the
saver to build reputation with the monitor and others in the community. In 30 vil-
lages, monitors are randomly assigned to a subset of savers. This generates varia-
tion in the position of the monitor in the network. Because the monitor is free to
talk to others, information about the saver’s progress and reputation may spread. A
signaling model on a network guides the analysis: if the saver is more central, infor-
mation can spread more widely, and if the saver is more proximate to the monitor,
information likely spreads to those with whom the saver is more likely to interact in
the future. For saver i and monitor j, the model shows that the network matters for
signaling through the quantity'®

= 1 Monitor Centrality x Saver Centrality + n - Proximity of Saver-Monitor.

9% = n

Breza and Chandrasekhar (2019a) has near-full network data (from the Banerjee
etal. 2019a sample), allowing them to calculate g; ;. They find that randomly selected
monitors increase household savings across all accounts by 35 percent. Consistent
with the model, a one standard deviation increase in g; leads to an additional
29.6 percent increase in total savings. Additionally, 15 months after the end of our
savings period, they show that reputational information spread: randomly selected
individuals surveyed about savers in the study were more likely to have updated cor-
rectly about a saver’s responsibility when the saver was randomly assigned a more
central monitor. Moreover, the savings increase persisted, and in the intervening
15 months, monitored savers were better able to cope with shocks.

How would our conclusions have changed if Breza and Chandrasekhar (2019a)
only had access to ARD and not the full network maps? presents regres-
sions of the log of total household savings across all household accounts against
the model-based measure of how much signaling value the monitor provides
the saver, g;;. We construct ARD estimates by taking samples from the posterior
distribution and then using the average estimated g;; across those posterior draws. In
the experiment we showed that a 1 standard deviation increase in g;; due to random
assignment of the monitor led to a 24.8 percent increase in total household savings
(column 1). In column 2 we show that even if we did not have the network data, if
we had ARD alone for a 30 percent sample, we would have had a very similar con-
clusion, inferring that a one standard deviation increase in predicted g;; corresponds

16 Formally, Breza and Chandrasekhar (2019a) shows
1
qij = ﬁzk:pjkzk:p,-k +n- COV(P-i,P-j)«

Here p;; o< [ I (0g) ’] is the probability that a unit of information that begins with 7 is sent to j, where transmis-
sion across each link happens with probability 6. Banerjee et al. (2019a) shows that for sufficiently high T, Y, Dk
converges to the eigenvector centrality of j. Breza and Chandrasekhar (2019a) shows that in equilibrium, only
when g;; is sufficiently high does the saver actually save.



2470 THE AMERICAN ECONOMIC REVIEW AUGUST 2020

TABLE 1—L0G TOTAL SAVINGS ACROSS ALL HOUSEHOLD ACCOUNTS REGRESSED ON MONITOR SIGNALING VALUE

log total ending savings

(1) 2

Signaling value of monitor with full network data (g;), standardized 0.254
(0.0869)
Predicted signaling value of monitor with ARD (g;;), standardized 0.185
(0.0925)
Observations 422 422
Number of villages 30 30

Note: Standard deviation of village-level block bootstrap in parentheses.

to a 18.1 percent increase in total household savings across all accounts. Said differ-
ently, we could have used ARD questions to easily pick good monitor-saver pairs.

As a further examination of our approach, we repeat the same exercise using
another specification from Breza and Chandrasekhar (2019a). shows the
results of a regression where the outcome is the respondent’s belief about the saver’s
responsibility and the regressor is the monitor’s centrality. Observing the complete
network, a unit increase in the monitor’s centrality corresponds to about a 5 percent
increase respondent’s belief about saver responsibility. Using ARD, we would esti-
mate an increase of about 3.4 percent, leading (as in the previous example) to the
same substantive conclusions.

This application also gives us an opportunity to visualize how network character-
istics map to the latent space representation. In Figure 3, we plot the locations and
concentrations of the ARD traits for four sample villages that were part of the Breza
and Chandrasekhar (2019a) savings study. We then overlay the positions in the
latent space of the individuals participating in the experiment as monitors, depicted
as rings. The size of the ring depicts the monitor’s eigenvector centrality. Finally,
we color the monitor rings to indicate the savings performance of the saver to whom
each monitor was randomly allocated: darker shades depict higher levels of savings.

As Breza and Chandrasekhar (2019a) finds, there appears to be a relationship
between monitor centrality (here denoted by larger rings) and the saver’s perfor-
mance (here given by darker colors). This is consistent with the theory that more
central monitors under the signaling model generate larger incentives for the saver
to save. Furthermore, the visualization demonstrates that the larger rings tend to be
located closer to the centers of traits or between centers of traits. That is, they are
closer to the center of masses of clusters of types of individuals. This makes sense as
this means that the latent location of a central monitor will tend to be closer to many
more other individuals, ceteris paribus.

B. Impact of Microfinance in Hyderabad
The goal of our final example is to demonstrate to the reader a context in which we

collected and use only ARD survey questions in our analysis. We first demonstrate
that the researcher could have obtained the same conclusions using the ARD instead
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TABLE 2—BELIEFS ABOUT SAVERS AND MONITOR CENTRALITY
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Belief about saver’s responsibility

(1) (2)
Monitor centrality with full 0.0500
network data, standardized (0.0146)
Predicted monitor centrality 0.0340
with ARD, standardized (0.0160)
Observations 4,743 4,743
Number of villages 30 30

Notes: Standard deviation of village-level block bootstrap in parentheses. Responsibility is
constructed as 1(saver reached goal) x 1(respondent indicates saver is good or very good at
meeting goals) + (1 — 1(saver reached goal)) x 1(respondent indicates saver is mediocre,
bad or very bad at meeting goals). See Breza and Chandrasekhar (2019a) for further details.
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FIGURE 3. SAMPLE LATENT LOCATIONS OF RANDOMLY ASSIGNED MONITORS
BY CENTRALITY AND THE SAVINGS OF THEIR RESPECTIVE SAVERS

Notes: Monitors with higher eigenvector centrality have larger rings. The color of the ring indicates the savings per-
formance of the saver to whom each monitor was randomly assigned, with darker colors indicating higher savings
levels. This illustrates the pattern that more central monitors corresponded to higher levels of savings.

of the network data that were collected in this study. But because the network data
were incomplete (specifically the authors only measured degree (the number of
links but not the identities) and support (how many links had a friend in common)),
the researchers could not ask how their intervention impacted the network more
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generally. Using ARD techniques, we show what conclusions the researchers could
have learned about how the network was affected by the intervention only using the
ARD survey data and estimates from the surveys of each neighborhood’s average
degree.

This example concerns the introduction of microfinance in Hyderabad, India. A
recent literature has examined the effects that introducing microfinance to previ-
ously unbanked communities can have ambiguous and heterogeneous effects on the
underlying social and economic networks that facilitate informal risk-sharing. On
the one hand, as in Feigenberg, Field, and Pande (2013), links may be built between
microfinance members and there may be an increased incentive to build links to
relend (Kinnan and Townsend 2012). On the other hand, the fact that individuals
who have now become banked have less of a need to rely on informal insurance may
nudge them to break links with others, and this can have local or even general equi-
librium effects on the network, which can reduce density and increase paths among
all nodes (Banerjee et al. 2019c).

In Banerjee et al. (2015, 2019d), the authors study a randomized controlled trial
where microfinance was introduced randomly to 52 out of 104 neighborhoods in
Hyderabad, India. Banerjee et al. (2019¢) looks at long-run outcomes on network
structure 6 years after the intervention as one of two empirical exercises. This exam-
ple is useful for two reasons. First, it is an urban setting where the researchers have
no hope of obtaining full network data.'’ Second, it shows how we may measure the
effect of economic interventions on social network structure, as predicted by theory,
despite not having network data.

Banerjee et al. (2019¢) measures each node’s within-neighborhood degree and
support, defined as the fraction of links between the respondent and a connection
such that there exists a third person who is linked to both nodes in the pair. They find
that both degree and support decrease with the treatment. Note that they did not get
any subgraph data since the links were not matched to a household listing: degree
and support can be thought of as just two numbers.

In particular, a sample of approximately 55 nodes in every neighborhood was
surveyed and demographic covariates as well as ARD were collected for this entire
sample (Banerjee et al. 2019¢). As before, we fit a network formation model using
the ARD data and this sample of nodes.'® A complete list of ARD questions used in
this survey is in online Appendix Section C.

We explore whether microfinance affects network structure by regressing

yv(g> = « + (Treatment, + ¢,

where v indexes neighborhood and Treatment, is a dummy for treatment neighbor-
hoods. Our outcome variable y,(g) of interest is the rate of support.

7We thank an anonymous referee for noting that we could also tweak our surveys in urban settings to measure
ARD responses separately within the respondent’s own neighborhood and also across neighborhoods. While mapping
an entire urban space likely requires an infeasible number of surveys, putting some structure on relationships within
and across neighborhoods might allow for better urban network maps. We leave such an application to future work.

181n this application we use the survey responses for degree and input each graph’s estimated average degree
directly into the model.
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TABLE 3—NETWORK STATISTICS REGRESSED ON TREATMENT

Percent Percent supported Graph-level
supported (data) (estimate) proximity (estimate)
(1) 2 ®3)
Treatment neighborhood —0.0655 —0.0901 —0.0500
(0.0319) (0.0541) (0.0164)
Constant 0.4427 0.4364 0.3642
(0.0628) (0.093) (0.0108)
Mean of the response variable 0.3880 0.3125 0.3375
Observations 3,514 3,598 62

Notes: Standard deviation of village-level block bootstrap in parentheses. Sample includes neighborhoods with esti-
mated sampling rate > 20 percent. For large number of excluded low sampling rate neighborhoods, the population
count is top-coded at 500 households. For these very large neighborhoods, we calculate the sampling rate using a
population of 500. The outcome variable of columns 1 and 2 is the share of links that are supported and in column
3 it is the average proximity in the graph.

Theory is silent on whether density should increase or reduce, whether triadic
closure (clustering or support) should increase or reduce, which can depend on a
number of things: for instance, whether relending or autarky forces affect the incen-
tives to maintain risk-sharing links (Jackson, Rodriguez-Barraquer, and Tan 2012).

reports the regression results. Column 1 replicates the specification from
Banerjee et al. (2019c¢) that past exposure decreased support. Column 2 presents the
same regression, but using estimated support. The estimates of the treatment effects
along with the levels of support (the regression constant) are quite similar. We view
this exercise as a “validation” of the ARD-based model. The fact that estimated sup-
port matches measured support quite well is especially reassuring given that triadic
closure is exactly the type of network statistic that the Hoff model may have a hard
time replicating.'”

Given that the estimated treatment effect looks quite similar using the different
support measures, in column 3, we present the results of a graph-level regression,
using proximity (the average inverse path length in the network) as the outcome
variable. Note that it was not possible for the authors to collect such a statistic using
their surveys. We find that estimated proximity decreases, meaning that the decline
in links due to microfinance exposure lead to larger average distances between
households in the community. This exercise demonstrates how our method may be
useful to researchers seeking to study the evolution of networks, without requiring
full network data.

IV. Cost Savings Using ARD

We have demonstrated that our approach for estimating network statistics has the
potential to serve as a replacement for the collection of full network data. Namely,
we show above that we can replicate the findings of Breza and Chandrasekhar

19Recall that our latent space model can accommodate clustering for groups of individuals located in close
proximity to one another. One interpretation of this result is that for the Hyderabad setting, the form clustering we
observe is well captured by the model.
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TABLE 4—CoST COMPARISON: FULL NETWORK VERSUS ARD SURVEYS

Traditional
network survey ARD survey
Panel A. Assumptions
Project duration (months) 8.2 32
Number of villages 120 120
Census sampling rate (percent) 100 100
Fully enumerated census Yes No
Network/ARD survey sampling rate (percent) 100 30
Traditional network survey ARD survey
Total cost($)  Per village cost($) Total cost($)  Per village cost($)
Panel B. Costs
Variable
Census 29,904 249 12,816 107
Networks survey 84,954 708 4,486 37
Data entry and matching 14,284 119 — 0
Tablet rentals 8,584 72 1,026 9
Fixed
Project staff salaries 20,185 168 7,959 66
Travel 1,617 13 638 5
J-PAL training/staff meetings 1,916 16 1,886 16
Office expenses 3,047 25 1,201 10
OH
J-PAL IFMR OH (15 percent) 24,674 206 4,502 38
Total cost 189,164 1,576 34,512 288

Note: This cost comparison was prepared by J-PAL South Asia, the organization that implemented the network sur-
veys for Banerjee et al. (2013) in Karnataka, India.

(2019a) and Banerjee et al. (2019c) with our ARD-based estimates alone. While it
is always preferable to collect the underlying graph data, one important benefit from
ARD is that it is substantially easier and cheaper to collect.

presents a comparison of the costs associated with a full network survey
with those of an ARD exercise for a target sample of 120 villages. Panel A sum-
marizes the major differences in the budget assumptions between the two methods.
We assume that a census is conducted in both methodologies, though household
members need only be enumerated in the full network surveys. We also assume that
the full network data are collected from 100 percent of households, while the ARD
protocol samples from 30 percent of households. Importantly, the ARD method does
not require the time consuming matching of a household’s reported links with the
enumerated census. Given these assumptions, panel B of Table 4 shows that ARD
is substantially cheaper, costing approximately 80 percent less than the full network
surveys.

In Figure 4, we show that these dramatic cost reductions are not only a byproduct
of the 30 percent sampling rate assumption. Even with 100 percent sampling, ARD
surveys are still over 70 percent cheaper than the full network alternative. This
sample budget highlights that using ARD estimates could indeed expand the feasi-
bility of empirical network research.

It should go without saying that should a researcher be able to afford it, full net-
work data are the gold standard, and even partial network data could help being used
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FIGURE 4. CosT SAVINGS OF ARD VERSUS FULL NETWORK SURVEYS BY ARD SAMPLING RATE

in conjunction with ARD. The findings of this paper suggests that the Hoff (2008)
model is good enough at capturing relevant features of the network. Therefore, while
the network formation model can be estimated using ARD, certainly having more
information about a subgraph will aid the researcher in both estimating the network
formation model and integrating over the missing data in order to recover features of
interest to the researcher as argued in Chandrasekhar and Lewis (2016).

V. Discussion and Limitations

Our method is not without limitations, and we have highlighted two issues that
should be considered when using our method for applied research. While a detailed
theoretical study is beyond the scope of the paper, we discuss briefly how applied
researchers might navigate these limitations.

First, the method produces a distribution of networks that are consistent with the
estimated network formation model: we do not learn about the specific realization
that generated the observed graph. For example, of course we can never say whether
a given link exists. This means that network features that rely on the existence of a
specific links will not be captured well. If the research question requires knowledge
of specific links, then the researchers should ask about these relationships directly
when possible.”" This intuition also suggests that features such as betweenness

29The method can easily be adjusted to incorporate information about any known links.
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centrality, which rely on specific paths, may be hard to capture with the method.? If
the researcher has a contextual reason to know that a specific node may be of outsize
importance based on its observable characteristics (e.g., Amazon or Walmart in a
retail supply-chain network), the researchers can incorporate that information into
the research design, either using those characteristics as ARD traits or by collecting
information about the realized links to that specific node. Finally, appealing to the
result of Chandrasekhar and Lewis (2016), if inference is being conducted across
many independent networks, then these issues are of much less concern.*”

Second, the method relies upon a parametric network formation model. If that
model is not a good representation of the network of interest, then the resulting ARD
estimates may be biased. As mentioned above, one might be particularly concerned
about the ability of the Hoff model to capture the level of clustering. However, as
we show in our Hyderabad microfinance example, the model actually does well in
practice at predicting the change in the level of link support, a related notion. We
recommend that applied researchers follow this empirical example and also elicit
network support directly from survey respondents. The researcher can then “vali-
date” the ARD method for the specific applied context by estimating support using
ARD and comparing the estimates to the true values.*”

Other examples of network structures that our parametric model may be ill suited
to capture include hierarchical trees as well as bipartite networks. Hierarchical
trees are naturally embedded in latent spaces with negative curvature, hyperbolic
surfaces, rather than the sphere with positive curvature. Further, bipartite networks
place complicated restrictions on the latent space as well, not naturally represent-
able on the sphere.

Finally, in our companion paper (Breza et al. 2020a), we study how the quality
of the estimation of network features varies by statistic. We prove consistency of
the maximum likelihood estimates of all parameters of the latent space model from
ARD. Further, we investigate how the estimates depend on the density of the net-
work formation distribution, the sampling rates used by the researcher, and so on. To
summarize these results briefly, we find that the method works quite well for many
empirically relevant network features both at the node and network level. At the
network level it performs well when we look at degree, path length, maximal eigen-
value of the adjacency matrix, graph-level clustering, whereas it does poorer when
estimating the number of components in the network. At the node level, degree,
eigenvector centrality, among other features perform well; path lengths tend to be
underestimated whereas node-level clustering performs the worst and are system-
atically estimated to be near the expectation irrespective of node. When varying the
tail-thickness of the degree distribution of the sample, we are still able to system-
atically pick out the most central nodes. Our sampling simulations show that the

21 Our Savings Monitors example shows that the model can do well at capturing more recursive notions of cen-
trality such as diffusion and eigenvector centrality. Thus, the method should still do well in cases where between-
ness centrality is highly correlated with these other measures.

22 Chandrasekhar and Lewis (2016) shows that by the law of iterated expectations, when conducting inference
across many graphs, there is no difference between working with the realized graph- or node-level object or the
expectation of that object.

23 Again, the survey measures of support are not used directly in the ARD estimation procedure.
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estimates are of high quality so long as we have at least a 20 percent sample when
looking at networks of size 200-1,000.

VI. Conclusion

We have shown that by adding a very simple set of questions to standard survey
instruments, researchers and policymakers can retrieve powerful information about
the underlying social network structure. This information is easy to obtain in stan-
dard instruments and therefore can be employed in a cost-effective way.

There is a prior literature as to whether a researcher could simply ask individuals
from the network. For instance, Banerjee et al. (2019a) shows that simply asking
“gossip” questions can be used to identify eigenvector central individuals. However,
there are no results for other features such as such as clustering, path length, cut in
the network, and so on.** Further, we have reason to believe this sort of procedure
likely would not work for other network features. For instance Friedkin (1983),
Krackhardt (1987, 2014), among others in sociology, and also our own work in
Breza, Chandrasekhar, and Tahbaz-Salehi (2017), all document such biases. They
show that network knowledge decays in distance, that degrees are systematically
misestimated, and that individuals are more likely to think their friends are friends,
among other things.

We suggest a simple blueprint for researchers and policymakers in the field to
obtain network data. If possible, researchers should add five to ten ARD questions
to the census as a standard demographic variable that would be recorded just like
geographic data. If not, then researchers should at least ask ARD questions for a
sample of respondents. We discuss how one might collect ARD data for use in our
model in online Appendix Section A.

There are several avenues for future research. The first would involve optimizing
and standardizing ARD question design. What sorts of ARD questions should be
asked? What would provide the most information to make better inferences about
network structure? This has been in part the subject of work by, for example, Feehan
etal. (2016) in the sociology and epidemiology literatures. Another avenue for future
work builds upon the recent interest in trying to control for unobservables that both
drive network structure and outcome variables of interest, the ARD approach might
allow us to identify and control for latent variables. Yet another direction would pro-
vide guidelines for picking the dimension of the latent space, or the latent geometry
in general. In particular, we could use fraction of overlap between traits to restrict
the set of feasible latent dimensions.*”

A final avenue for future research involves looking beyond the survey network
setting. Predominantly, the literature on ARD has been focused on surveyed social
networks. However, we note here that our entire framework readily extends to any

24Note that part of the insight in Banerjee et al. (2019a) was to realize that eigenvector seems complicated but
if you know who you hear gossip about frequently, this mechanically corresponds to central individuals. This is a
unique trait for centrality, not all statistics.

25To see the intuition for this, consider the case where there are three groups A, B, and C. Each of these groups
would need to be placed on a sphere in such a way as to reflect the overlaps between individuals in one or more of
the groups (a person who is a member of A and B should go in the disc of both groups, for example). The config-
uration implied by these overlaps may not be possible in all dimensions. Fosdick et al. (2019) points out a similar
restriction arising because of the triangle inequality for latent spaces on the plane.
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network context where the researchers naturally have aggregated data about links
between nodes and categories of other nodes. To see this, consider the two most com-
mon economic network applications outside of social networks: intersectoral link-
ages (Acemoglu et al. 2012; Barrot and Sauvagnat 2016; Carvalho et al. 2016) and
banking (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015; Elliott, Golub, and Jackson
2014; Gandy and Veraart 2016, 2019; Upper and Worms 2004 ).

Let us consider the simple example of a dataset where the researcher has a sample
of firms and input-output data. So the researcher sees a collection of firms and then
transactions the firm has with other (sub)sectors. One can reinterpret this as simply
“How many links does the firm have to firms with trait k?”” where many links will
now just be a weighted (by, for example, the volume of trade) conditional degree
instead of a conditional degree and trait k is just (sub)sector k. This is just ARD for
a weighted and directed graph.”®

What this immediately implies is that questions of interest such as whether
firm-level shocks propagate or get absorbed in their production networks (e.g.,
Barrot and Sauvagnat 2016) or whether if theory suggests that certain supply chains
should be more robust than others to shocks, could be probed even with limited
ARD data, using the techniques developed in this paper. There is nothing specific to
survey network data in our statistical framework; rather, it applies more broadly to
any context where there are measurements of aggregate interactions between con-
nected units.

Similarly, if we consider a dataset where the researcher sees aggregated data from
bank loans, where the bilateral inter-bank loan is unavailable, but aggregated loans
are (e.g., by type of bank), the methodology applies once again. Thus, our technique
suggests an avenue for regulators and agencies, such as the Federal Reserve, to
release anonymized data in aggregates that still allow researchers to get at important
network economic questions.

APPENDIX. PROOFS
A. Identification

In this section, we formally discuss identification. Essentially, we need three latent
group centers to be fixed and to have distinct positions on the hypersphere. We also
need to know the trait status of at least some individuals and for there to be at least
some individuals with more than one trait. This is sufficient to identify the parame-
ters governing the locations of each of the types and the concentration parameters. If
we assume that trait status is unrelated to gregariousness (which is necessary for the
derivation of the likelihood anyway) then we can identify the coefficient zeta. Based
on zeta and degree (which is identified as described in McCormick and Zheng 2015
using the latent trait group sizes) we can identify the individual gregariousness

26The model presented above is for cases when the underlying network is unweighted (binary) and undirected.
The formation model we use is unnormalized, however, making the extension to the weighted case straightforward.
One could extend the method to address directed graphs by introducing an asymmetric distance measure as sug-
gested in, for example, Hoff, Raftery, and Handcock (2002).
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parameters. All that is left are the individual-level latent positions, which we show
can be identified based on the previously described parameters.

We begin by defining terms necessary to describe the spherical geometry and
then provide the necessary conditions. Throughout the proofs here we will assume a
latent sphere centered at the origin.

PROOF OF THEOREM 1:
Under Assumptions 14, this is a direct corollary to Propositions 1, 2, and 3. B

PROPOSITION 1: Considering Assumptions 1-4, trait centers v, for
k = 4,...,K, concentration parameters n fork = 1,...,K, and C are identified.

PROOF:

The von Mises-Fisher distribution is a symmetric unimodal distribution with
probability mass declining in distance from the center, v, tuned by concentration
parameter 7). For each individual we know their latent trait group(s). This is a fun-
damental distinction between our setting and that of McCormick and Zheng (2015),
who typically do not assume this information is known. We can think of the posi-
tions of each individual as draws from one or more of the von Mises-Fisher dis-
tributions on the sphere. An individual who belongs to two trait groups has to be
at the intersection of the densities of the two trait groups. Knowing the fraction of
individuals who have both traits, therefore, intuitively tells us something about the
overlap between the densities of the two trait groups. Throughout this proof keep
in mind that we are not using the specific locations of individuals (which we only
show is identified in a subsequent proposition), but rather the density defined by the
overlap between trait groups.

More formally, define the lens, ¢(A,B), as the expected share of individuals
drawn from this distribution who have traits A and B. Equivalently, we can think of
this as the volume of the overlap between the densities of the two distributions for all
individuals up to a prespecified, but arbitrary,”’ cumulative probability. In general
let (Ay, . ..,A;) denote the expected share of individuals drawn who have all traits.
We can treat all lenses as observed in the data because for a large m, we know the
traits that every node has.

For notational convenience and without loss of generality, we will assume that
the fixed group centers correspond to the first three latent trait groups, vy, v, v3.
Observe that this immediately implies all three 7, for k = 1,...,3 are identified.
For the sake of argument assume that 7, is known. Then from ¢(1,2) we have that ),
is identified. Given 7, from ¢(2,3), we have 73 identified. But we can of course
identify n; similarly from 7);. This logic applies because we can map the overlapping
section, £(1,2), into specific values of the cumulative distribution function of the
von Mises-Fisher distributions. If we change 1,, then the location of individuals’
latent positions that are draws from this distribution must also change. Changing
these locations changes the boundary of /(1,2). Similarly, changing the boundary

27We could define the lens for example as the area of the overlap in bands that represent that ninety-fifth per-
centile of the distribution. We need to specify a cutoff because the densities are continuous across the surface. The
choice is arbitrary so long as the discs are sufficiently wide to include the overlap between densities.
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of £(1,2) implies a change in the densities of the von Mises-Fisher distributions
for the first and second traits. Since the centers of these distributions are fixed, any
change in the distribution must come through the concentration parameter.

Further, this solution is unique. To see this, assume that we are at some unique
solution 7);,1,,73. Consider an alternative value of any combination of concen-
tration parameters. Clearly all concentration parameters cannot increase because
then the lenses would not match the true lenses. Consider then the case where at
least one 7, declines. In this case, if 1, were not to increase, then ¢(k,k") would
not match the expectation observed in the data. Consequently, 77, must increase. In
this case, should 7, increase, then 7~ must decline to preserve ¢(k’,k"). But in this
case, the lens ¢(k, k") must increase as both concentration parameters have declined.
Therefore the solution is unique.

To see why ( is identified, consider any two k, k" with 1, # n,. Because we know
the respective von Mises-Fisher distributions for each trait, we can compute the
ratios of the expectations of (2) conditional on each type k and k', plugging in for d;
from (3). Because the individual effects are drawn independently of trait by assump-
tion, all terms that depend on v; drop since the distribution of 1; is independent of
trait type, so they have the same expectations irrespective of k or k". As such,

E[Xii € Gy
Bl € G — Oebeneneo)

where the right-hand side is a known function that comes from taking these ratios.
The only unknown is (. There is a unique solution to the equation, we leave the
algebra to the reader, but can be seen from the fact that the link probability is mono-
tonically declining in ¢ and faster for lower 7, holding all else fixed, so the ratio
term also is monotone in (. B

PROPOSITION 2: Considering the conditions above, v; fori = 1,...,m, individ-
ual gregariousness effects for the entire ARD sample, are identified.

PROOF:

By Proposition 1, the v, and 7, and ( are identified. By (2), d; can be obtained and
by (3) we have for every i = 1,...,m in the ARD sample an equation relating the
fixed effect v; to the degree. We have m equations and m unknowns.

To see why the solution is unique consider fixing for the moment some v; without
loss of generality. In this case, we can write v; = h; v, for every i, where h; is the
ratio of the degrees between person i and person 1. Then we can write

exp(uﬁ(% ;exp(hiul)> = +

»+1(0)
" Cn©

This is a monotone function in vy and has a unique solution, which then identifies
the remainder of the 1; as well scaling by 4;. B

PROPOSITION 3: Considering the conditions above, the latent locations z; for
i = 1,...,mforthe entire ARD sample, are identified.



VOL. 110 NO. 8 BREZA ET AL.: ESTIMATING NETWORKS WITH ARD 2481

PROOF:

From Propositions 1 and 2, we have identified all parameters except for z;. To
show this result, we first state two results from spherical geometry. The proofs of
these results are available in standard texts (e.g., Biringer 2015).

Result: The great circle between two points is unique unless the points are
antipodal.

Result: There are exactly three isomorphisms for spherical geometry.

The first result defines a unique distance from each respondent latent position and
at least two of the three latent group means. A respondent position can be antipodal
with one of the three fixed groups, but then cannot be with the two others because
the three groups are not on the same great circle.

The second result limits the number of possible operations that threaten identifi-
ability. Recall that, if an operation changes the latent distance between a point and
the center of a group, then the operation will also change the likelihood. Thus, if we
show that we cannot perform any of the three possible distance-preserving transfor-
mations on the sphere after fixing group centers, then we have also completed the
proof.

We consider two cases: the first takes an arbitrary point that is not antipodal to
any of the latent centers, whereas the second case considers any point that is antip-
odal with one latent center.

Case 1: Since we fix three centers which are not on a great circle, we cannot do
any reflections of points without changing the distance to one of the centers. For
rotations, consider centers v; and v,, and a point z;. Since v, and v, are not antipodes,
if we rotate z; around center v, and keep d(z;, v,) the same, it is possible that d(z;, v,)
changes. The points z;, z/ such that d(z;,v,) = d(z},v,) and d(z;,v,) = d(z},v,) are
reflections over the plane that intersects v; and v, in a great circle. Thus, z; and z;
have equal distance to any point on this great circle, and unequal distance to any
point not on this great circle. Since the third center v; is not on this the great circle
that intersects v, and v,, d(z;,v3) # d(z},v3).

Case 2: When we change the point’s position, then the distance between that
point and the antipodal latent center decreases. B
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