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ABSTRACT. We develop a new class of random-graph models for the statistical estimation
of network formation—subgraph generated models (SUGMs)—that allow for substantial
correlation in links. Various subgraphs (e.g., links, triangles, cliques, stars) are generated
and their union results in a network. We show that all SUGMs are identified and, further,
establish the consistency and asymptotic distribution of parameter estimates in empirically
relevant cases. We show that a simple four-parameter SUGM matches basic patterns in
observed networks more closely than four standard models (with many more dimensions):
(i) stochastic block models; (ii) models with node-level unobserved heterogeneity; (iii) la-
tent space models; (iv) exponential random graphs. We illustrate the framework’s value
further via several applications using networks from rural India. We study whether network
structure helps enforce risk-sharing, whether cross-caste interactions are more likely to be
private, and how the introduction of microcredit changes network formation incentives. We
also develop a new central limit theorem for correlated random variables, which is required
to prove our results and is of independent interest.
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1. INTRODUCTION

Networks of interactions impact many economic behaviors including insuring one’s self
(e.g., Cai, deJanvry, and Sadoulet (2015)), participating in microfinance (e.g., Banerjee
et al. (2013)), educating one’s self (e.g., Calvo-Armengol, Patacchini, and Zenou (2009);
Carrell, Sacerdote, and West (2013)), and engaging in criminal behavior (e.g., Glaeser, Sac-
erdote, and Scheinkman (1996); Patacchini and Zenou (2008) ). Networks of interactions
are also essential to understanding financial contagions (e.g., Gai and Kapadia (2010); El-
liott, Golub, and Jackson (2014); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015)), as well
as world trade (e.g., Chaney (2016)), inter-state war (e.g., Jackson and Nei (2015); Koenig,
Rohner, Thoenig, and Zilibotti (2015)), and a host of other economic phenomena. As such,
the structure that a network takes has profound consequences—changing the possibility of
contagions, the decisions that people make, and the beliefs that people hold. All of these
applications make it essential to understand and be able to estimate network formation.

Moreover, networks are of interest in all such applications precisely because there are
externalities—one agent’s behavior impacts the welfare and behaviors of others.! This feature
means that connections between pairs of agents are not independent, not only in determining
behaviors but also in network formation. Thus, appropriate models of network formation
must admit correlations in connections.

Despite the importance of network formation in such a wide range of social and economic
settings, general, flexible, and tractable econometric models for the estimation of network
formation are lacking. This stems from two challenges: the aforementioned dependence in
connections and the fact that many studies involve one (large) network. Thus, one is often
confronted with estimating a model of formation by taking advantage of the large number
of connections, but having them all be dependent observations. Despite the dependence, it
is possible that the many relationships in a network still provide rich enough information
to consistently estimate the parameters of a network model and test of hypotheses from a
single observed network, at least hypothetically. Here we develop a class of models that
admit correlations in links and also provide practical techniques of estimating the models,
showing that they are easily estimable even if a researcher only has one network, as well as
in cases with many networks.

Let us discuss some of the other approaches that are available.

1.1. Existing Models of Network Formation. The most basic models are what are
known as ‘stochastic block models’, in which links may depend on node characteristics but are
(conditionally) independent of each other. That approach requires correlation between links
to be well-approximated by observables, and may not be sufficient for most applications.?
In particular, stochastic block models are not an option for estimation in many economic
applications. In fact, in Section 5 we show that our model (even with only four parameters)
models the graph structure of real-world data better than a stochastic block model with even

'For detailed discussions see Jackson, Rogers, and Zenou (2016) and Jackson (2019).

2A variation on this is community detection where nodes are estimated to belong to certain groups, though
this calculation is NP-hard. See Bickel et al. (2011) for a “non-parametric view” of network formation from
this perspective.
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when the block model admits a rich set of covariates and an extension of this to allow for
unobserved node level heterogeneity (fixed effects) (Chatterjee et al., 2010; Graham, 2017).
Although there are still some challenges in taking such models to data, they have should
be useful in settings that in which links are not formed in a correlated manner once one
accounts for all observed and (node-level) unobserved characteristics.

Given this void, a literature spanning several disciplines (sociology, statistics, economics,
and computer science) turned to exponential random graph models—henceforth “ERGMs”—
to meet these challenges. ERGMs admit link interdependencies and have become the
workhorse models for estimating network formation. However, from the onset of the use
of these models, people realized that the parameter estimates could be very unstable on
all except very small networks. It has been shown that maximum likelihood and Bayesian
estimators may not be computationally feasible (the required Gibbs sampler will take ex-
ponential time to mix) nor consistent for important classes of such models—effectively the
ERGMs that include many link dependencies of interest—and neither parameter estimates
nor standard errors can be trusted. For details see Bhamidi, Bresler, and Sly (2008); Shalizi
and Rinaldo (2012); Chandrasekhar and Jackson (2012).°

A set of models that does allow for link dependencies and are estimable are those based
on explicit link formation algorithms (e.g., Barabasi and Albert (1999); Jackson and Watts
(2001); Jackson and Rogers (2007); Currarini, Jackson, and Pin (2009, 2010); Christakis,
Fowler, Imbens, and Kalyanaraman (2010); Bramoullé, Currarini, Jackson, Pin, and Rogers
(2012)). These models can be estimated since the algorithms are particular enough so
that one can directly derive how parameters in the model translate into aggregate network
statistics, such as the degree distribution or homophily levels. The advantage of such models
is that a specific algorithm allows for estimation. The disadvantage is that the specificity of
the algorithms also necessarily results in narrow models. Thus, these approaches are useful
in some contexts, but they are not designed, nor intended, for general statistical testing of a
wide variety of network formation models and hypotheses. For instance, such models cannot
generate considerable triadic closure (where links correlated across triples of nodes—so if
two people have a friend in common, are they more likely to be friends with each other than
if link formation were independent).®

3In fact, correlations can be viewed as driven by unobserved heterogeneity (Chatterjee, Diaconis, and Sly,
2010),which has links be uncorrelated conditional on all (observed and unobserved) characteristics (as ex-
tended by Graham (2017)). See also Charbonneau (2017) for related work in a panel data setting. Such
models have been studied in the mathematics and statistics literatures (e.g., Holland and Leinhardt (1981);
Park and Newman (2004); Blitzstein and Diaconis (2011)).

“These grew from work on what were known as Markov models (e.g., Frank and Strauss (1986)) or px models
(e.g., Wasserman and Pattison (1996)). An alternative approach is to work with regression models at the link
level, but to allow for dependent error terms, as in the “MRQAP” approach (e.g., see Krackhardt (1988)).
"Recent work has made progress on both the speed of convergence of estimation algorithms as well as char-
acterizing the asymptotic distribution of sufficient statistics in some classes of ERGMs that avoid extensive
link dependencies (see e.g., Mele (2017a,b); Mele and Zhu (2017)).

®The Jackson and Rogers (2007) model does have a parameter that affects triadic closure, but in that model
closure cannot be separated from the shape of the degree distribution. So, it is best suited for growing
random networks where new nodes are born over time.
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Another approach can be thought of as having roots in the spatial statistics literature.
Such models organize nodes such that pairs can be evaluated in terms of distance, with
linking probabilities decaying in distance. The distance may be latent (unobserved) or in
characteristic space (such as geography or demographics). The arguments therein have
foundations in the mathematics literature on random geometric graphs (Penrose, 2003)—
where nodes are distributed in a latent space according to some Poisson point process and
then linking is much more likely among proximate nodes—and has been taken to the statistics
literature by work on latent space models such as in Hoff et al. (2002). In such models, the
idea is that links between distant enough pairs of nodes are asymptotically (at a fast enough
rate) independent and has been adapted to the econometrics literature (e.g., Boucher and
Mourifié (2012); Leung (2014)). This approach holds promise for some enormous networks—
in which the graph can almost be decomposed into independent pieces.”

A curious fact about these latent space (and generally spatial) models is that the geom-
etry of the space the nodes are embedded in dictates and limits strongly the structure of
link correlation. To take the simplest possible example, consider a large tree, which is a
structure that is certainly of empirical interest in a number of disciplines including econom-
ics, computer science, sociology, and biology. The spatial style models, as typically used,
cannot generate large trees. This is because an infinite tree cannot be embedded in a finite
dimensional Euclidean (or spherical) space.® So using these models in a reasonable way
may in fact require estimating the unobserved manifold, which presents its own challenges
(Lubold et al., 2020). Our model dispenses with these problems in a straightforward way,
allowing correlations across nodes but not forcing correlations generated through distances
in unobserved or characteristic space. Therefore, we can easily model large trees.

Finally, there is a large literature on the theory of network formation from a strategic
perspective (for references, see Jackson (2005, 2008)). Since the first writing of this paper,
researchers have started to derive versions of such models that can be taken to data. One
approach builds upon the relationship between certain classes of strategic network formation
models and potential games (Mele (2017a); Badev (2013); Sheng (2013)). Another derives
restrictions on parameters of an observed network under the presumption that it is in equi-
librium (pairwise stable) (De Paula, Richards-Shubik, and Tamer (2018)).” Although the
progress to date requires restrictions on how links can enter agent’s payoffs, they provide
important first steps in deriving implications of the arsenal of strategic network formation
models. Below, we also provide ways to incorporate strategic formation in SUGMs, thus in
part bridging our approach here and the strategic formation approach.

1.2. Our Subgraph Model Approach. Our approach is distinct from all of the above,
both in terms of the fundamentals of the approach (working with subgraphs as the basic
building blocks) and the technicalities of allowing nontrivial conditional correlations. We
develop a new central limit theorem for non-trivially correlated random variables that moves

"McCormick and Zheng (2015) merge the insights from the unobserved heterogeneity and the latent space
distance models. Breza, Chandrasekhar, McCormick, and Pan (2017) evaluate its empirical performance.
8In fact, these models need to be altered to have distances defined in hyperbolic space instead.

9For a recent overview of the recent literature, see de Paula (2015).
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away from relying on spatial-style mixing arguments that force decaying dependence in
distance. Our contribution is to develop models of network formation that admit considerable
and less geometrically restricted interdependency, and have the presence of links be highly
correlated — even across distances, but still prove consistency and asymptotic normality of
the parameter estimates.

The paucity of flexible models that are computable and can be used across many applica-
tions for hypothesis testing and inference is what motivates our work here.

Although the basic ideas behind our models are very simple, we provide four different
applications that illustrate how easily such models admit strategic network formation, general
covariates, and generate rich network features.

In Section 2 we introduce subgraph generated models (SUGMs), which are a new class
of random-graph models for the statistical estimation of network formation that allow for
substantial correlation in links. In these models, various subgraphs (e.g., links, triangles,
cliques, and stars) are generated directly. For instance, students may form friendships with
their roommate(s), members of a study group, teammates, band members, etc.; researchers
may form collaborations on writing papers in pairs, or triples, or quadruples, etc; villagers
may form specific bilateral or multilateral agreements independently, each to sustain some
collection of favors between those individuals involved in the agreement. This results in links
and those links are then naturally correlated since they are formed in combinations. The
union of all these subgraphs results in a network. In this section, we also introduce four
motivating applications to demonstrate how this model could be used: (i) motives for risk-
sharing, (ii) descriptively modeling network structure, (iii) incentives to link across social
boundaries, and (iv) changes in the incentive to link due to the introduction of microfinance.

The statistical challenge to the researcher is that often only the final network is observed:
a survey may ask people to list their friends and acquaintances, or links may be observed
on a social platform, or emails or phone calls are observed, and so forth, but the original
formation process is often not observed. The challenge that then arises in estimating how
the network formed is that subgraphs may overlap and may also incidentally generate new
subgraphs, and so the true rate of formation of the subgraphs cannot generally be inferred
just by counting their presence in the resulting network.

Despite this, in Section 3 we prove that every subgraph generated model is identified.
That is, if we consider a SUGM, a collection of subgraphs that can potentially form together
with a set of parameters governing the probabilities of each subgraph forming, any two
distinct set of parameters necessarily has two distinct set of distributions over the set of
possible networks. Furthermore, we explore specific cases that are of empirical relevance—
for instance, links and triangles models—and demonstrate that not only are the distributions
generally distinct, but we can find very simple statistics (such as the share of links or triangles
that form) that allow us to identify the parameters of interest.

Next we turn to estimation of the parameters in Section 4. We are interested in when we
can consistently estimate the parameters and the asymptotic distribution of the estimates so
we can conduct inference. There are two situations a researcher may face. In the first case,
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the researcher may have access to “many networks”. This could be because they have col-
lected network data from numerous schools, many villages, or so on. In such a case, we think
about the network size as fixed, imagine that the researcher has a large number of indepen-
dent networks, and demonstrate using standard results that the parameters governing the
SUGM can consistently be estimated with MLE estimators that are asymptotically normally
distributed. For some empirically relevant classes of models, we demonstrate that there are
computationally simple estimators which satisfy consistency and asymptotic normality.
The second case the researcher may be in is where they have one (or just a few) “single large
network”. This could be because they have collected very rich network data with resource
constraints in just a few communities, or because they are looking at a single market, or
because they are looking at one social media platform, etc. In this case, the asymptotics are
more technically challenging for two reasons. First, for consistency now there will be rate
requirements for the parameters in order for information to accumulate and there not to be
too much interference across the emergence of distinct subgraphs. Second, existing central
limit theorems from the spatial and time-series econometrics literatures do not apply to our
setting, as we need to allow subgraphs to form on arbitrary groups of nodes, which then
results in correlation patterns across all links in the network. We overcome this problem
by developing a new central limit theorem and thereby characterize when certain classes of
SUGMs have estimators that are consistent and asymptotically normally distributed."”
With the statistical properties established, we turn to our empirical applications in Section
5. In each application we use the detailed network data we collected in 75 villages in Kar-
nataka, India (Banerjee et al., 2014). We begin by comparing SUGMs to four archetypical
models from the literature in terms of how well they model real-world data. Specifically, we
fit each model to the data and then draw from the distribution at the estimated parameters
for each model. We are interested in a variety of economically relevant network features
(none of which are directly used to estimate any of the models). We find that across the
board a four parameter SUGM outperforms a stochastic block model with flexible covari-
ates, a model of unobserved heterogeneity at the node level as well as rich covariates, a latent
space model with unobserved locations and heterogeneity and covariates, and an exponential
random graph model with rich covariates. Only the SUGM comes close to capturing the av-
erage path length, homophily, maximal eigenvalue, size of the giant component, isolates, and
clustering. Having established this, the second example turns to whether the structure of the
networks are consistent with the idea that there are stronger incentives to have supported
relationships for risk sharing links rather than informational links (Jackson et al., 2012) and
we find evidence consistent with this. The third example explores whether linking across
social boundaries—here links between upper caste and lower caste (Dalit communities)—is
more likely to form in private (bilateral) rather than group (triadic) settings and we find
exactly this. Together, these examples demonstrate the utility of our general framework.

0An interesting consideration for future work is to employ the techniques in Bhattacharyya et al. (2015),
who develop a bootstrapping method to estimate the empirical counts of different subgraphs in enormous
networks.
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In Section 6 we return to the central limit theorem used prior, which is of independent inter-
est. The standard arguments exploiting strong mixing of random variables (e.g., Bolthausen
(1982)) do not apply for SUGMs since there is no sense in which the random variables (nodes,
links, triangles) we are concerned with begin to become arbitrarily far from each other, and
therefore essentially uncorrelated. Thus, we use a powerful lemma from Stein (1986) in
order to prove a new central limit theorem for correlated random variables that provides
for more general and permissive results (avoiding a certain kind of geometric restriction)
than previously available for our setting.!' This establishes asymptotic normality for our
estimators, and should be useful beyond our network setting. Our results have a connection
to the study of central limit theorems for random variables described by dependency graphs
(Baldi and Rinott (1989); Goldstein and Rinott (1996); Chen and Shao (2004)), though are

less restrictive in the correlation structure of the random variables of interest.

2. A MODEL OF NETWORK FORMATION VIA SUBGRAPHS

2.1. Networks. n > 3 is the number of nodes on which a network is formed. Nodes may
have characteristics, such as age, profession, gender, race, caste, etc., that we denote by the
vector X; for a generic ¢ € {1,...,n}. In what follows we assume that the X; have finite
support. As such nodes can be classified by a finite set of types.!?

We denote a network by g, the collection of subsets of {1,...,n} of size 2 that lists the
edges or links that are present in its graph. So, g = {{1,3},{2,5}} indicates the network
that has links between nodes 1 and 3 and between nodes 2 and 5. For notational ease, we
simply write g = {13,25}, and write ij € g to denote that link ij is present in network g.
In general our model easily accommodates directed graphs, and all of the definitions below
extend directly, in which case instead of pairs of nodes, these would be ordered pairs so that
17 and j¢ would differ. However, for ease of exposition, most of the examples and discussion
refer to the undirected case. G"™ denotes the set of all networks on n nodes.

2.2. Subgraphs and SUGMs. In a subgraph generation model, henceforth SUGM, sub-
graphs are directly generated, and then the resulting network is the union of all of the links
in all of the subgraphs. Degenerate examples of this are Erdos-Renyi random networks, and
the generalization of that model, stochastic-block models, in which links are formed with
probabilities based on nodes’ attributes. The more interesting classes of SUGMs include
richer subgraphs, and hence involve dependencies in link formation. It might be that peo-
ple of the same caste meet more frequently or are more likely to form a relationship when

"This lemma and precursor work in Stein (1972) have been used to derive central limit theorems in two
literatures: time-series/spatial statistics and dependency graphs. For instance the oft-used Bolthausen (1982)
central limit theorem, crucial in time-series and spatial econometrics, uses a lemma from Stein (1972) to
show normality. In time-series and spatial econometrics, a non-exhaustive but illustrative list of papers using
Bolthausen (1982) include Conley (1999), Jenish and Prucha (2009), Bester, Conley, and Hansen (2011),
among others. However, the arguments of Stein (1972), and therefore Bolthausen (1982), do not apply to
our setting in which we need to allow for much richer dependencies than are admitted in previous theorems.
2We conjecture that under sensible conditions our results extend to allow for continuous covariates as
well, though that requires specifying parametric functions for the probability of subgraphs as a function of
covariates and so remains beyond the scope of this paper.
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they do meet, as in a stochastic block model, but it could also be that groups of three (or
more) meet and can decide whether to form a triangle, with the meeting probability and
decision potentially driven by their castes and/or other characteristics. The model can then
be described by a list of probabilities, one for each type of subgraph, where subgraphs can
be based on the subgraph shape as well as the nodes’ characteristics.

SUGMs are formally defined as follows. There are finitely many types of nonempty sub-
graphs, indexed by ¢ € {1,...,k}, on which the model is based — for instance in the links
and triangles case ¢ € {L,T}."* The k subgraph types are denoted by (G¢)eeq1,. k}, where
each Gy C G" is a set of possible subgraphs on m, < n nodes. Each pair of subgraphs in
g € Gyand ¢" € Gy are such that there exists a bijection 7w on {1,...,n} for which ij € ¢ if
and only if 7(i)7(7) € ¢”. The definitions of the subgraph types can have restrictions based
on node characteristics, for instance, requiring that the characteristics X; and X,y be the
same — e.g., G for some ¢ could be the set of “triangles that involve one child and two adult
nodes”. As an example, the set G, for some £ could be all stars with one central node and four
other nodes, and another ¢ could be all of the links that involve people of different castes,
and so forth. These could also be directed subgraphs in the case of a directed network. A
few examples are pictured in Figure 1.

o o

(A) Isolate ) Link with two types ¢) Triangle with a multiplexed link
(D) 4-star with differing types ) Tree of all blues ) 4- chquc with dn‘fcrlntr types

FiGure 1. Examples of subgraphs. Links could be directed or undirected or
even multiplexed (take on multiple edge types) and nodes can have different
characteristic combinations (denoted by node colors and labels).

The probability that various subgraphs form is described by a vector of parameters, de-
noted 3 € B, where B is (unless otherwise noted) a compact subset of [0, 1]*. * For instance,
B = (B, Br) € BC[0,1]? in a links and triangles example.'®

13This definition does not admit isolates since we define subgraphs to be nonempty and connected, but
isolates are easily admitted with notational complications, and are illustrated in some of our supplementary
material and examples.

1We treat vectors as row or column vectors as is convenient in what follows.

151 some examples below, we expand this demonstrating how 3 can have entries that are monotone functions
of preference parameters (or equilibrium behavior), which allows us to study certain economic questions.
Estimating S allows us to either recover the parameters or behavior of interest in some cases or conduct
loose hypothesis testing using our estimates of 3.
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A network g on n nodes is randomly formed as follows:

(1) Each of the possible subnetworks g, € G, forms independently with probability 5.
(2) The resulting network, g, is the union of all the links that appear in any of the
generated subgraphs.

2.3. An Example with Node Characteristics. Suppose that nodes come in two col-
ors: blue and red (for instance different genders, age groups, religions, etc., and clearly
this extends directly to more than two colors). In our example of links and triangles, there
are now three types of links: (blue, blue), (blue, red), (red, red); and four types of trian-
gles (blue,blue,blue), (blue,blue,red), (blue,red,red), (red,red,red) which comprise the set of
subgraphs indexed by /.

e—~® ©&—10© 0—™0

(A) All Links

b b b T b r r r
(B) All Triangles

FIGURE 2. Panel (A) shows all possible links and Panel (B) shows all possible
triangles when a node has characteristic X; € {red, blue}.

Thus, in this example the sets of subgraphs are
G(blue,blue) = {Zj : Xz = blue, Xj = blue}

and
G (blue,blue,redy = {1k + X; = blue, X; = blue, X}, = red},

and so forth, as depicted in Figure 2. The parameters

{B(blue,blue)a B(blue,red)a B(Ted,red)y B(blue,blue,blue)> 5(blue,blue,red)7 B(blue,red,red)a B(Ted,red,red)}a

are the probabilities that the corresponding subgraphs form.

One could restrict or enrich the model by having simpler or more complex sets of param-
eters — for instance requiring that Bue biue) = B(red,req), Or by having preference parameters
that govern the probabilities of various subgraphs forming, as we discuss below.

2.4. Uses of SUGMs. The SUGM perspective is useful for a number of purposes. First,
purely as a statistical modeling tool, simple SUGMs—even ones with just links and triangles—
generate higher-order features of empirically observed social networks that link-based models
(even those accounting for characteristics, unobserved characteristics, geography, and latent
locations) do not. It is important for a formation model to capture realistic features of em-
pirical network data for prediction and also, for example, if a researcher observes only part of
a network, having a reasonable model of network formation is important to interpolate over
the missing data in a sensible way (e.g., see Chandrasekhar and Lewis (2013) or Breza et al.
(2017)). Or, if one is interested in generating networks under a hypothetical policy, a model
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is only useful if it can generates networks that are likely to occur at a variety parameter
values. As we demonstrate, our model outperforms stochastic block models, models with
node-level fixed effects, latent space models, and ERGMs in generating realistic distributions
of networks even with considerably fewer parameters (e.g., 4 parameter SUGMs versus over
200 (or even 400) parameters in some alternatives).

Second, it can be used to explore incentives for linking in a reduced form way. There
are many theories (e.g., Coleman (1988); Jackson, Rodriguez-Barraquer, and Tan (2012))
explaining why triangles and other cliques play special roles in maintaining cooperation in
favor exchange. In order to test such theories, we need a statistical model that allows us to
test whether cliques appear significantly more often than being randomly generated by links,
and whether they appear in configurations that would be predicted by the game theory.

Third, they can be used for structural estimation. There are parsimonious microfounda-
tions — simple models of mutual consent or search — that give rise to SUGMs. Structural
parameters may have intrinsic value of their own for welfare analyses, and also aid counter-
factuals or policy evaluation. Such parameters may be invertible from SUGM parameters.

We setup four examples and then estimate SUGMs in each of these in Section 5. Our first
example shows that SUGMs model myriad network features much better than other models
in the literature. The next three examples build, in increasing complexity, models of network
formation to address specific economic questions in several domains. They are purposefully
nested in structure, with the final model allowing for fully endogenous decisions governing not
only mutual consent in linking but also equilibrium efforts invested in generating matching
opportunities. In all cases, as will become clear, the equilibrium network is a random draw
from a SUGM with interpretable parameters.

2.4.1. Example 1: Matching Empirical Network Data. A challenge for network formation
models has been to capture more than one or two observed features of social networks at a
time. For instance, many observed social networks are sparse but clustered, which motivates
developing models that reflect this (Watts and Strogatz, 1998). They also have a variety
of differing degree distributions ((Barabasi and Albert, 1999; Jackson and Rogers, 2007)
and exhibit high levels of homophily (McPherson, Smith-Lovin, and Cook, 2001; Currarini,
Jackson, and Pin, 2009, 2010), which can lead to poverty traps and differences in employment
between races (Calvo-Armengol and Jackson, 2007). There are also features such as the
expansion properties of a network that are described by maximal eigenvalue of the adjacency
matrix speaks to the speed of a diffusion process on the network (Bollobas (2001)). The depth
of the max flow min cut speaks to several things such as consensus time in a social learning
process Golub and Jackson (2012) as well as the degree of cooperation sustainable (Karlan,
Mobius, Rosenblat, and Szeidl, 2009).

We show below that a simple links and triangles SUGM that only has four parameters
(estimated from data) captures a number of these features all within a simple model: average
distance, the maximal eigenvalue, the cut (homophily), clustering, degrees, among other
things) and does so better than a conditional edge independent model (a block model) with
numerous parameters that can flexibly depend on a rich set of covariates even when allowing
for unobserved heterogeneity for every node, as well as latent space models and also ERGMs.
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2.4.2. Ezxample 2: Do incentives for Risk Sharing Drive Network Formation?

A model of mutual consent. Consider a simple model in which individuals get utility from
being in bilateral relationships (“links”) denoted by L, as well as trilateral relationships
denoted by T'. The value of a partner j to i in a bilateral relationship is a function of their
demographics (given by vector X;) is given by u’:

u” (X;; X;) = X{v + X]/"YLz + v3d(Xs, Xj) — €,

where d(X;, X;) is a distance or other metric comparing the demographics - for instance to
allow for homophily. Similarly, the value of a triangle of relationships jk to i is given by ul:

u' (Xi; X, Xy) = X{vr + Xivre + Xivrs + yrad(Xs; X5, Xy) — €

The value of the relationships depend on the characteristics of the people involved, as well as
some idiosyncratic values to the relationships, —e¢;; and —¢;j;, which may capture personali-
ties, compatibilities, etc., distributed according to some distributions F, and F7r respectively.

Forming relationships requires mutual consent (e.g., the pairwise stability of Jackson and
Wolinsky (1996)), so the net utility must be positive to all agents. The probability that a
subgraph 75 forms is

Br (Xij,v) = Fr (Xhm + X2 + vosd(Xi, Xj)) x I, (X]/Wm + X[vr2 + vr3d(X;, Xz))
and similarly the probability that subgraph ijk forms is
Br (Xijk, vr) = Fr (Xz('VTl + Xy + Xiyrs + yrad( Xy X, Xk))
x Frp (XJ/-%M + X{vre + Xpyrs + yrad(X5; Xa, Xk))
X Fr (X;/ﬂﬂ + Xivre + Xjyrs + yrad(Xy; X, Xj)) :

The products are due to a link requiring two consents and a triangle requiring three consents.

By estimating the probabilities of subgraphs forming (87 () and ff (+)), under suitable
assumptions as described below, one can recover the marginal effects of changes in covariates
on preferences for being in various configurations (yr and «y). Since we have finite support
for covariates, we simply call the subgraph formation probabilities Sr x, and S x, for pair
and node covariate combination X7 and X respectively. We provide examples below.

Incentives for Risk-Sharing. Jackson, Rodriguez-Barraquer, and Tan (2012) show that whether
or not a link is supported plays an important role in maintaining favor exchange. It character-
izes renegotiation proof robust pairwise stable networks and shows that, in the homogenous
parameter case all such networks are quilts (a union of cliques with no cycle involving more
than the minimal clique-size number of nodes), and in the inhomogenous parameter case
every link must be supported (if 7, j are linked then there exists k such that g;, = gz = 1).
Of course, the model of Jackson, Rodriguez-Barraquer, and Tan (2012) is not meant to be
taken literally and doesn’t lend itself to a simple econometric framework.

Consider a variation on the aforementioned mutual consent model wherein now there
are multiple link types: favors and information, and for simplicity we do not consider the
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interaction of these links. We can use this to study the question raised by Jackson, Rodriguez-
Barraquer, and Tan (2012). To make this simple assume there are no covariates, so all nodes
are identical. Preferences are described by a random utility framework (McFadden, 1973).
In this case the value of a link between ¢ and j to ¢ is given by

7;L,favor (Z) Lynfo

u = YL,favor — €ij, favor; U; (Z) = YL,info — €ijinfo

and the value of a triangle is given by

u; Javer (]k) = VT, favor — €ijk, favor, U; o (]k) = VT,info — €ijk,info-

In this case, due to mutual consent, Sz, favor = F (7L, fm,or)2 and Br favor = F (7, favm)?’. It is
analogous for information. By the arguments of Jackson, Rodriguez-Barraquer, and Tan (2012),
we expect that fraction of links that are supported should be higher in favor exchange than in
information links. In the language of this model, with a simple calculation it is easy to see that
one expects the following. '

. Br javor/BE
LEMMA 1. Assume the above. Then, a test for 1rfover 5 TLinfe copresponds to f““”’—g/;‘“’m“ > 1.
YL, favor YL,info 5T,info/ﬂL info

All proofs are in the Appendices.

Given that triangles can be incidentally generated, one cannot test this simply by examining the
ratio of supported links to unsupported ones. If 77, s, was very high, then it could be that there
are many incidentally generated information triangles, and fewer links remain unsupported. By
estimating a link and triangle SUGM, one can estimate the parameters and test this hypothesis,
as we do in Section 5.3.

2.4.3. Example 3: Links across Social Boundaries. Our next example shows how a SUGM can
be used to investigate whether there are norms governing link-formation across different social
groups. Identities can lead to strong social norms — prescriptions and proscriptions — concerning
interactions across groups. For instance, in much of India there are strong forces that influence if
and when individuals can form relationships across castes, particularly among “upper caste” Hindus
and the “lower caste” communities, comprised of Dalits (Scheduled castes, SC) and scheduled
tribes (ST). The SC and ST communities are those defined by the Indian government as being
disadvantaged. This is a fundamental distinction over which the strongest cultural forces are
likely to focus. Additional norms are at work with finer caste or subcaste distinctions, but those
norms are more varied depending on the particular castes in question while this provides a clear
barrier(Munshi and Rosenzweig, 2006).

Among many, one natural question concerns the norms around forming public versus private
cross-caste group relationships. Namely, are members of upper and lower caste more likely to
form cross-group relationships when those links are unsupported (without any friends in common)
compared to when those links are supported with at least one friend in common (and thus have a
witness to the relationship)?

To answer this we need models that account for link dependencies; cliques of three or more may
exhibit greater adherence to a norm prohibiting certain inter-caste relationships, while the norm
may be circumvented in isolated bilateral relationships. We can test whether the relative frequency
of triangles compared to links is higher when the relationships are within caste than across caste.

161t is without loss of generality to take F'(y) = which is just a bijection and is convenient to work with.
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This example is instructive because it is more subtle than that in Section 2.4.2 and it demon-
strates that a SUGM can be used for a hypothesis test even when preference parameters per se
are not identifiable without overly restrictive assumptions. Consider a process in which individuals
may meet in pairs or triples and then decide whether to form a given link or triangle. The link is
formed if and only if both individuals prefer to form the link, and a triangle is formed if and only
if all three individuals prefer to form it. This minimally complicates an independent-link model
enough to require modeling link interdependencies.

Individuals’ probabilities to have opportunities to form links or triads can depend of course on
the composition of castes of those involved. So let 7 (dif f), nr(same) denote the probabilities
that a given link has an opportunity to form (i.e., the pair meets and can choose to form the
relationship) that depend on the pair of individuals being of different castes or of the same caste,
respectively. Analogously define wp(dif f), mr(same). Notice these are unlikely to be observed by
the researcher.

As noted above, individual i’s utility of having a relationship with j can by influenced by whether
they share caste (z;; a dummy variable for same caste) and is given by

uf (j) = ao.L + V0,026 — €L
and similarly for a triad,
ui (k) = o, + Y0,1Tijk — €T, gk
where x;;;, is a dummy for whether all three individuals are members of the same caste.'” The
probability of an individual consenting to a subgraph of type z € {L,T} among the m, nodes is

Pz,same = F(aO,z + 70,2) and Pzdiff = F(a(),z)-
The hypothesis that we explore is that

Prdiff < PLdiff
PT,same PL,same
so that people are more reluctant to involve themselves in cross-caste relationships when those are
“public” in the sense that other individuals observe those relationships.
The researcher does not observe either the meeting probabilities nor the probabilities within
the mutual consent process. Rather, the researcher observes the compositions 3, for ¢ € {L,T} x
{same, dif f} which are precisely SUGM parameters:

(1) BLsame = P} samemL(same) and B aifp = py gip;mL(dif [), and
(2) Br,same = pé}’sameﬂT(same) and Brgiff = pgT,diffwT(diff).

There are two challenges. Recall the difference in the exponents reflects that it is more difficult
to get a triangle to form than a link. Hence, to perform a proper test, we have to adjust for the
exponents as otherwise we would just uncover a natural bias due to the exponent that would end
up favoring cross-caste links. Further, identifying a preference bias is confounded by the meeting
bias. Thus, we first model the meeting process m,(z) more explicitly and show that we still have
identification as the meeting bias makes triangles relatively more likely to be cross-caste than links.

Consider a meeting process where people spend a fraction f of their time mixing in the community
that is predominantly of their own types and a fraction 1 — f of their time mixing in the other

TThis is a simplified model for illustration, but one can clearly consider preferences conditional on any string
of covariates. This extends a model such as that of Currarini, Jackson, and Pin (2009, 2010) to allow for
additional link dependencies. We could also be interested in higher order relationships.
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caste’s community. Then at any given snapshot in time, a community would have f of its own
types present and 1 — f of the other type present.'®

This immediately generates a conservative test in the sense that if we find cross-caste links
relatively more likely, that is evidence for a (strong) preference bias.

. . . L N3/2
LEMMA 2. A sufficient condition for LAl o PLAUL s tpat braiff (m"’“”) )

PT,same PL,same /BT,same L,same

2.4.4. Ezxample 4: Network Formation and the Impact of Microfinance. Finally, we provide an
example how a SUGM can be used to estimate an equilibrium model of network formation used
in prior empirical work (Banerjee et al., 2021), that includes payoff externalities and a global
congestion externality. The model is consistent with data that cannot be reconciled by most other
models of network formation (see the discussion in Banerjee et al. (2021)). Here we show that the
model maps to a SUGM, and how to use link and triangle frequencies to infer equilibrium efforts
and structural parameters.'’

In Banerjee et al. (2021), we studied how the introduction of microfinance to 43 out of 75 villages
in rural India changed the networks in those 43 villages. In these communities, prior to the entry
of the microfinance institution, there was little formal credit. Therefore, agents relied on each
other for informal credit and insurance. Once some villagers gained access to microfinance, their
incentives to maintain borrowing and lending relationships with other villagers changed, and this
affected the entire equilibrium network structure.

There are two types of households (the nodes) in a village. Node i is either highly likely—
denoted by 6; = H—to join microfinance if available, or not likely—denoted by #; = N—to join
microfinance if available. For example, H types are those who have a female of eligible age in
the household because that is a necessary condition to be eligible, and have other education and
financial demographics that make them likely candidates to take out a formal loan. N households
are missing some of these key characteristics. The reason for distinguishing between these two types
of nodes is because it helps us identify and estimate the externalities in link and triangle formation
(which are welfare relevant).

The network formation process has two types of externalities. The first is a payoff externality,
which is the standard sort of externality: the value of a bilateral relationship ij to ¢ may be different
from the value i receives if ij is part of a triad between ¢, j, k. So, the value of the relationship
between ¢ and j could depend on whether they have friend in common (e.g., recall Example 2). This
can generate networks with more triadic closure—friends of friends are more likely to be friends—
than would appear in a network based only on direct link formation. Indeed, this externality is
needed to explain some of the patterns in the networks observed in the villages. However, this
externality alone is not enough to account for how the networks change in the villages that obtain
microfinance.

In a model with only payoff externalities, the relationships that would be changed due to mi-
crofinance would involve people who got loans: so HH or HN links would change more than NN
links; and similarly HHH, HHN, and HN N triangles would respond more than NN N triangles.
For example, in these villages (where relending turns out to be low), there should be a dissolution
of links involving those who get microfinance—links and triangles with Hs—but not those that

BVariations on this sort of biased meeting process appear in Currarini, Jackson, and Pin (2009, 2010);
Bramoullé, Currarini, Jackson, Pin, and Rogers (2012).

Later, we discuss why the model would satisfy regularity conditions for consistent and asymptotically
normally distributed parameter estimates, and illustrate it by fitting it to the data.
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exclusively involve Ns, who if anything now have more incentive to borrow from each other. In
contrast, however, the data exhibit the opposite. The most impacted relationships are NN links
and NNN triads. Nodes that are least exposed to microcredit face the largest effects due to the
village’s exposure.

This motivates a second externality in the model: a global externality in the network formation.
In particular, forming relationships (either links or triangles) requires some efforts of all involved
to find each other. If nobody else is socializing, then it is not worthwhile for any given person
to socialize. These complementarities generate a global externality. For example in the context of
microfinance, once Hs have access to credit, that makes them less likely to want to form relationships
with Ns. The fact that Hs are no longer willing to form as many relationships with Ns makes the
general value of socializing drop for the Ns. This can — and in fact does — lead to larger drops
in links and triangles among NNs and NN Ns than any mixture of Hs and Ns.?°

Let us show that the network formation model from that paper is in fact a SUGM with formation
parameters (ﬁg)é?:l that are readily interpretable.

Agents care about forming links, triangles, and other cliques. These are groups, for instance, in
which people pool risks (ROSCAs) or gather socially or work together, etc. Assume the value of
an clique of my nodes is v¢(#; Z) where 6 is the node’s type and Z denotes the number of the other
my — 1 nodes that are of type H. For instance vy (H;0) is the base value of a link between an H
type and an N type to the H type, and vy (N, 2) is the base value to an N type of a triad together
with two Hs. In this way, payoff externalities are encoded. We note a foundation from Banerjee
et al. (2021) below.

When actually meeting some group, the utility that an agent would get from forming that group
would be

ve(0;; Z) — e,
where the ¢ is an idiosyncratic term drawn uniformly on [0, 1], drawn independently for all agents
and groups that they meet and have a chance to form.

Taking vg(6;; Z) to be in [0, 1], then the probability that i consents to forming the group is the
probability that the base utility vy(6;; Z) exceeds the idiosyncratic term, which given the uniform
distribution is simply v,(6;; Z).2

In addition to consenting to form a group, the group has to meet and have the potential to form.
This depends on the composition of the group and the efforts that each of the agents puts into
socializing. The probability of some clique C of m, agents meeting is given by

e XieC €.

Here ¢, denotes the fraction of potential matches that ¢ encounters. Whether ¢, = 1 or ¢y < 1
depends on application.?? This could be, for instance, because the agent has a time budget and
can only attempt to socialize and invest in relationships a limited number of times. e; € [0, 1] is an
effort choice, and the groups meet in proportion to agents effort choices.

20Moreover, in Banerjee et al. (2021), we also check that this is robust by replicating our empirical findings
from Karnataka with an independent randomized controlled trial introducing microcredit in Hyderabad,
and we find again that relationships between only N types are at least as likely to dissolve as relationships
between Ns and Hs.

2IMore generally, if the errors have some distribution F, then this would just be F(v(6;; Z)), which simply
complicates notation, but is an easy extension.

2211 fact, this rate could depend on n when we consider asymptotics later.
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The expected utility for an agent conditional on a group forming is then
ve(0:; 2)" = Eve(03; Z) — €50 | v0(0i5 Z) — €50 > 0],

and y; := lyg,—gy, ng the number of H types, and ny = n — ny the number of N types. The
expected utility as a function of effort for an agent ¢ is then

h my—1
o) — A (h o WZ i Nyme—Z—1 (MH — ¥i\ N — (1 — ;) 7 my-1-7
UOie) =) Y w0 2)t o0 2)(00(H: Z — 1+ y)” (0e(N: Z + 1)) (O D) geeiehe
t=1 Z=0 value mutual consent probability of meeting the group
# of such groups

1

_ L
~—

effort cost

The equilibrium efforts by type, e}; and e};, then deliver the probabilities of subgraphs, as
summarized in the following lemma, (which is direct and so offered without proof).?3

LEMMA 3. Let X denote the number of H types in a clique of my nodes. The equilibrium results
i a SUGM with parameters

(2.1) Bex = (€5) (en)™ X (vnmix—1)" (wnx)™ ™ ¢o.

So the model, though complex enough to capture a general equilibrium mechanism of network
change in a microcredit setting, reduces to a simple SUGM. The frequencies of subgraphs of various
types are of interest both in their own right and in how they map to structural parameters. It is
worth noting that the structural parameters, such as the efforts, payoff parameters, and meeting
frequencies, can be backed out, as we show below. Certainly that map requires assumptions that
may depend on context.

We operationalize the model following Banerjee et al. (2021). There the thought experiment is
that nodes may have a need to informally borrow from or an opportunity to informally lend to
their network neighbors. This can depend on the type of the node—high or low probability of
joining microcredit if it enters the village. The type is estimated via random forest in Banerjee
et al. (2021), which we take as a given here.

For an agent 7, the need to borrow occurs with probability vy, and the opportunity to lend occurs
with probability ap,. The return to lending informally is  and the return to borrowing informally
is b. In our analysis, (ag,70)geqp, vy and (r,b) are all taken from data. Nodes can form bilateral
and trilateral relationships, corresponding to a links and triangles SUGM.

For this application, with just links and triangles, we simplify the notation of the base utility to
a type 6 from a link to a type 6’ by vg,¢, and correspondingly vg.gg» for a triangle with types 6'6".

The base payoff for a potential bilateral relationship is

Vo0, = Qg;Y0;T + ;70,0
This leads to a probability of mutual consent of vg,9,vg,9,- Then the expected payoff of a formed
bilateral relationship is, simplifying our notation v;.g, = Elvg,or — €|e < agygrr + aprypb.
Turning to the case of a triad, we are motivated by the idea of the value of supported links as in
Jackson et al. (2012) and the base payoff is

V0,;;0,0, = Q0; (’YQj + ’yek> r+ (Otgj + Oéek) ’ygib +s.
23For the sake of space, we do not provide conditions for existence of equilibrium or discuss uniqueness, but

those issues are well-studied in the literature that considers effort in network formation (e.g., see Cabrales,
Calvé-Armengol, and Zenou (2011); Canen, Jackson, and Trebbi (2020)).
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Under mutual consent, vg,.9,0, v6,:0,0, V00,0, 1S the probability of the agents agreeing to form a triad
conditional upon meeting. Here s is a support factor. If s > 0 it means that the value of a triad is
more than the value of simply two links for node 7. To see this, it is useful to consider a case where
all nodes have the same type. It is clear that if the third node k£ had no capacity to borrow or lend,
we are left in the same case as if ¢ and j are bilaterally linked, but with the support factor s.

In Banerjee et al. (2021) we note that if microfinance crowds-out the value of relationships to
Hs by reducing the value of borrowing from others and sharing risks with others, then the value of
subgraphs that an H can participate in—vy,H, VH,1, VH;NN, VH;NH, VH;HH— decline.

Finally, as noted by Feigenberg et al. (2010), microfinance has the property that it changes the
meeting technology directly between H types. Specifically, Hs are required to attend center meet-
ings regularly (e.g., weekly) and as a consequence the latent opportunities of interaction themselves
may shift. So when we estimate the model in the collection of villages where microfinance was in-
troduce, we allow for an extra multiplicative factor ( that scales the meeting opportunities. So, for
example, this yields

2 2 3 3
MF _ [ MFx MF 2 MF _ ( MFx MF 3
LHH = (eH ) (UHH) ¢“and By gy = (eH ) (UHHH) o1¢

where we have normalized ¢ = 1.

NoMFx MFx

So, we are interested in estimating (eg , €p and seeing how these change due to

)ae H,NY
the introduction of formal credit. We are also interested i{n 7esiimating the value of support (s), the
rate of change in the meeting technology for those who join microcredit (¢), and we also recover
the relative meeting bias ¢r.

The analysis of this SUGM will help us analyze the externalities that are present as a result of
microfinance introduction, which end up affecting the whole network even though only some people
are exposed to microfinance (see the discussion in Banerjee et al. (2021)). The introduction of
microcredit has no direct effect on capacity to lend or need to borrow for N types— oM = oM ¥
and 'y%F = 'yjj\\,f"MF. However, aAH/[F < ago ME and 'y}‘fF > vgo MFE 5o that microcredit reduces
the H types’ willingness to consent to relationships with NV types. There is also a feedback effect
since H types are less likely to consent to relationships, implies that the returns to an N type’s
effort is lower, so that they invest less in relationship building, which itself has a feedback effect.
This can lead Ns lose more relationships than Hs and, in fact, see a large drop in equilibrium effort
among Ns, as seen in the data, and as we estimate in more detail below.

2.5. Links and Triangles as Our Leading Example. The bulk of our illustrations and appli-
cations are based on link and triangle SUGMs, though other subgraphs can be included and are
covered by our general results (e.g., Theorems 1, 2, and 3). Our illustrations focus on links and
triangles for two reasons: first, this case is simple to understand and illustrates the main points
since it exhibits correlated links and incidental generation, second, the link and triangle model
already matches the moments that are of interest in many research projects (larger cliques are
rare). In fact, as we show below, simply looking at a links and triangle SUGM tagged with whether
the nodes involved are homogenous or heterogeneous in demographics (e.g., just a 4 parameter
model), replicates real-world network features far better than far richer models. Still, We leave
further specification to the researcher as it will depend on their context and the phenomenon being
modeled. If there are other the types of subgraphs that are hypothesized to arise in some particular
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context, then that model can be constructed and estimated in the ways we outline and are covered
by our general results.?*

3. IDENTIFICATION

3.1. The Challenge of Identification. The researcher’s goal is to use the observed data — from
one or more networks — to recover the parameters of interest, for example, the (5, fr) in a SUGM of
links and triangles. If the researcher observed the links and triangles that were formed directly, then
estimation would be straightforward. Indeed, in some instances a researcher has direct information
on all the various groups a given individual is involved in: for instance in the case of a co-authorship
network, the researcher may observe all the papers a researcher has written and thus observes papers
with two authors, three authors, and so forth. Instead, for instance, it may be that there are groups
of three people who commonly share favors and risks together — who really form a triangle, but
the researcher only has information from a survey asking which pairs of agents are ‘friends’ based
a survey (as in networks derived from the Add Health data set as in Currarini et al. (2009)), or
who borrows from whom and who lends kerosene and rice to whom and other bilateral nominations
(as in our Indian village data Banerjee et al. (2013)), or from observing that they are friends on
a social platform (as in Facebook network data as in Bailey et al. (2016)), or from observing that
two people phone each other or remit payments to each other (as in many such mobile phone data
sets Blumenstock et al. (2011)).

Thus, the general problem is that the formation of the subgraphs is not directly observed, and
so must be inferred in order to estimate the parameters of interest. The observed network ¢ is a
projection of all directly generated links and triangles on top of each other. For example, if three
links are observed between i, 7, and k, is it the case that ¢jk formed as a triangle, or that 77, jk and
ik formed as links, or that ij and jk formed as links and 7k formed as part of a different triangle
tkm, or some combination of these or other combinations? Figure 3 provides an illustration.

This presents a challenge for estimating a parameter related to triangle formation since some of
the observed triangles were “directly generated” in the formation process, and others were “inciden-
tally generated;” and similarly, it presents a challenge to estimating a parameter for link formation
since some truly generated links end up as parts of triangles.?’

3.2. A General Identification Result. We first show that as the parameters of any SUGM
change, so does the distribution over networks, and hence SUGMs are well-identified models.

Let Pg denote the probability distribution over a network g on n nodes under a vector of pa-
rameters (3 describing the probabilities of subgraph types (G¢)eeqa,... k-

THEOREM 1. FEwvery SUGM is identified. That is, for any finite collection of distinct types of
subgraphs (Ge)eequ,... ky on n nodes, B # ' = Pg # Pg.

240ne could also have a list of subgraphs as a possible basis for the SUGM with only subset of them actually
forming the true SUGM; allowing the data to tell the researcher which to include. Some of that can be
done here, including the various subgraphs that might be involved and then seeing which have nontrivial
parameter estimates. This marries SUGMs with model selection, a topic which could be explored further in
future research.

250ne could view this as an example of measurement error with correlation: which parts in the resulting
observed graph are direct versus incidental is unobserved. The observed graph, which is a projection, and
provides a count of observable subgraphs of various types, could be viewed as a mismeasurement of the list
of subgraphs directly generated by the SUGM process.



A NETWORK FORMATION MODEL BASED ON SUBGRAPHS 18

@) O
o © o ¢
© 6" o °© © e o || 2
e © 4 o\ o
@) o - @) @ o 9 -
© g 7o ® © g °&° O
e % o© ey ®
@) o
(A) n nodes (B) Triangles form
Q\ X C.D Q @) o o
o550 i R o O o a
O N @ X O e/ @
& Q<19 Q ) @ o © N )
o g Q0 @Y O - g e d
E Cj'" O‘“::-:,."_O O O O
3 © 0 ©
(c¢) Links form (D) Resulting network

FiGURE 3. The network that is formed and eventually observed is shown
in panel D. The process comes from forming triangles independently with
probability Sr as in (B) in red; and also forming links, in grey, independently
with probability 5 as in (C). New links are dashed while links that overlap
with some link also formed in a triangle are in solid and bold. We see that
there is both (i) overlap as some links coincide with links already in triangles,
as well as (ii) extra triangles that were generated ‘incidentally’. Given that we
only observe the resulting network in panel D, we need to infer the formation of
the different subgraphs carefully and not simply by directly counting observed
links and triangles.

Recalling the general definition of the SUGM, this means that for any SUGM, even one comprised
of subgraphs that could have nodes with varying (discrete) covariates and allowing for multiplexing,
we have identification.

To understand why this holds, for instance in the case of links and triangles, note that as one
varies (8L, Br), the relative rates of overall observed links and triangles change, as do the number
of triangles that overlap with each other. One can calculate the relative rates at which incidental
links and triangles are expected to be generated, and there is an invertible relationship between
observed counts of links and triangles, and the underlying rates at which they were expected to be
directly formed. Theorem 1 shows that this is true not only for links and triangles, but for any
collection of distinct subgraphs.

We emphasize, of course, that identification does not imply that the parameters will be consis-
tently estimated. For instance, there is always a chance that no subgraphs form, especially on a
very small number of nodes. We provide results on consistency below, which require observation
of a sufficiently large network and/or sufficiently many networks.

3.2.1. Identification from Link and Triangle Counts. Although Theorem 1 shows that SUGMs are
always well-identified — i.e., distinct parameters yield distinct distributions — it is often convenient
to use minimum distance based estimators based on simple moments of the network. We illustrate
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that this can be done with direct counts of the relative frequency of appearances of the subgraphs.
In Theorem 3 below, we show that such direct counts not only identify the parameters for general
subgraphs, but are also consistent and normally distributed estimators of the parameters, under
suitable conditions.

In particular, here we show that a links and triangles SUGM can be identified directly from the
counts of links and triangles: S(g) = (SL(g), S7(9))-

To understand the identification, consider Figure 4. Each configuration involves two triangles,
but the graph in Panel B with only five links is relatively more easily incidentally formed than the
one in Panel A. Thus, by looking at the combination of how many triangles and how likely links
there are, we can sort out relative rates of the two parameters.

(A) Node adjacent triangles (B) Edge adjacent triangles

FiGURE 4. Two different configurations of two triangles - one has a count
of 6 total links and the other has a count of 5 links. (A) is more relatively
more likely to come directly from the formation of two triangles, and (B) is
relatively more likely to come from a combination of links and triangles. The
likelihoods of links and triangles can thus be deduced via careful deductions
from the combination of the counts of links and triangles.

PROPOSITION 1. A SUGM of links and triangles is identified with moments S(g) = (S1.(9), S7(g))
for any B = (Br, Br) € (0,1). That is, if (B}, By) # (Br, Br) then Eg [S (9)] # Eg[S (9)]-

Let us outline the basic ideas behind the proof, with the full proof appearing in the appendix.
Let ¢ denote the probability that a link forms conditional upon exactly one particular triangle
that it could be a part of not forming. For instance, for nodes ¢j it is the probability that ij is
formed either as a link or as part of a triangle that is not triangle hij for some other node h. In
this case:

(3.1) Eg, 57 [SL(9), ST(9)] = [/BT + (1= Br)qr, Br + (1 — 5T)(§L)3} :

For instance, note that the term B + (1 — B7)(qr)? is the probability that a triangle forms, either
directly (Br), or does not form directly (1 — S7) but then each of the links then forms on its own
(§2)3.25 The term for the links is similar as it could form if some particular triangle forms, or else if
that triangle does not form then it forms with probability q7. Although there are more direct ways
to write the probability of a link forming, this particular expression is useful in the proof since it
is easy to compare it to and this distinguish it from the triangle expression, as they are identical
except for the exponent. This is very helpful in showing how different parameters lead to different
rates of formation of links and triangles since we can isolate the difference via the g, versus (qz)>
expressions.

Analogs of this proposition extend to cases with covariates and multiplexing, simply with more
complicated extensions of (3.1) accounting for the specific types of triangles or links needed to

26Conditional upon the triangle not forming directly, the links are then independent.
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incidentally generate any given link or part of a triangle. Also, a general version of asymptotic
identification is a by-product of Theorem 3, below.

4. ASYMPTOTICS

4.1. Data and Asymptotic Frames. In what follows, we assume the researcher observes R > 1
independently, and identically drawn graphs (g1,...,gr), on at least n nodes each,?” drawn from a
SUGM with a list of k subgraphs and parameters 3 € [0, 1]¥. Each of the k subgraphs involves no
more than n nodes.

We consider two asymptotic frames, in which the size of the network and/or the number of
networks become large enough for consistent estimation.

In the first frame R — oo. Here researchers have access to many networks and the empirical
moments of interest converge to their expectations via observation of independent networks. This
applies when a researcher is studying, for instance a number of schools, classrooms, villages, etc.

In the second frame n — oo, with the possibility (but not the requirement) that R = 1. That
is, a researcher observes at least one network that is large. Examples include when the researcher
has detailed information about a large community, friendships on social media platform, citation
networks, etc. Clearly, this also extends to cover cases with large n and more than one network.

We let $ depend on n and/or R as described in Section 4. We take the list of the types of
subgraphs to be analyzed to be fixed.

We now provide conditions under which estimators of the parameters are consistent and describe
their asymptotic distributions. Recall that we consider two frames. The first, studied in Section
4.2, holds the number of nodes, n, fixed, and allows the number of different realizations of net-
works R to tend to infinity. In this case estimation and inference is straightforward. There are
a growing number of independent draws from the distribution and we have already in Theorem 1
proved identification. Consistency and asymptotic normality of the MLE then follow from standard
arguments.

The second perspective, studied in Section 4.3, holds the number of networks observed R fixed,
usually at R = 1, and then lets the number of nodes grow: n — oo. This is the more challeng-
ing perspective as the observations of various parts of a network are not independent. Also, the
identification result from Theorem 1 does not guarantee that empirical moments converge to their
expectations in a single large network. So, prove that identification is possible from simple counts of
observed subgraphs (with a probability approaching one as the network grows), together with con-
sistency and asymptotic normality. Appendix D provides simulations demonstrating consistency,
that the asymptotic distribution of the parameter estimates are normal, and coverage properties.

Since in a typical SUGM the links may all be correlated, we also prove in Section 6 a new central
limit theorem for correlated random variables that do not satisfy the standard mixing conditions
used in time series and spatial econometrics. We use this in service of our results in Section 4.3.
The central limit theorem and technique should be of interest beyond network models.

4.2. The Many Networks Case. We provide just a brief presentation of this first perspective
since it follows standard statistical arguments (e.g., Newey and McFadden (1994)).

One has a collection of R networks, each drawn independently according to a SUGM with the
same parameter By. We hold n fixed.

2TFor simplicity in notation, we work with each network having exactly n nodes, but one can directly extend
the results by simply selecting n nodes for each network and applying all of our estimation to those subgraphs.
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Theorem 2 states that a maximum likelihood estimator of the parameters is consistent and
asymptotically normally distributed.

THEOREM 2. Consider a SUGM of k distinct types of subgraphs with By € int(B), for B a compact
subset of (0,1)F. Let g, for r = 1,..., R denote i.i.d. draws from this distribution. Let 3 denote

the mazimum likelihood estimator B = argmaxgep }% >, logPg(gr). Then BALBO. If in addition
J :=E[VglogPgs,(9,)Vslog Pg,(g-)'] is non-singular, then /R (ﬁ — 50) ~ N(0,J71).

Although Theorem 2 demonstrates that a consistent and asymptotically normally distributed
estimator exists, calculating the likelihood function of arbitrary networks as a function of the
parameters can be computationally intensive for large networks. Thus, we also present a result
on our minimum distance estimator which is computationally very straightforward since it simply
involves calculating frequencies of certain subgraphs. We present it based on links and triangles
as the typical case that researchers will need, but the technique can be extended as a researcher
requires. As before, let S7.(g) and S7(g) denote the fraction of links and triangles in the network
g, with S = (SL,ST)/.

PROPOSITION 2. Consider a SUGM of links and triangles with By € B, a compact subset of (0,1)2.
Let gy for r = 1,..., R denote i.i.d. draws from this distribution. Let B denote the minimum

distance estimator: )

B 1= argmin
BeB

7 2 5000) ~ B[ o)

Then,
Bi)ﬁo and @(3—50) WN(O,J_I)
where H := VgEg,[S(gr)] and J := HH'.

4.3. The Large Network Case. Next we turn to a case where researchers have access a large
network: n — oo. For the exposition, we let R = 1, but clearly this extends directly to having
observations more than one network.

This case is considerably more challenging as it involves correlated observations generated within
a network. Network data tend to be sparse, but still have local patterns such as clustering, so that
people have relatively few connections compared to the potential number of links, but where one’s
neighbors tend to be linked to each other with much higher than an independent probability (e.g.,
see the background in Newman (2003); Jackson (2008)). Such clustering is the challenging aspect
of the asymptotics since subgraphs are not only the directly generated subgraphs of various types
but also include incidentally generated features. Thus, we have to provide new techniques for our
asymptotic results.

4.3.1. Sequences of Large Random Networks. To describe how parameter estimates behave as a
function of the number of nodes n, is useful to consider a sequence of distributions governed by
parameters indexed by n and study the asymptotic behavior of estimators of parameters along the
sequence. This approach is standard in the random graphs literature (e.g., see the classic book of
Bollobas (2001)). Research on social networks has long observed that parameters need to adjust
with the number of nodes. For example, friendship networks among a small set of agents (say 50

or 100) and large set of agents (thousands or much more) often have comparable average degrees.?®

283ee Chandrasckhar (2015) for examples networks of varying size ranging from village network data in sub-
saharan Africa or India to university dorm friendship network data which all exhibit somewhat comparable
number of links per node.
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As a concrete example, consider friendships among high school students in the U.S. based on the
Add Health data set (e.g., see (Currarini, Jackson, and Pin, 2009, 2010)). There are some high
schools with only 30 students and others with around 3000 students. The average degree is ranges
between 6 and 8 over the high schools, the link probability shrinks dramatically with n: roughly
d/30 to roughly d/3000, where d is the average degree in the 6 to 8 range. Thus, irrespective of
the size of their school, students have numbers of friends of the same order of magnitude; and the
frequency of friendship formation must decrease with n.

So we sequence the parameters 5. And, thus, we consider a sequence of SUGMs with subgraphs
(G1,...,G) that form on n nodes that are generated with probabilities 8" = (87, ..., 8;). The
superscript on the 5" indicates the dependence on n to allow for meeting and subgraph formation
rates to vary along the sequence.

4.3.2. Counting Subgraphs and Estimating Parameters. Consider a SUGM and order the classes

of the subgraphs, G1,...,Gy,...,G, from ‘largest’ to ‘smallest’. In particular, we choose the
ordering of 1,...,k so that a subgraph in G} cannot be a subnetwork of the subnetworks in G, for
E>0 >¢0>1:

ge € G} and gy € G} implies that g, Z gpr.

There exists at least one such ordering - for instance, any ordering in which subgraphs with more
links are counted before subgraphs with fewer links. In an example with links, 2-stars and triangles:
triangles precede 2-stars which precede links. Note that this is a partial order: for instance, a ‘three
link line’ 44, jk, kl is neither a subgraph nor a supergraph of a ‘3-star’ ij, ik, il, which is also a three
link subgraph on four nodes. It is irrelevant in which order subgraphs with the same number of
links are counted.

So, we count subgraphs in this order, and after having removed links associated with all of the
subgraphs already counted, denoted 5?:29

SP(g) = |{gr € G} : go C g and gy fger for any g € G such that gg C g for some €7 < £},

To define the direct parameter estimates, Bs, from these counts, we then need to divide by
the number of possible subgraphs that could exist. Again, we work without demographics on the
subgraphs, but otherwise these counts can be adjusted accordingly.

Let k¢ denote the (finite number) of relabelings to count different subgraphs of type £ on a given
set of my nodes.?"

The direct estimator B” is then

an g?(g)
(4‘1) ﬁ[ - "W(n?e)'

As we prove next, under suitable conditions, these direct estimators are consistent estimates of

the true parameters, and they are asymptotically Normally distributed.

As an illustration, consider Figure 5 in which links and triangles are formed on 41 nodes. There
are 9 truly generated triangles, but 10 observed overall. So, the frequency of triangles, g%(g),
is overestimated by using 10 instead of 9. The true frequency was 9/10660 but is estimated as

29Note in terms of the notation here, counting in order from ‘largest’ to ‘smallest’ subnetworks means that
we count things from smallest to largest index ¢: so the specification of how we ordered labels moves in the
opposite direction of the size of the subgraphs.
30For example, note that ky, = 1 for a triangle but for a K-star it is K since each star is different when a
different member of the K nodes is the center.
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10/10660. With respect to links, there were actually 25 truly directly generated, but one becomes
part of an incidentally generated triangle and two others overlap on existing triangles, and so gj—j(g)
becomes 22 instead. So we estimate 22/820 while the true frequency was 25/820.

These errors are already small on a network on just 41 nodes, and as we prove next, the errors
disappear completely as n grows.
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FIGURE 5. A network is formed on 41 nodes and is shown in panel D. The
process can be thought of as first forming triangles as in (B), and links as
in (C). Note that two links form on triangles, and a third link incidentally
generates an extra triangle. In this network we would count Si(g) = 10, and
gﬁ(g) = 22 from (D), while the true process generated 9 triangles and 23 links

. . n __ 10 ono 22 :
directly. The estlrélates beQCEf)me Bt = 106650 and O] = &g, while the true
frequencies were 555 and 4.

4.4. Generating Classes. To understand the rate of incidental subgraph formation, we have to
track how many ways a potential subnetwork ¢’ € G} could be incidentally generated — some being
equivalent up to relabelings.

We first provide a precise specification of what it means to be incidentally generated. We say
that a subgraph ¢’ € Gy for some £ can be incidentally generated by the subgraphs {g’ }jes, indexed
by J, if ¢’ C Ujesg’.

Consider any potential subgraph ¢’ € G} that can be incidentally generated by a set of subnet-
works {g’}je; with associated indices ¢; and also by another set {gjl}j/e]/. We say that {¢’},cs
and {gj/}jfe g are equivalent generators of ¢’ if there exists a bijection 7 from .J to J’ such that
lj = Lrjy and |g; N g'| = [gx(j) N g'|- So the equivalent generating sets have the same configura-
tions in terms of numbers and types of subgraphs, and in terms of how many nodes each of those
subgraphs intersects the given network.
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So, for instance a triangle 123, could be incidentally generated by links 12, 23, and triangle
134; and an equivalent generator is links 12, 23, and triangle 135, and another is links 23, 13; and
triangle 128, and so forth.

Given this equivalence relation, ignoring the specific labels of subgraphs we can define generating
classes for any type of subgraph G,. We just keep track of the number and type of subgraphs needed,
as well as how many nodes each has subgraph intersecting with the given incidentally generated
subgraph.

So, each generating class C of some G} is a list C = ({1, ¢1, ..., %c, cc) consisting of a list of types
of subgraphs used for the incidental generation and how many nodes each has intersecting with the
given incidentally generated subgraph. Thus, C = (¢1,c1,...,lc,cc) is such that there 3¢’ € G}
generated by some {g’} ;e for which |J| = C and for each j: ¢’ € Gy, and ¢; = g N g

We order generating classes so that the indices are ordered: ¢; < /£;,1, and lexicographically
¢; < cjy1 whenever ¢; = £;41. This ensures that we avoid counting the same class twice.3!

We only need to work with a small set of generating classes, so we restrict attention to the
following:

e generating classes that are minimal: in the above J there cannot be j’ such that ¢’ C
Ujerizirg’, and
e generating classes that only involve smaller subgraphs: ¢; > ¢ for all j € J.

The second condition states that we can ignore many generating classes because of our counting
convention: when counting any given subgraph type, we only have to worry about incidental
generation by the remaining (weakly smaller) subgraphs.

So, for a links and triangles example, where G" = (G, G} ) are triangles and links, there are four
generating classes of a triangle: a triangle could be incidentally generated by three other triangles,
two triangles and one link, two links and one triangle, or three links.>?> Under the last condition
above, there are no generating classes for links to worry about, since they cannot be incidentally
generated by themselves and we only count them after removing all triangles.

4.4.1. Identification, Consistency and Asymptotic Normality. It is convenient to express the 8's in
the form

n b
B = —

nhe
for some by > 0 and hy > 0. This allows us to directly see how the parameter varies with n, and
is a general way of encoding the rates that could come from meeting, time budgets, or any other
story that gives rise to sparse sequences.

We consider the case in which my > hy, as otherwise the expected number of subgraphs in the
whole network could be bounded as n grows, precluding estimation.

The researcher can make assumptions on hy — and this order is easy to observe with simple sub-
graph counts, and generally quite steady across settings. For instance in most friendship networks,
people have somewhere between two and a thousand connections, depending on whether one is
counting close friends or acquaintances, or somewhere in between. This, as a function of the size of

31However, a generating class of two links and a triangle is a different generating class than one link and
two triangles - this numbering just avoids the double counting of two links and a triangle separately from a
triangle and two links.

32Here, then we would represent a generating class of two triangles and a link as (7', 2;T,2; L, 2), where this
indicates that two triangles were involved and each intersected the subgraph in question in two nodes and
then L, 2 indicates that a link was involved intersecting the subgraph in two nodes.
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the network yields a direct estimate of the order of hy, which then is at least 1 or larger for links,
2 or larger for triangles, etc. — so that people have roughly some number of connections that is
the same as a function of the network size. In fact, in most statistical or econometric or economic
models of network formation, these are implicitly made whether knowingly or unknowingly.

We show that even without knowing the by or hy, the parameters ;' can be well-estimated,
provided the true parameters satisfy some basic conditions (that will be satisfied by network models
that are not so sparse that subgraphs are never observed, nor so dense so that they scale linearly
in n).

The following conditions ensure that the direct estimation parameters are arbitrarily accurate
for large enough networks.

First, for each £ let

(4.2) hy > my — 2.

This condition ensures that the overall degree of any node grows more slowly than the size of the
graph. The average degree can still grow with n, but sublinearly. In particular, this condition
ensures that the chance that any given link is part of multiple subgraphs is vanishing.

Next, for each £ consider any (minimal)3? generating class with index .J of subgraphs no larger
than ¢. Have*

(4.3) hy < Z hj+c; —m;
jedJ
and
(4.4) hj/ +my —my < Z hj +c; —my
jeJ

for each j’ € J.

(4.3) is the requirement that a given subgraph is more likely to form directly than indirectly.
(4.4) is the requirement that a given subgraph disappear into incidentally forming larger subgraphs
more slowly than that subgraph forms directly.

Under these conditions, we prove identification in addition to consistency and asymptotic nor-
mality on a single large network.

It is useful to define the variance-covariance matrix

V, = diag {n2hz Bo.e — Bi.0) }

ke (o,)

THEOREM 3. Consider a sequence of SUGMs of k distinct types of subgraphs with associated true
parameters 0 < by for which By, = bo.t If (4.2)-(4.4) hold for all ¢ and associated (minimal)

= rhé .

generating classes, then |b— by| 20 and Vi /? (5 - bo) ~N(0,1).%

Although the conditions may appear hard to understand, they are actually fairly straightforward,
and it is easy to see sufficient conditions that ensure them.

331f the condition is satisfied by minimal classes, it is automatically satisfied by larger classes.
34Here we simplify notation and substitute j for £;, when clear.

35The same conditions apply to E RN Bo with asymptotic normality, and thus it is not necessary that the
researcher have any prior knowledge of the hys.
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For example, suppose that each hy = my — = for some same z € (0, 2), so that each node has the
same order probability of being a part of different sorts of subgraphs. This is the natural case, as
otherwise some subgraphs become infinitely more likely than others.

In that case, all three conditions are automatically satisfied whenever the subgraphs are all
cyclic subgraphs (cliques, or other subgraphs in which all nodes are parts of cycles). If some of the
subgraphs are not cyclic (e.g., are lines or stars), then all three conditions hold if = € (0, 1).

COROLLARY 1. Consider a sequence of SUGMs of k distinct types of subgraphs with associated true

parameters 0 < by, for which By, = I;LOTE If mgy — hy = x for each £ and some x € (0,2) and either

all subgraphs are cyclic or else x < 1, then |5— bo| 250 and anl/Q (5— bo) ~N(0,1).

In both results, although we state them in terms of bs, it is also the case that the ratio of Bg to
Bo.¢, tends to one. Furthermore, as we show in the proof, if we normalize the difference between
the estimated probability and the truth by the standard deviation, this is asymptotically normally
distributed. This is an equivalent representation of the above result, but is helpful to note as it
does not require knowledge of hys but rather just the assumptions that they satisfy the relevant
bounds from the conditions, which will generally be true of most data sets of human networks.

4.4.2. Links and Triangles. Theorem 3 works with parameter values for which incidental genera-
tion eventually becomes small as a function of the overall counts of the subgraphs, and works for
arbitrary subgraph varieties. For SUGMs with specific subgraph types, we can explicitly calcu-
late all the incidental rates and account for them, and develop an estimator that not only works
well asymptotically, but also will be more accurate in smaller (finite) samples, where there can be
nontrivial incidental generation. In particular, in this section we present a result for the links and
triangles SUGM based on an estimator that fully accounts for the incidental generation (see the de-
tails in Appendix C). This involves checking identification for this sequence as well as demonstrating
consistency and asymptotic normality.
In particular, we show that

S10) ~Byl510)]_ \ 1) g 10 = BlS100)]
7 o oF

N(0,1),

and jointly as well, where (07)? := var (S7?(g)) and (o%%)? := var (S%(g)). Since

St(9) = Z?f)g” Zi<j<k(g)ij9ik9jk
2 3

and g5 and g;; are correlated for any k, ST involves correlated random variables, and since any

and Sp(g) =

two triples in S7 that involve a common link are correlated, we need to carefully check that we can
still prove a central limit theorem and that the correlation will not cause problems in the limit.
It is useful to define the variance-covariance matrix of the moments
v o— ( var(nLSy) cov(nht Sp, n T Sy) )
"\ cov(nt S, nhTSr) var(n/7 St) '

With this defined we can state our result.
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PROPOSITION 3. Consider a links and triangles SUGM with associated parameters By 1, Byr =
bo.L bO’T) with 0 < D < by 1,bor < D such that hy, € (2/3,2) and hy € [hr, +1,3hy], with hy <

(nhL ' phr

3. Then [ — bo| =0 and * V2 (5% — by) ~ N (0, 1).

This covers a wide range of link and triangle densities, ranging from average degree on the
order n'/379 to n=1%9 for any § > 0. This covers the order constant and logarithmic growth rates
of average degree studied in the literature (Newman et al., 2001; Bollobas, 2001; Jackson, 2008;
Graham, 2017).

The restrictions are easily interpretable. hp > hr + 1 ensures that triangles are not so numerous
that almost all of the links in the network lie in triangles: that n3~"7 does not dwarf n?~h7.
hr < 3hy, ensures the opposite: that triangles are not almost always incidentally formed by links,
and never forming directly: n3="7) is not dwarfed by n3 3. hp > 2 /3 ensures that links and
triangles are disentangled by imposing a density cap. Finally, h;, < 2,hp < 3 ensure that there is
information in the network—enough links and triangles to estimate their formation.

Again we note that although the results are stated in terms of b, these are equivalent statements
to saying that ratio of the estimated (B) and true (fp) frequencies tend to one. And, that, when
self-normalized by the standard deviations, the empirical frequencies estimated are asymptotically
normally distrubted. The advantage of observing this is that it requires no knowledge of hys other
than that they satisfy the relevant bounds.

5. APPLICATIONS

We now apply our model to study the four examples from Section 2 to illustrate the kinds of
questions SUGMs can be used to addressed.

5.1. Data. We use the Banerjee, Chandrasekhar, Duflo, and Jackson (2013, 2014) data consisting
of a variety of social and economic networks from 75 Indian villages as well as detailed demographic
background.?” Having 75 villages worth of data allows us to show not only how the model scales
with the number of nodes, but also with the number of networks observed.

The networks have households as nodes. There are an average of 220 households per village.
We surveyed adults, asking them about a variety of their daily interactions, as well as their de-
mographics (caste, education, profession, religion, family size, wealth variables, voting and ration
cards, self-help group participation, savings behavior, etc.). We have network data from 89.14
percent of the 16,476 households based on interviews with 65 percent of all adults between the ages
of 18 and 55. As we study the undirected, unweighted network described below, this means that
we observe 98.8% of the potential links between pairs.>®
of interactions: (1) whose houses he or she visits, (2) who visits his or her house, (3) his or her
relatives in the village, (4) non-relatives who socialize with him or her, (5) who gives him or her

We have data concerning twelve types

medical help, (6) from whom he or she borrows money, (7) to whom he or she lends money, (8)
from whom he or she borrows material goods (e.g., kerosene, rice), (9) to whom he or she lends
material goods, (10) from whom he or she gets important advice, (11) to whom he or she gives
advice, (12) with whom he or she goes to pray (e.g., at a temple, church or mosque).

36The expression for V,, is different when hy = hy, + 1, and is given in the proof of the proposition.
37See Banerjee, Chandrasekhar, Duflo, and Jackson (2013) for more information about the data.

38This is a new wave of data relative to our original microfinance study that includes more surveys. Note
that 1 — (1 — 0.8914)2 = 0.988.
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The answers are aggregated to the household level, but one can also work with the individual-level
networks to get very similar results as those presented below. How a link is defined varies based
on the application. We use undirected,? unweighted networks that may allow for multiplexing.

For much of what follows, we work with the borrowing and lending of material goods (questions
8 and 9, with any positive answer indicating a link being present) that we call “favor” links, and the
exchange of advice (questions 10 and 11, with any positive answer indicating a link being present)
that we call “info” links.

5.2. Example 1 (cont.): Matching Features of Empirical Network Data. Revisiting the
example from Section 2.4.1, we compare a simple SUGM based on links and triangles to a number
of alternative models that allow a rich set of covariates, unobserved heterogeneity through node
fixed effect, and even unobserved latent space positions to model correlation.

Our goal is to demonstrate that when a SUGM is fit to the data, as compared to each of the
other models, the resulting distribution over economically relevant network features resembles the
data far better under the SUGM as compared to the other four alternatives. These measures were
not used to fit the model. They the size of the giant component, average path length, and various
spectral properties of the adjacency matrix (e.g., the largest eigenvalue and an eigenvalue measure
of homophily). SUGM outperforms the alternatives despite the fact that the other alternatives
have many variables such as numerous covariates, n fixed effects, or even n latent space variables.

Specifically, our alternatives include (a) a standard model of conditional edge independence (or
a stochastic block model) that includes flexible controls for continuous covariates; (b) an extension
of this model that includes n parameters to capture node fixed effects (e.g., Graham (2017)); (c)
a latent space model (Hoff, Raftery, and Handcock, 2002) where nodes have unobserved arbitrary
locations in R? to be estimated and the probability of linking declines in their latent positions; and
(d) an exponential random graph model with links, triangles, and the rich set of covariates.

Before we proceed, let us review why we look at these features of the graph structure. We look
at the first eigenvalue of the adjacency matrix, which is a measure of diffusiveness of a network
under a percolation process (e.g., Bollobds, Borgs, Chayes, and Riordan (2010); Jackson (2008)).
This is intimately related to the expansiveness of the network — namely, for any subset of nodes the
number of links leaving the subset relative to the number of links within the subset. We are also
interested in the second eigenvalue of the stochasticized adjacency matrix.*® This is a quantity that
is key in local average learning processes and modulates the time to consensus (DeMarzo, Vayanos,
and Zwiebel (2003); Golub and Jackson (2012)), but is also closely related to homophily (Golub
and Jackson (2012)) and is labeled as such in the table below. Additionally, we look at the fraction
of nodes that belong to the giant component of the network, as well as the number of isolates,
as empirical networks are often not completely connected. Finally, we also consider average path
length (in the largest component).

Again, we present the results for favor and info networks. These networks are reasonably con-
nected (with more than ninety percent of the nodes being in a giant component) and yet also
reasonably sparse for small networks.

39Some links are not reciprocated, but that is true at similar rates for the questions regarding relatives as
compared to the other questions, and so much of the failure of reciprocation may simply be measurement
error rather than true one-way relationships. For our purposes here, which are purely to illustrate the ability
of the models to work with data, this distinction is inconsequential.

9ij

40The stochasticized adjacency matrix 7' is defined as T;; = S o where either g;; = 1, or g;;; > 0 for some

k # i, as this captures the set of people to whom 7 listens.
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Our procedure is as follows. For every village, we estimate six network formation models. One
network formation model is a link-based model (stochastic block model) in which the probabilities
can depend on geographic distance, caste, the number of rooms households have, number of beds,
quality of electricity provision, quality of latrines, household ownership status, and squared dif-
ferences in non-binary variables. The probabilities are estimated using logistic regression and the
model has 12 parameters. The next is the model of Graham (2017). This is the same formulation
of the preceding model, but adds unobserved heterogeneity in the form of node-fixed effects:

P(gij = 11Xi5) = A (i + o + 7' Xy5)
where A(-) is the logit link function and Xj; is the aforementioned vector of demographic charac-

teristics and polynomials therein. This model has n+12 parameters per network.*!
The third model is a latent space model

P(gij = 1|zij) = A (o + aj — - dist(zi, 25) + v Xij)

where now z; are unobserved positions in R3. This has 2n + 12 parameters.
The fourth model is a links and triangles ERGM with covariates. Specifically,

P(g) oc exp(z - S(g) + b7 - Sr(9) ++'X).

Turning to SUGMs, in contrast, we consider only low-dimensional models. One is a the basic
SUGM with links and triangles. Pairs of household are categorized as either being “close” or “far,”
where “close” refers to pairs of nodes that are of the same caste and “far” to those that differ in
caste. Similarly, we categorize triangles as being “close” if all nodes are of the same caste and “far”
otherwise. Thus, we allow for four parameters, close and far link parameters and close and far
triangle parameters. The other model is a slightly richer SUGM in which we allow some nodes to
be isolates, meaning there are five parameters. Neither includes any other demographic covariates
nor unobserved heterogeneity.

To make the strongest point, we compare these very stark SUGMs that use only caste variables
to account for homophily, to very rich covariate dependent (block) models that can incorporate
a large set of covariates — including much richer demographics that are usually available to a
researcher as well as node-level fixed effects in the unobserved heterogeneity model and node-level
latent locations in the latent space model. We show that even though we have considerably more
information on the nodes, such as geographic distance and demographic characteristics, and allow
for such unobserved heterogeneities—and we do not make use of this information for the SUGMs—
they recreate networks much more accurately than a link-based model that does takes advantage of
a rich set of node characteristics. Adding over 12 parameters to the block model to flexibly control
for demographic attributes, or even n+12 parameters with unobserved heterogeneity or 2n + 12
with latent locations, does not come close to doing as well as the simple SUGMs. Moreover, since
the specification developed here makes use of considerably richer data than those used in the two
candidate SUGM models, it suggests that by decomposing a network into a tapestry of random
structures (triangles, links, and even isolates), considerable value is added in modeling higher order
features of networks in a parsimonious way.

We estimate parameters for the village network for each model and then generate random network
from each model based on the estimated parameters. We do 100 such simulations for each of the

41Consistency of all o; in addition to 3 has been proven for a dense sequence of graphs (e.g., Chatterjee
et al. (2010); Graham (2017)).
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TABLE 1. Network Properties

Covariates + Unobserved

Truth Links/Triangles SUGM Lmkv/Tnang{es/[.m/atm Covariates (Block Model) Heterogeneity (Latent Block Latent S‘f pace M(,de} (with ERGA_/I (Lfnkv/'{‘nanglm
SUGM Model, Covariates) with Covariates)
odel)
Panel A: Information [€))] 2 [€)) 4 5) ©6) 7
Degree 8.096 8.076 8.042 8.815 9.621 13.500 13.526
(0.261) (0.263) (0.255) (0.311) (0.354) (0.139) (0.112)
Clustering 0.220 0.159 0.147 0.051 0.075 0.077 0.134
(0.006) (0.003) (0.003) (0.003) (0.005) (0.001) (0.001)
Isolates 10.972 3.503 13.787 0.499 0.873 10.269 11.987
(0.841) (0.408) (0.998) (0.092) (0.157) (0.138) (0.138)
% in Giant 0.950 0.984 0.938 0.998 0.996 0.946 0.931
(0.003) (0.002) (0.003) (0.000) (0.001) (0.001) (0.001)
Maximal Eigenvalue 11914 10.453 10.816 10.374 12.583 16.463 18.174
(0.374) (0.301) (0.300) (0.321) (0.430) (0.144) (0.108)
Homophily 0.887 0.815 0.804 0.686 0.680 0.876 0.772
(0.007) (0.009) (0.009) (0.010) (0.010) (0.001) (0.002)
Average Path Length 3.027 2.957 2.871 2.758 2.641 3.097 2.863
(0.048) (0.043) (0.040) (0.040) (0.037) (0.010) (0.012)
Panel B:Favors
Degree 7.058 7.037 7.087 7.756 8.339 13.011 15.015
(0.261) (0.261) (0.267) (0.324) (0.366) (0.156) (0.133)
Clustering 0.289 0.190 0.176 0.047 0.064 0.071 0.145
(0.005) (0.003) (0.003) (0.003) (0.004) (0.001) (0.001)
Isolates 10.070 7.558 16.094 1.063 4.254 19.041 17.769
(0.767) (0.748) (1.177) (0.142) (2.132) (0.268) (0.213)
% in Giant 0.951 0.962 0.925 0.995 0.979 0.873 0.901
(0.003) (0.003) (0.005) (0.001) (0.011) (0.002) (0.001)
Maximal Eigenvalue 10.065 9.618 9.991 9.479 11.198 15.821 20.082
(0.334) (0.311) (0.323) (0.339) (0.408) (0.161) (0.120)
Homophily 0.941 0.873 0.863 0.733 0.723 0.904 0.790
(0.004) (0.008) (0.009) (0.011) (0.011) (0.001) (0.002)
Average Path Length 3516 3.166 3.080 2915 2.806 3.812 2.929
(0.066) (0.047) (0.044) (0.044) (0.054) (0.021) (0.015)

Notes: Average value of various network statistics for the information and favor networks across 75 villages are shown in Column 1. Columns 2-7 present the average values across the 75 villages with 100 simulations per village generated from the estimated
parameter value for each model specified. Column 2 presents a links and triangles in a four-parameter SUGM with covariates where links and triangle probability can vary by binary classification: whether the pairs or triples are "close" or "far", as described in the
text. Column 3 adds isolates to the previous SUGM to constitute a five-parameter SUGM. Column 4 consists of a twelve-parameter conditional edge independent model that includes flexible controls for continuous covariates, as described in the text. Column 5
adds to this unobserved heterogeneity, by including fixed effects for each of node i and node j, when determining whether the pair i are linked, which adds 7 -more parameters per network of size n. Column 6 adds to this latent space coordinates, a latent location
for each node in 3-dimensional Euclidean space, thereby adding » -more parameters per network of size n. Column 7 studies an ERGM with links and triangles as the sufficient statistics, as well as all of the aforementioned controls. Standard errors for the means
in parentheses.

75 village and for each of the models. We then compare the true network characteristics with those
from the simulations.

Table 1 presents the results. Both of the SUGMs match the various features of the networks
substantially better than the conditional edge independent models (with and without node fixed
effects). Including isolates in the SUGM further improves the fits not only for isolates, but also for
fraction in the giant component and the maximum eigenvalue. This suggests that there are more
isolated households in a village for a reason outside of randomness in network formation.

The most obvious thing to note is that the link-based and also latent space models do extremely
poorly when it comes to matching clustering while the SUGM does much better, and here adding
unobserved dimensions to generate unconditional link correlations (e.g., clustering) does worse than
a SUGM that allows correlated link formation directly. The ERGM performs better on clustering
but generates excess density, diffusiveness, the spectral cut (homophily), connectedness, and average
path length.

Conditioning on the triangles in the SUGM is enough to deliver better matches on all dimen-
sions, and the difference on homophily is perhaps most interesting, since one would imagine that
the block models or even latent space models could get that right given that they include many
covariates. This tells us that triangles and correlation between links play a subtle but important
role in homophily — something that is better picked up by a SUGM than an independent link model
even when that model includes rich demographics and unobserved heterogeneity.

That SUGMs do a much better job at recreating a multitude of features of observed network
structures that standard link-based models, especially with rich demographic information, models
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with unobserved heterogeneity, latent space models, and ERGMs is important. It suggests that
there is substantial value added of modeling the formation of triangles and isolates. Knowing
that our model is better able to capture the realistic correlation of links within observed networks
should make us more confident in trusting the results of some other empirical applications. For
example, when we look at links across social boundaries, we can be comfortable that to a first
order, thinking about a SUGM with links and triangles across and within caste groups can do a
good job of matching patterns in the data, and thus tracing them back to model parameters.

5.3. Example 2 (cont.): Do incentives for risk sharing drive network formation? Con-
tinuing Example 1 from Section 2.4.2, we test whether supported relationships are significantly
more likely to appear in favor exchange than informational links. The (joint) hypothesis that we
are testing is that exchanging material goods is more costly and/or happens less frequently for
agents, and so requires more incentives and supporting enforcement than exchanging information
which is less costly and/or more frequent.

To keep the illustration in this first example clear, we abstract from covariates. We illustrate
the incorporation of covariates in the examples below.

Thus, from Section 2.4.2, we know that A1 favor = F(VT. favor)® and BL taver = F (YL, faver)?, and

3/2
VT, favor VT,info BT,fa7’0T/BL,favor

similarly for information. Thus, the test of whether 5

corresponds to >

L, favor YL,info BTvinfD/ﬁi/,?nfo
1. This test takes into account that there are more consents for a group than a pair (the 3/2), and
is also robust to information links simply being more or less valuable, as it adjusts by relative link

prevalence.

TABLE 2. Parameter estimates by network type

B Br
Information 0.0131 0.0001
(0.0002) (0.0000)

Favors 0.0150 0.0002
(0.0002) (0.0000)

Notes: Standard errors computed

using the results of Proposition 3.

We estimate the four parameters in question under the many independent network (n fixed,
R — o0) framework. Table 2 presents the parameter estimates and standard errors. We reject the
hypothesis that there is no difference in the support of favor relationships compared to information
relationships (p < 0.01).#> We conclude that the data are consistent with the theory that incentives
for favor exchange matters in network formation in these data.

Next, we can also push this further by estimating B v and BT,,, separately for each village v, with
the large single network (n — oo, R = 1) paradigm for each village. This allows for heterogeneity
in the parameters across villages by assuming they are drawn from entirely different distributions.
We see the results in Figure 6, though standard errors are omitted for visual clarity. We see that
for most villages, the favor over info ratios are higher for triangles compared to links.

53/2

428pecifically, the p-value is computed for a test of the null hypothesis %TT’fv“’;”' = ﬂLs*f;'”“", where the param-
e L,info

eters are held to be common across all villages in the sample.
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5.4. Example 3 (cont.): Links across Social Boundaries. We link two households if members
of either engaged in favor exchange with each other: that is, they borrowed or lent goods such as
kerosene, rice or oil in times of need.

TABLE 3. Parameter estimates by network type

BL,same B\T,same BL,diff BT,diff
Information 0.0169  0.0004  0.0065 0.00003
(0.0002) (0.0000) (0.0001) (0.0000)

Favors  0.0127  0.0004  0.0043  0.00002
(0.0002) (0.0000) (0.0001) (0.0000)

Notes: Standard errors computed using the results of Propo-

sition 3.

Table 3 presents the parameter estimates, again where we assume that all 75 networks are

independent draws from the same distribution, and a formal test rejects the null pr(diff)
pr(same)

(%)3/2 with p < 0.001 for each network type.

Finally, Figure 7 shows the results when we allow the parameter estimates to vary by village.
For the bulk of villages, cross-caste relationships relative to within-caste relationships are more
frequent as isolated links compared to being embedded in triangles, for both information and favor

networks.

5.5. Example 4 (cont.): Network Formation and the Impact of Microfinance. Finally, we
return to Example 4: how the introduction of microfinance changes network structure. We begin by
estimating the SUGM parameters outlined in Lemma 3. Recall that the modeling assumptions are
based on Banerjee et al. (2021) and as noted above the lending/borrowing frequencies, the return
on informal lending and borrowing, and estimates of node types via a random forest classification
are taken from that paper. Our goal here is to showcase the usefulness of the SUGM.

We estimate efforts using Lemma 3, and then can identify other parameters of interest as follows:
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Table 4 presents the results. We see that effort for N declines (but H stays the same) in the
microfinance villages. Turning to support, in order to interpret this, it is useful to scale the support
factor relative to the base values v% ]{? and v}\ﬁ; . Specifically, we find that the support value is 34.5%
of two bilateral relationships (presumably the value of a triad with no extra payoff for closure),
consistent with Jackson et al. (2012). Next, turning to the meeting technology, consistent with
Feigenberg et al. (2010), we see a considerable increase in meetings among Hs with microfinance.

Given the weekly meetings at microcredit centers among participants, this is unsurprising.

TABLE 4. Microfinance impacts on network formation

e s ¢ 0
No MF 0.191 0.110  0.008 N/A  0.0065
(0.008) (0.0170) (0.001) N/A  (0.0005)
MF  0.184 0050 0.08 20.8  0.0065
(0.009) (0.0013) (0.001) (0.002) (0.0005)

6. A CENTRAL LIMIT THEOREM FOR CORRELATED RANDOM VARIABLES

We now state a new central limit theorem that applies for a variety of settings in which all
variables may be correlated (well-beyond network settings), but in which the total amount of
covariance is bounded.

Many existing central limit theorems that allow for correlated random variables do not apply to
our setting as they require a spatial/ ordered lattice/ geometric structure (e.g., Bolthausen (1982).
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In the typical logic of central limit theorems based on strong mixing arguments in the mathematics,
spatial, and time series literature, random variables are embedded in some space where there are
“close” and “far” random variables and the further they are, the less correlated they are. Some
researchers working on network formation (e.g., Boucher and Mourifié (2012); Leung (2014)) exploit
these spatial techniques by embedding nodes in some space so that only “nearby” nodes can link
and “distant” nodes cannot link (e.g., following the logic in Penrose (2003); Hoff et al. (2002)) in
order to satisfy mixing conditions and apply a central limit theorem like Bolthausen (1982). As
n — oo most nodes get further and further apart and therefore essentially never link.

The reason that this is unsatisfying for our purposes is that such a strategy imposes a specific
structure on the adjacency matrix. To see this, consider the simple case where nodes live on a line.
Then in the adjacency matrix, only nodes within some limited distance to the left or right of any
given node tend to be linked. While this may be fine for certain contexts, it is not an adequate
description of a village network where there is no natural space on which some households in a
village should be considered, ex ante, to be infinitely far apart (or students in a dorm or university
should be considered, ex ante, to be infinitely unlikely to link to each other).

Our proof technique builds on a foundation developed by Stein (1986). That result (and precursor
work in Stein (1972)) have been used before to derive central limit theorems in two literatures: time-
series/spatial statistics and dependency graphs. For instance the oft-used Bolthausen (1982) central
limit theorem, crucial in time-series and spatial econometrics, uses a lemma from Stein (1972) to
show asymptotic normality. The basic idea is to arrange the data in some manner to identify "close”
and ”far” random variables and establish conditions on mixing as a function of these distances.*?

The literature on dependency graphs has not been explored as exhaustively in econometrics. In
such previous approaches, collections of random variables are represented on a graph (the graph
here is a manner of representing correlation between random variables whose indices are the the
nodes, not the target SUGM that we are modeling) where a link between two indices mean that
they are correlated and no link means they are independent.

Our insight is generalization of the dependency graph literature: what we show is that if the
overall covariances satisfy some bounds, then one can still prove a CLT no matter how that depen-
dency is arranged (even with a complete dependency graph). This differs from much the previous
literature which assumes that many variables have zero correlation. There the normalized sum is
then shown to be asymptotically normally distributed provided the dependency graph is sufficiently
sparse (Baldi and Rinott (1989); Goldstein and Rinott (1996); Chen and Shao (2004)). Those re-
sults overly-restrictive for our purpose. For instance, we want models where in principle all random
variables which represent links in the SUGM can be ex ante correlated, and in overlapping ways.
Even the few previous results allowing for high- and low-correlation dependency sets are too strin-
gent to apply to our setting (Ross, 2011; Goldstein and Rinott, 1996; Chen and Shao, 2004). We
work with weaker conditions that allow us to work with SUGMs, and are stated based on bounds
on sums of covariances, differently from conditions in the previous literature.

We require some notation.

Consider a triangular array of (real-valued) random variables X that each have finite variance
( possibly varying with ), with a set of labels a € A" such that |[AN| = N. For instance, in
our SUGM settings the X may be an indicator of the appearance of some particular subgraph,
such as a link or triangle, and o would track the pairs of nodes involved in a potential link (ij) or

4311 this setting, a non-exhaustive but illustrative list of econometrics papers include Conley (1999), Jenish
and Prucha (2009), Bester, Conley, and Hansen (2011), among numerous others.
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n

triples of nodes in a triangle (ijk). N captures the () possible links or (%) possible triangles. So
when considering link counts o would track pairs of nodes involved in links and when considering
triangles a would track triples.

Let us normalize the variables by their means:

zY = XY -E[x}]

and let SV be the sum
SN = Z zN.
aeAN

We provide conditions under which a normalized statistic

N SN
S = 5~ N(0,1),
an

where the normalizer, ay, is a measure of the variance of SV, defined below.

6.1. Dependency neighborhoods. For each a, N, we partition the index set AY into two pieces.
In particular, we define a set, called a dependency neighborhood, for each a;, N:

A (o, N) ¢ AN such that a € A(a, N).

The conditions for n € A(a, N) are defined below. For each a, we need AV to be partitioned into
a set A(a, N) and its complement in a specific manner to satisfy a few sufficient conditions.

A (o, N) includes indices 1 where the corresponding X,,’s have relatively “high” correlation with
Xq, and its complement includes the indices 7 where the corresponding X;,’s that have relatively
“low” correlation with X,. There is substantial freedom in defining these sets, but an easy rule to
applying them to (non-sparse) SUGMs is to set the A («, N) sets to include the other subgraphs with
which the subgraph « shares some edges and could have potentially been incidentally generated.

We show that under conditions on the relative correlations inside and outside of the dependency
neighborhoods, a central limit theorem applies.

6.2. The Central Limit Theorem. Let
an = Z cov (Zu, Zn)
ane€A(a,N)
be the total sum of variance-covariances across all the pairs of variables in each other’s dependency
neighborhoods, and recall the normalized statistic
N SN

V=2

In what follows, we maintain the assumption that ay — oo, as otherwise there is insufficient
variation to obtain a central limit theorem.
The following are the key conditions for the theorem:

3/2
(6.1) Z El|Za|Zy2,] =0 (a]\? ) ’
an,yeEA(a,N)

(6.2) ) OV (ZaZy, Zot Zoy) = 0 ((az\/)2> |

a0 meA(a,N),n'eA(a’,N)
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(6.3) > E(ZaZy-sign (E[ZaZy| Zy))) = o (an).
ang¢A(a,N)

All conditions are intuitive. Loosely put, Condition (6.1) captures the idea that most of the co-
variance between random variables in a dependency neighborhood for « is coming from covariances
between the reference random variable X, and a member of the neighborhood X, rather than from
dependency between two other members X, and X,. Some of them can have high dependency, but
in total they cannot. So in constructing our normalizer ay we need only consider the covariance
terms between reference variables and their neighbors.**

Condition (6.2) is similar but it looks at the dependency between two members (1, 7n’) of different
dependency neighborhoods of two distinct reference nodes (a,a’). It says, again, that the total
amount of covariance across members of different dependency neighborhoods, when considering any
two pairs of reference nodes, is small relative to the total sum of variances.

Condition (6.3) states that covariances between reference nodes and members outside of its
dependency neighborhood are relatively small. This is intuitive and motivates the strategy in
defining dependency neighborhoods in the first place. Note that if, for instance, E[Z,Z,|Z,] > 0,
then Condition (6.3) is simply that }°..¢a(a,n) COV (ZaZy) = 0 (an).

THEOREM 4. If (6.1)-(6.3) are satisfied, then Y ~N(0,1).

It is useful to consider the special case in which A(«a, N) = {a}, which extends but nests many
standard central limit theorems. This is useful when we get to the case of sparse networks, where
incidental networks are unlikely and the correlation between different subgraphs becomes small.

COROLLARY 2. If E[Z,Z,|Zy] > 0 for every n # «, and™
2
1) Xan cov(Z2, Zg) =0 ((aN> >, and
(i) >auzy coV(Za, Zy) =0 (aN),

then S ~ N(0,1).
Moreover, if the X5 are Bernoulli random wvariables with E[X,] — 0 (uniformly), then (i)
implies (i).

Note that (i) is often satisfied whenever (ii) is, so this is an easy corollary based on one intuitive
condition: the overall sum of covariances between different variables cannot be too large relative
to the sum of their variances.

The proof of this Central Limit Theorem applies some key techniques pioneered by Stein (1972,
1986) (see also Bolthausen (1982); Baldi and Rinott (1989); Ross (2011)) to a more general structure
than have been analyzed before. Rather than relying on mixing conditions typically applied in the
spatial and network settings, which do not apply to SUGMs, we extend Stein’s approximation
argument to develop bounds that are looser and more permissive, which turns out to be essential.

7. CONCLUDING REMARKS

44Note that an easy sufficient condition for (6.1) is that 3
Xa.
1f B[Z4Z,|Z,) > 0 does not hold, then (i) can just be substituted by (6.3).

3/2 .
a;n,YEA(a,N) E [XaXan] =0 (GN/ )7 simce |Za‘ <
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We have developed a new class of models—SUGMs—in which networks are formed via a basis set
of subgraphs. The parameters are always identified and we study conditions when the parameters
have estimators that are consistent and asymptotically normally distributed. En route, we develop
a new central limit theorem for dependent random variables which extends the dependency graph
literature and also does not require a geometric (lattice-like) ordering of covariances of the kind
used in the time series and spatial literatures. We believe this is of independent interest.

Our model is useful for empirical work. We show that it models economically relevant features of
real-world network data better than the standard alternatives: stochastic block models, unobserved
heterogeneity models, latent space models, and ERGMs. Further, we have illustrated that it is easy
to microfound and use to test important hypotheses such as whether a network provides incentives
to sustain informal contracts, whether people are willing to interact across caste publicly, and even
how network formation changes in response to the introduction of credit.

Future research could explore, among other things, richer inclusion of covariates in subgraphs,
a data-driven approach to select subgraphs for inclusion in the model, statistical properties of
other specific empirically-relevant SUGMs not studied here, and systematic bootstrap techniques
for inference for use in complex implementations of these models.
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APPENDIX A. PROOFS

1/3
Proof of Lemma 1. Note that for z € { favor,info}, 17;2 = Bf;g and so the condition becomes
BL/3 L3 b2
Bf/’é‘“m > —T2e from which the result directly follows. m
L, favor L,info

Proof of Lemma 2. Having two randomly picked nodes bump into each other within a commu-
nity, there is a 2+ (1— f)? probability of the nodes being of the same type, and a 1—(f2+(1— f)?)
probability of them being of different types.*® Thus, the relative meeting frequency of different type
links compared same type links is

r(diff) _ 1= (24 (1-)?)

7 (same) 2+0a-n -
For triangles, picking three individuals out of the community at any point in time would lead to a

2+ (1 — ) probability that all three are of the same type, and 1 — (f2 + (1 — f)?) of them being
of mixed types, and so

nr(diff) _ 1= (2 + (1= 5)?)
mr(same) =
It follows directly that for f € (0,1):
mr(same)  wr(same)
mr(diff) — wo(diff)
So different type triangles are more likely to have opportunities to form under this random mix-
ing model than different type links. In particular, note that gg’d” L < IZ;LL"“" L if and only if
(MM)U 5 (MM
BT,same 7rT(same) BL,sa'me 7TL(d'Lff)

. . . S \3/2
PTdiff  PLAIff o that gT,dsz < (IB/BLL,dsz) m
,same

(A1)

1/2
) / . In summary, given (A.1), sufficient condition for

PT,same PL,same T,same

Proof of Theorem 1. Order subgraph types so that the number of links a subgraph of type ¢ is
nondecreasing in ¢. Let ¢* be the smallest ¢ for which 5y # 3.

Consider a particular (labeled) subgraph ¢’ € Gy«. Let pg(g’) denote the probability that the
subgraph ¢’ (without any extra links) forms from some collection of subgraphs in Gy for £ < ¢*.
We can then write the probability of forming the subgraph ¢’ as

pe(g’) + (1 —ps(g")Be-,

where recall that Sy« is the probability that ¢’ forms directly. Let nog(g’) denote the probability
that all ¢” € Gy for £ < ¢* such that ¢” C ¢’ do not form. Then the probability that none of the
links in ¢’ are present as parts of subgraphs that do not extend beyond ¢’ is then

noa(g)(1 - Bre).
Let () denote the empty network. It then follows that

Ps(g') _ palg) + (1 —ps(g)Be
Ps(0) nog(g)(L = Be)

4670 keep things simple, we consider equal-sized groups, but the argument extends with some adjustments
to asymmetric sizes.
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So the probability that the realized network is exactly ¢’ compared to the probability that it is
the empty network, depends only on the probability that ¢’ forms directly or incidentally from
subgraphs of it, over the probability that no subgraph of ¢’ (including itself) forms.

Note that this expression is strictly increasing in B« since pg(g’) < 1 and nog(g’) > 0. By the
definition of ¢*: pg(¢’) = pp(¢') < 1 and nog(g’) = nog(g’). It then follows that

Pslg)  Porld)
Pg(@) © Pa (D)’

which establishes the claim. m

Proof of Proposition 1. First, note that 1 — (1 — 8})* is the probability that some link is
formed as part of at least one triangle out of x possible triangles that could have it as an edge
(independently of whether it also forms directly).

Next, note that the probability that a link forms conditional on some particular triangle that it

could be a part of not forming is*”

(A-2) G =B+ —B) (1- (1= Br)"?).
Given this, note that the probability that a link forms can be written as

(A3) qr = Br + (1 — Br)qr,

noting that a link could form as part of a triangle that it is part of, or else form conditional upon
that triangle not forming.
We can write the probability of some triangle forming as

(A.4) gr = Br + (1 = pr)(d)?,

where the first expression Br is the probability that the triangle is directly generated, and then the
second expression (1 — B7)(qr)? is the probability that it was not generated directly, but instead all
three of the edges formed on their own (which happen independently, conditional on the triangle
not forming, which has probability (gz)3). The result follows from Lemma A.1, with 2y = Az,

Ty = fr, qr = a1 (x), qr = az (v) and gz, = f(x). m

LEMMA A.1. Let z = (z1,22) € (0,1)* and a (z) = (a1 (), az (z)) be two real-valued functions
a(x) = w2+ (1—m2) f(2)
az(z) = w2+ (1-a2)f(2)°,
with
f@=a+0-a)[1- (=) =1- (1 —21)(1-2)"
for some integer N > 0. Then x # 2’ = a(x) # a(2').

Proof. Suppose the contrary. Then
ty+ (L—a}) f (') = 22+ (L - 22) f (2) and o+ (1= a5) f (¢')° = 22 + (1 — 22) f ().

First, note that if 25, = o, then since these are both less than one, the first equation above
implies that f(2’) = f(z). However, that is not possible since f is increasing in z; and z} # z; -

4TThat is, consider a given pair of nodes i,j and a third node k. Consider the probability that link ij is
formed conditional on triangle ijk not forming directly as a triangle.
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recalling that 2’ # z and a, = x5 . Thus, a5, # 2, and so without loss of generality consider the
case in which z, < x9. This implies that both

fa") =bf(z)+c
and
(@) =bf (@) +ec
where b= 1=22 ¢ (0,1) and ¢ = 2222 € (0,1), and b+ ¢ = 1.
2 2
This implies that

bf (z)>+1—b=(bf (x) +1—b)>

This as an equation of the form
b +1—b=(by+1—10)>

where b € (0,1) and y € (0,1). Note that the left hand side is larger when y = 0 and the two are
equal when y = 1, and that the derivative of the difference is

3by* — 3b(by + 1 — b)? = 3b [y2 —(by+1-— b)Q] <0.

The difference is decreasing over the entire interval, and hits 0 at the end. Thus, the difference is
always positive in (0,1) and there is no solution, meaning our supposition was incorrect. m

LEMMA A.2. Any event (in the discrete o-algebra generated by all possible realizations of all sub-
graphs) associated with any SUGM has a probability that is an analytic function (and so it is in
C®), and has derivatives and cross partials at all levels being uniformly continuous and bounded
on the whole parameter space of [0,1]F.

Proof. An ‘outcome’ is a specification of exactly which subgraphs form and which do not - so a
complete specification of what happens. Any event then corresponds to a set of outcomes, and so
its probability is a sum of probabilities of the outcomes. Each outcome’s probability is of the form

H/@;z(l _ 5€)mg—2e
14

where z, indicates how many subgraphs of type £ are present in the outcome. As each of these
functions is analytic (and hence in C*°), all of the derivatives and partials, cross partials, etc., are
continuous and bounded on [0, 1]* and hence uniformly continuous on [0, 1]¥. Any event is then a
finite sum of analytic functions and so the result follows directly. m

Proof of Theorem 2. We verify the conditions of Theorem 2.5 of Newey and McFadden (1994)
for consistency. Assumption (i) holds by Theorem 1 and we assume compactness of the parameter
space (Assumption (ii)). Continuity of logPg(g) at each § with probability one is mechanical in our
model since subgraph probabilities are analytic functions of the parameters (Lemma A.2). Finally,
the uniform bound of assumption (iv) holds since n is fixed, there are only a finite number of graphs
in consideration, each with assigned probabilities in a compact set of parameters, and there is a
positive probability of seeing any graph in G". Therefore, the supremum must be finite.

We verify the conditions of Theorem 3.3 of Newey and McFadden (1994) for asymptotic normality.
We have assumed (i), interiority of the parameter, and our model by construction places positive
mass on all of G”. We have assumed (iv). Lemma A.2 implies Assumptions (ii), (iii), and (v).
Because all events have probabilities that are analytic functions of parameters, with all derivatives
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and cross-partials being uniformly continuous and bounded in the parameter space, the norms
of the maximal derivative (||VgP3(g)||) and second derivatives (||Vg3Pg(g)||) of the probability
functions, as well as the log likelihood (||VglogPs(g)||), have uniform and finite upper bounds. m

Proof of Proposition 2. First we check consistency by the conditions of Theorem 2.6 of Newey
and McFadden (1994). Here each observation is an independently drawn network. For Assumption
(i) let W be the identity matrix and then apply Proposition 1. For (ii), we have assumed that
the parameter space B is compact. (iii) follows from the fact that Eg [S (g,)] is continuous at each
B with probability one since it composes continuous functions of parameter entries. Finally (iv)
follows from the fact that since both Sy are shares, they are strictly less than 1.

Next we check asymptotic normality by the conditions of Theorem 3.4 of Newey and McFadden
(1994). Since we have fy in the interior of the compact parameter space, so (i) is met. We see (iii)
holds since by definition the subgraph counts are fractions between 0 and 1. Both (ii) (that the
empirical moment function is continuously differentiable in a neighborhood of the true parameter)
and (iv) (that the gradient of the moment function is continuous at the true parameter and that
it satisfies a ULLN) follow from Lemma A.2. Analytic functions are C'°°, so there are arbitrarily
many derivatives. Finally, for (v), that HH’ is non-singular follows from the linear independence
of rowsof H. m

Proof of Theorem 3. When obvious, we omit superscript n’s to simplify notation, but they are
implicit. It follows that,

N true Qtrue _ Qtrue Q _ Qtrue
(A5> 6@ = ( S@ n SE nSé + SE(g) nSé )
/ie (me) H[ (mg) HZ (mg)

where S{™¢ is the number of truly generated such subgraphs (unobserved) on the whole network,
and 5?'“6 is the number of truly generated such subgraphs (unobserved) on the networks that the
after removing the links in Dy(g) = {ij : ij € ¢',¢' C 9,4 € Gp,0' < {}, and (") counts the
number of ways to pick my nodes out of n.

We show below that |Sirue — Sirue| = o,(S5¢) and |Sy(g) — S| = 0,(5¢7"¢); which then also
implies that Sy(g) — géme = 0p(S}¢). Together with (A.5), these tell us that

n
mye

(A.6) G — (%) (1 + 0p(1).

my
Note that S{"“¢(g) has a binomial distribution with parameter B3 ¢- From this and (A.6), it then
follows that
5 - ﬂgWN(ngf)

n o an N\ 1/2
where oy = (601(1 nﬁo’e)) .

we(omy)
Next, note that the S;™¢(g) are independent across ¢. From (A.6) it then follows that

Strue

S anB =Y ap—tr~(1+0p(1))
¢ T feln,)

my

for any a € [0,1]*, with 3, ay = 1. Given the independence of Sirue across £, it then follows that
the random variable on the right hand side converges to being normal.*® Then, by the Cramér-Wold

48Note that under the assumption that m, > hy there are a growing number of observations of each subgraph.
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Theorem, this implies that the Bg are jointly normally distributed in the limit, and so

£V2(8 — Bg) ~ N(0,1)
6&((1_535)

where Yy = v () and the off-diagonals are all 0.
4 my _ B _
Thus, to complete the proof we show that |Srue — Glrue| = o,(Siue) and |Se(g) — Sime| =
0p(s§rue>'

To establish these claims, we establish two facts. One is that the probability that some observed
subgraph of type ¢ was incidentally generated (by subgraphs that are no larger than it in the
ordering) is 0,(1). This establishes that |S¢(g) — S| = 0,(SI“¢). The other is that a truly
formed subgraph of type ¢ becomes part of an incidentally generated subgraph of type ¢/ < £ is
0p(1). This establishes that |§2§7"“e — Sfrue| = o,(Sgrue).

Let 2z} denote the probability that any given ¢’ € G is incidentally generated. We now show
that z'/ By, = o(1), which establishes the first claim. Consider g; € G and a (minimal, ordered)
generating subclass C = ({},¢;) 5, and for which £; > £ fr all j.

We show that the probability z;' that it is generated by this subclass goes to zero relative to B& 0
and since there are at most M, < k™ such generating classes, this implies that z/ Bo.e — 0.

Consider a subnetwork in GZ. The probability of getting at least one such network that has the
c¢; nodes out of the my in g, is no more than

n —c
n mye. n
K/Zj ( >/80,Zj < Kﬂjn 7 ]/BO,EJ"

mye; — ¢

Then, we can bound the desired ratio by

g Wiesn™ B8y, Ties ™ me By, noies ™G =G b,
Be ~ B3 I Dy g, n=lebg

where the last convergence is guaranteed by (4.3).

The second claim follows from a similar calculation. It is sufficient to show that the probability
that some subgraph of type ¢;; becomes part of a subgraph of type ¢ < {; (where j' € J is part of
a generating class of some ¢ < /;), compared to the likelihood of the formation of a subgraph of
type £;:, is of vanishing order. Again, as there are a finite number of larger subgraphs, and a finite
number of generating classes, it is sufficient to show this for a generic £ < £;; and generic generating
class. In the following, the numerator is on the order of the expected number of incidentally formed
subgraphs of type ¢ from this type of generating class, while the denominator is the expected number
of the subgraphs of type /.

ke (ﬂy;) HjEJnmej 9 Wjﬂg,ﬁj =0 (nmej—cj—hj ) =0
-  h, 3

ke, (“’Z B8 > 't

where the convergence to 0 follows from (4.4).
Finally, by multiplying and dividing by n* and collecting terms, it follows that |5— bo L5 0and

v, 12 (E - bo) ~» N (0,1). To see this, observe that X~Y/2(5 — g7) = 1/ (5 - bo). ]

Proof of Corollary 1. Note that 3, c; > my+(|C|—1)z for some z > 1, where z > 2 if subgraphs
are acyclic (each subgraph in the incidental set overlaps the others with at least one node, and at
least two if the subgraphs are acyclic). The conditions then simplify directly. m
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APPENDIX B. PROOF OF CENTRAL LIMIT THEOREM 4 AND COROLLARY 2

B.1. Stein’s Lemma. Our proof uses a lemma from Stein (1986). We review it here, both to be
self-contained and also to explain why this approach to proving asymptotic normality is useful and
distinct from other approaches in the networks literature. The key observation of Stein (1986) is
that if a random variable satisfies

E[f'(Y)=Yf(Y)]=0

for every f(-) that is continuously differentiable, then it must have a standard normal distribution.

This observation leads to a useful lemma, that allows one to characterize the Kolmogorov distance
between a random variable Y and a standard normally distributed Z, denoted di (Y, Z). We can
bound this from above by (a constant times) the Wasserstein distance, dy (Y, Z), which itself is
bounded by the below expression.

LEMMA B.1 (Stein (1986); Ross (2011)). IfY is a random variable and Z has the standard normal
distribution, then
dw(Y,Z) < sup ELf'(Y) =Y fY)].
{7 NL21£711<4/2/ 7}

Further dg (Y, Z) < (2/m)Y*(dw (Y, Z))/2.
By this lemma, if we show that a normalized sum of random variables satisfies
sup ELf(8Y) =5 F(5)| = 0,
{FNAILNF <2< /2/7)
then dy (?N, Z) — 0, and so it must be asymptotically normally distributed.

B.2. Proofs of Theorem 4 and Corollary 2. The following lemmas are useful in the proof.

LEMMA B.2. A solution to maxy, E[Zh(Y)] s.t. |h| <1 (where h is measurable) is h(Y) = sign(E[Z|Y]),
where we break ties, setting sign(E[Z|Y]) = 1 when E[Z]Y] = 0.
Proof. This can be seen from direct calculation:

E[Zh(Y)] = / E[Z|Y]h(Y)dP(Y)

Y

Maximizing E[Z|Y]h(Y) pointwise when |h| < 1 is achieved by setting h(Y') = sign(E[Z]Y]), and
we break ties by setting sign(E[Z|Y]) = 1 when E[Z]Y] = 0, as that makes no difference in the
integral. m

LeEmMA B.3. E[XYR(Y)] when h(-) is measurable and bounded by \/g satisfies

E[XYh(Y)] < \/ZE (XY - sign(E[X|Y]Y)].

Proof. This follows from Lemma B.2, setting Z = XY. m

Proof of Theorem 4. By Lemma B.1, it is sufficient to show that the appropriate sequence of

random variables ?N satisfies
—N, =N
sup E[f(s") -5

FE)| =0,
{FNALILF N2 1</ 2/}



A NETWORK FORMATION MODEL BASED ON SUBGRAPHS 48

Recall
ay = Z cov (Zu, Zn),
aneA(a,N)
and
SN = SN/a}\?z.
For ease of notation, we omit the superscript Ns below. Let
Sy 1= Z Zy and Sq = Sa/al/Q.
n¢A(a,N)
Observe that

B[S/ ()] = | T 21 ()| =2 | £ 2 (7 (5) -1 (52)

The first step is to show that

‘E Lﬂlﬂ?% f (Sa)H =o(1),

+E

a;;%jww.

by employing condition (6.3).
In order to do this, we can expand the term to

LMZZJK)]=EIQZZf(L > Z)

AN aeA AN ach OGN ngA(a,N)

<l s Z 210

a’N acAN

=0 since E[Z,]=0.

e (g ) 7]

aN a€cl an n¢A(a,N)

o~

where S, is an intermediate value between S, and 0.
To bound the second term, we apply Lemma B.3 to conclude that

E [ZaGA;mZA(a,N) Zaan/ (i)} < \/? E {ZaEA;n¢A(a,N) ZoZy - sign (E [ZaZy] Zn])} ‘
an Vo '

an

Thus, it is sufficient that

(B.1) E [ Z ZoZy -sign (E [ZoZy|Zy]) | = o(an)

a€An¢A(a,N)

to ensure that N
b [Zaél\m%A(a,N) Lo Zn- I (?a)}
an

= o(1),

which is ensured by (6.3).



A NETWORK FORMATION MODEL BASED ON SUBGRAPHS 49

Next, the second step of the proof is to apply a similar reasoning as in Ross (2011) with an o(1)
adjustment (from the first step above), to write

1/2 ZZ f(Sa) - (S—Sa)f'(S)H

f/(g) <1 - m Z Zoa(g - Sa))

and then to show that the right hand side of this expression goes to 0.

Blr@) -5/ <

+ |E +o(1),

By a Taylor series approximation and given the bound on the derivatives of f, it follows that

L] <7 )2
E[/(S)-5/(S ”<2a1/2%:E[|Za](S—Sa>]+ F(S)(1- I/QZZ
Let us denote the first two terms on the right hand side as Ay and As respectively. We bound
each, and show that each is o(1), which then completes the proof.

2
|2’c{3/’2‘ ZE |Zal ( Z Zn) - ‘2|CJ:3/|2 Z E[|Za|ZyZy] = o(1),
AQ = ‘E [f/(s) (1 - all/QZZoc(S_Sa)>H = l

neA(a,N) aneA(a,N)vyeA(a,N)
171 2o, y E|Z.,7Z
a— Z a<=n Z adn — [ [ 77]
an€A(a,N)

a aneA(a,N)
Y 1/2 Y 1/2
2 2
<~ | var > ZaZ, == > cov (ZaZn, Zar Zy) ,
aﬁ ( |: ) aﬁ (a,a’,nEA(a,N),n’EA(O/,N)

aneA(a,N)
where the last inequality follows by Cauchy-Schwarz. The final expression is o(1) by (6.2). m

E

+o(1).

where the last equality follows from (6.1).
Next,

S

E{f’(S) (a— > ZaZn>
)

aneA(a,N

_IF

a

IN

E E

Proof of Corollary 2. We apply Theorem 4 to the case in which A(«, N) = {a}. (6.1) becomes

;E [|Za\3] =0 ((za: var (Za)>3/2)

3/2
Zvar(Z 3/2 ( Zvar ),

which is satisfied directly, given that ), var (Z,) is growing without bound.
(i) and (ii) correspond directly to (6.2) and (
positive).

which becomes

6.3) respectively (noting that the sign is always

We now show that for Bernoulli random variables with uniformly vanishing means, (i) holds
whenever (ii) holds. Observe that

cov (ZO%, Z,?) = cov ((Xa — 11a)?, (X, — Nn)Q)
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= cov (Xi —2Xolta + ,ui, Xg —2X,pyy + u%)
— cov (Xfw Xﬁ) — 2fi0c0v (Xa, Xg) — tycov (Xg, Xn) + At pincov (Xo, X) -

Because they are Bernoulli, cov (Xéf , Xf;l) = cov (Xq, X)) for any k, k" > 0. Since the means tend
to zero, this means

cov (ZC%, Zg) =cov (Xo, X)) (1 +0(1)).

Therefore satisfying (ii) implies (i) (noting also that ay > 1 so a3, > ay). ®
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APPENDIX C. PROOF OF PROPOSITION 3

Let the moment (normalized) be
M (8) = RuS (9) — Es [RuS (9)].

where R, = diag{ he ph } properly normalizes the moments. So, for example, for links we have

ML Z {gm Esgij b= Z 9ij — hL'

i<j i<y
The objective function is
Qn (9,8) := M" (B) M" (8).
And we need L
Q. (8)=E[M" (3] E[M"(8)],

which is the non-stochastic analogue.

C.1. Identification. We prove identification for sequences of parameters, in the sense of identifi-
able uniqueness in the sense of Lemma 3.1 of Potscher and Prucha (1997). See also “Assumption
ID” in Andrews (1990) and Potscher and R. Prucha (1991). The parameters G are identifiably
unique in the sense that for any ¢ > 0

Q"(8)-Q"(8)|] >0

We take the usual Euclidean metric ||b — bo|| to calculate distance between two vectors b, bo.
Note that, since in our setting while by is uniformly bounded from above and below in n, 5j—the
subgraph probability vector—has entries that tend to zero at hypothesized rates.

liminf,, o [infgezg: 5(8.8y)>e

It is useful to note that in our setting, not only will we show that ||b — bo|| 250 but in fact for

a metric (-, ), we have 0 (3 , Bo) L0 In fact, the former follows from the latter mechanically.

To see why this is useful, first consider the degenerate estimator 3" = 0 and observe |0 —
Bl P.0. That is, for a sequence of models in which the probability of any given subgraph tends
to zero—mechanically true in any sparse random graph model—by definition the zero vector is a
consistent estimator for the probability parameters, though this is informative.

The right metric for this sequence is to set*’

[2e — Yl ]
C.1 d(x,y) := max [ ,
(0 ()= 3 | el [l
then the requirement becomes
. By — by
5(B", By) = max | - i 2,
¢ max(’ﬁ?, "‘)

This requires that B? and B& ¢, be proportional to each other far enough along the sequence. Thus,

if B3 approaches 0, saying that B? is a good estimate of it under this metric also requires that Bg”
approach 0 at the same rate, which is a much stronger conclusion than just requiring that the two
parameters converge in the usual Euclidean metric.

49We take 0/0 = 0.
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Returning to our degenerate estimator B? = 0, note

h n

”e"o_ﬁoe’ |0 — bo,e

5 0 g p— —7 = -
(0, 57) m?x bos In?X boe

=1

which does not tend to zero; the § metric tells us that this an inconsistent estimator.
Finally, if & (E ,B™) 50 then |§— b"| L5050 any proof of consistency in S-space implies and so
the results in the paper follow as corollaries to the results below. To see this observe

0 (3 ﬁ”) = max ‘BE _5?‘ = max [P _ﬂ?‘
O e (A1) " e (. 1)
= max gg _ b?' > maxﬂ
¢ max(gé 7|b?|> o b

since by assumption by lives in a compact set with maximum D. Since § (B , B") 0 then so must

by —b7 )
maxy | ZE i , proving the result.

ProrosiTioN C.1. Consider a links and triangles SUGM with associated parameters B&L, 5(T)L,T =
("O’L ”O’T) with hy, € (5, 2) and hr € [hy, +1,3hz], with hy < 3. Then 3}, By are identifiably

nhL 9 nhT
unique.

Proof of Proposition C.1.

Write®
n by bp n_ (P Yo
p :(nhL’nhT) ﬁo:(nhL’M‘T)’
where 0%, b, b5 1, b lie in [D, D]
Let r7 = 1/nhe and 7% = 1/nh7.
First, note that 1 — (1 — }.)" is the probability that some link is formed as part of at least one
triangle out of x possible triangles that could have it as an edge (independently of whether it also

forms directly).
Next, note that the probability that a link forms conditional on some particular triangle that it

could be a part of not forming is®!

(C.2) at =B+ (=87 (1- (- 8P,
So, we can write the probability of some triangle forming as

(C.3) ¢t = Egn gn [ST(9)] = BF + (1 = BF)(d})°,

where the first expression 37 is the probability that the triangle is directly generated, and then the
second expression (1 — 3%)(g})? is the probability that it was not generated directly, but instead all
three of the edges formed on their own (which happen independently, conditional on the triangle
not forming, which has probability (g7)3).

50We allow the constants to depend on n to capture that some applications have both rates and constants
that adjust with scale, and we may want to fit across data of networks of varying sizes. But this is largely
semantic, as estimating any particular network has only one b, and one can ignore the superscripts on the
bs if one likes.

51That is, consider a given pair of nodes i,j and a third node k. Consider the probability that link ij is
formed conditional on triangle ijk not forming directly as a triangle.
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It is useful to note that since 87 = o(1), (1 — B7) — 1 and since hy > 1, |(1 — B2)" 3 — (1 —

%N — 0. ThllS,52
1 1 1
~-n __ —
=9 (nhL - nhT‘1> =9 (nhL>

where the second equality follows since hp > hp + 1.
Next, note that the probability that a link forms is

(C.4) ai =By op [S1(9)] = BE + (1= B) (1 (1= 5" ),
where the first expression 37 is the probability that the link is directly generated, and then the
second expression (1 — 7) (1 — (1 — 82)"2) is the probability that it was not generated directly,

but instead appeared as an edge in some triangle (and there are n — 2 such possible triangles).
It is also useful to write this in a very different way:

(C.5) qr. = Egy g [SL(9)] = 67 + (1 = 1)L,
noting that a link could form as part of a triangle that it is part of, or else form conditional upon
that triangle not forming.

The following derivative expressions are useful:

oG} 9qz,

(C.6) g = (1= G = (=3 - a0 - 5
3‘12 _ _ An\n—2
oy = (1—8p"
g7t oqy
g = 3= BRI G = 3@ - )
oq} oqt
agr = 1T+ (= BRGEE = 1= T+ (= 3)(1 = AP0 - 5
QU 1 (@) + 30— B SO = 1 (@) + 3@ (n ~ 31— B~ B
5 9B}

Given that 87 = o(1) (since hy, > 0), 8% = o(1/n) (since hy > 1), and ¢} = © (n}%) the above
expressions imply that:

(C.7) gg% = 1-o(1),
(C.8) 2;5; _0 (nzth> ,
(C.9) gg% —n—2—o(1),
(C.10) ggz = © (max[1,n!~%1]).

92We use Bachmann-Landau notation so f(n) = ©(g(n)) means that f is bounded above and below asymp-
totically by g. That is, 3k; > 0, 3ke > 0, Ing such that Vn > ng, k1g(n) < f(n) < kag(n).
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Note that (C.7)-(C.10) hold for any parameters hy, > 0 and 3h > hy > hr + 1 - and thus
uniformly for any 8" in a compact set of such hr, hr, and thus as long as we restrict attention to
(™ in that compact set, we have the same order derivatives and so then we approximate:

Egn [S —Egm [S pn — pn b — b
(C.11) oo (S(9)] ~ By (S1(9))  na thO’LJr(n—z)ThO’T]
T ntL nhr
b — b+ (0 — by ) O (n AT,
and
B [Sr(9)] = Bgg [S7(9)] he [P~ B0 2h b — oG r 1-2h
(C.12) 7 0 ~ n"T T@(l/n Ly 4+ nTG (max[l,n L])

~ (O, = b5.1)O(n" =) + (B — b 1)© (max[1,n' 2]} .

To establish identifiable uniqueness (given the additive separability of Q"(3) across L,T) it
is sufficient to argue that for any € > 0 there exists ¢ > 0 such that for large enough n, if
((BE, BE)s (5& I B&T)) > ¢, then at least one of the following inequalities holds:

(C.13) ‘EB" [Selo)) ~ By 15:0)]]
L
(C.14) ‘EB" [Sr(g)] — B [ST@)]‘ -

r%

Note that §((8%, BF), (85 1, Bor)) > € translates into |b} —bf | > ce and/or |V — b 1| > ce for
some ¢ > 0. If the second inequality holds, then by (C.12) it follows that (C.14) holds. If (C.14)
does not hold for any ¢, then by (C.12) it must be that |[b} —bf | > c while |V} — bf | < 6" for
a sequence ¢ — 0. In that case, noting that since hy > hy, — 1 (and so the second term of (C.11)

is of order at most 1 times ¢" while the first term is at least ce in magnitude), then by (C.11) it
follows that (C.13) holds. m

C.2. Consistency.

PROPOSITION C.2. Consider a links and triangles SUGM with associated parameters By 1, Byr =
(bO»L "O’T) with hy, € (1 2) and hy € [hy +1,3hz], with hy < 3. Then 8(B, B) —=0 and

nhL ' phT 29

therefore ||b" — || 0.

Proof of Proposition C.2. The proof follows from checking the conditions of Lemma 3.1 of
Potscher and Prucha (1997) (see also Jenish and Prucha (2009)) or equivalently Andrews (1990),
Lemma 6. Clearly B is compact, the weighting function is the identity matrix so it is positive semi-
definite, and the moment function is continuous in 3. Identifiable uniqueness was demonstrated in
Proposition C.1. Uniform convergence remains.

Observe is that this just requires showing

sup |3 (8) — EM™ (8)| = 0, (1)

|G (0,8) - T (9] < sup
B B

51 (9) 31" () - B [31" ()] B [31" (8))
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< sup
g

§2K-s%p’M\n(5)_E[Mn(ﬁ)”

(3 (3) B [517 (5)]} 377 9)] + sup | [577 )] {37 9) ~ £ [30" (3]}

for a constant K, recalling we have assumed D; < by, < Dy, and Dy < by < Dr.
So, we show that supg ‘M” (B) —EM™ (ﬁ)‘ =0, (1) . It is enough to show pointwise convergence,
which is clear by inspection, and stochastic equicontinuity.
Stochastic equicontinuity requires that for any € > 0, there exists n > 0 such that
limsup P {sup sup ‘M" — M" (B
n

> e} <€
B B'es(B,8")<

as in Andrews (1990) and others. A sufficient condition is a Lipschitz condition: for every 3, 3,
M (8) = M (8)| = 0, (1) 5(8,8) -
Recall that A = hp — hy. It is also useful to note (see the proof of Proposition C.1) that
laz (B) —ar (B)] < ( 1) |Be = Bz| + © (n) [Br — Br|

and
g (8) — a2 (8)] < © (n™2) |8, — 87| +© (1) |Br — B7] .
Returning to the moments computation:
‘M(ﬁ) — M (8| <n"qr (B) — ar (B)| + 1" |ar (B) — ar (8)]

<(1+0(1 !ﬁL—,BLWL +0(n wT—ﬁ | nh
o) (n_2hL) 181, — B, |n"T +© (1) |Br — By| nT
< O(1) . (Br, B) +© (n'=2) or (Br, Br)
+© (=) 5, (8L, B) + © (1) o7 (Br, A7)
<O(1)d(8,5)

since A > 1 and hp < 3hp, the result follows. m

C.3. Asymptotic Normality. In what follows, begin with the restrictions required for identifi-
cation and consistency which are hy, € (%, 2) and hy € [hy 4+ 1,3hg], with hp < 3. Asymptotic
normality will require further tightening of the restriction, though a more general treatment of
the arguments will show more permissive rates to get normality of the shares, but would violate
identification and consistency requirements for the minimum distance estimator.

C.3.1. Asymptotic Normality of Link and Triangle Shares. Let YL := }_,_; gij denote the sum of
links which takes the place of S in our general CLT (since we have used Sy, to denote share above).

LEMMA C.1. Assume the rate requirements for identifiable uniqueness and consistency. Then
ap " (Vi = E[YL]) ~ N (0,1)
if hr € (§2) and hr € [hr, +1,3hz], with hr < 3.



A NETWORK FORMATION MODEL BASED ON SUBGRAPHS 6

Proof. We apply the main theorem where « indexes a link ¢j. We define the dependency neighbor-
hood A (a,N) :={n: nNna# 0}, so A(ij, (5) = {ij} U{ik: k#i,j}U{k: k#1i,j}. Therefore
dependency neighborhoods include all node-adjacent links.

Condition (6.3) is obvious from the definition of A (ij, (3)), because if ij and kl do not share
nodes, no triangle nor link can generate both. Thus they are independent and the left-hand side
term is 0.

Next, we verify Condition (6.1) as follows, using the sufficient condition from footnote 41.

E|XoX,X,| = P(XoX,X,) st. 1,7€A(a,N).

We have three cases where all indices are distinct and two cases where at least two indices are
identical. Enumerating them, we have

(1) ij, jk, il (a line) - there are O (n*) of these.

(2) ij,ik,il (a star) - there are O (n?) of these.

(3) 4,7k, ik (a triangle) - there are O (n?®) of these.

(4) ij,ij,ik or ij, jk, jk (two repeat) - there are O (n?) of these.

(5) ij,i7,47 (all repeat) - there are O (n?) of these.
From the proof of identification, recall qr, is the probability of a link forming in the graph, which
can be due to a link forming directly or as a part of a triangle. Also recall that ¢y, is the probability
of a link forming if a particular triangle that it could be a part of does not form. Finally, let g}
denote the probability that a link forms conditional on two triangles, that it could be part a part
of, not forming. Note that we have, and will continue to, suppress the dependence on n unless
explicitly needed.

We can construct loose upper bounds on the probabilities of the various structures:
(1) Line: 83 +2(1— Bor) Bordr + (1 — Bor)’ @3y, < B3 + 2B0rar + ¢
(2) Star:

Bir+31—Box) By +3 (1= Bor) Boxds + (1 - Bor)® (@.)° < 4837 + 3Borar + a -

(3) Triangle: BO,T + (1 — ﬁO,T) (JL) < 50,T + q%.
(4) Two repeat: for + (1 — Bor) (@,)° < Bor + 3.
(5) All repeat: qr.

Then it follows that
(C.15) E|Xo Xy X, <0 (n' (837 + Borar +at ) +n* (Bor + a2 ) +n’ar),

where we omit the dominated term from triangles.
It is straightforward to show that for k& # i, by binomial approximation and bounds on lower
order terms

cov (Xij, Xjx) = Bor (1= Bor) (1= Gr)* < O (Bor) -
Then it follows directly that
any =© (HQQL + n?’ﬁo,T) ~
For the sufficient condition for (6.1) we need to compare this to the bound on E | X, X, X | from
(C.15) and show
E|X. XX, =0 (a%Q) =0 (n?’qi/2 + n9/2ﬁg{1%) ,

and so we need to show

nt (Br + Borar + i) +n* (Bor +a}) + nPar = o (n°q)” + n*/25)7) .
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This imposes a number of constraints, and omitting the parts that are obviously satisfied (e.g.,
n4/83,T + ngq% =0 (n3qi/2 + ng/zﬁé’»’/ﬁ))’ this reduces to

(C.16) nt (Bo,TqL - q%) +n* (Bor) +n’qr = o (n?’Qi/Q + ng/gﬁg,/ﬁ) :

Recall in addition hy, > 1/2 and hy € [hr + 1,3h] from the identification and consistency require-
ments. Noting that, as in the proof of identification, (working there with gy which is of the same
order)

q; = © (n_hL + n_(hT_1)> =0 (n_hL>
since hy — 1 > hy. The condition (C.16) is then satisfied if we can show that
(C.17) pA=hr=hr | p4=3he  3=hr 4 p2=hi - ,3=(3/2)hr | n9/2=(3/2)hr

Since hp > hp, + 1,
pA=hr=hr | pA=3he | p3=hr o p2=hi < 3=3hs 4 pA=3hr | 2=hr | p2-hr
and thus to show (C.17) it is enough to show that
max {4 —3hr,2—hr} <3—(3/2) hy,

which holds since 2/3 < hy < 2 (which exactly correspond to the crossing points).
Next we turn to Condition (6.2). We will show that this is implied by the above restrictions. To
do this, we compute terms of the form

cov ((g9i5 — qr) (9ir — ar) s (9rs — qr) (9st — qL))

since n € A (o, N) and ' € A (o, N); here we allow for the cases that k = i and r = t. Iterating
on expectations, one can show that

cov ((9ij — qr) (9ik — qr) » (9rs — ar.) (9st — qr)) < E[9ij9jkGrsgst] -

It is easy to see that if {i,7,k} N {r,s,t} = 0 then the covariance is zero since the events are
independent. Thus, we are summing over the cases in which the intersection is non-empty. The
cases with intersection of two or more nodes are handled as we already did above, noting that the
condition here is less restrictive (ay > 1 so a% > a%Q).

So we restrict attention to the case where there is only one node of intersection. In this case the

intersection could come from:

(1) s = j, so two-stars joined at the center,
(2) r =1, so a line,
(3) s =1, so the center of one star is attached to the leaf of the other.

These exhaust all configurations up to a relabeling.

Consider the event g;;g;x9rsgst = 1. Assume we are in case 1. This has the highest probability
relative to the other two cases, so we can construct a crude bound using this to finish the result.
The probability is of order no more than

BS,T + ﬁg,T + 5§,TQL + BQTQ% +q1.
Therefore we check
n’ (ﬁS,T + B3+ Birar + Bordi + q4L) =o0 (n4Q% + nﬁﬁg,T) :

The relevant rate on the right-hand side is n*~2"2, since hp > hy, + 1. Dividing both sides by n?,
the inequality boils down to four conditions:
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(1) 1 = 3hp < —2hg or 1+ 2hy, < 3hp, which is implied by hy > hp + 1;
(2) 1 —2hy < —2hy or hy + & < hy which is also implied by hp > hr +1;
(3) 1 =2hp — hy < —2hyp or 1 + hy < 2hg, which is also implied by hr > hr + 1;
(4) 1 —4hy < —2hg, or hy > 1/2, which is implied by hy, > 2/3.
This concludes the proof. m
Let Yr := 3,k giji denote the sum of links which takes the place of S in our general CLT
(since we have used St to denote share above).

LEMMA C.2. Assume the rate requirements for identifiable uniqueness and consistency. Then
az'? (Yr —B[Yr]) = N (0,1)
if hy, € (%2) and hr € [hy, + 1,3hy), with hy < 3.

Proof. For this proof we appeal to Corollary 2. Here we set A (ijk, (3)) = {ijk}.
We begin with (ii) since it implies (i) for Bernoullis, which is equivalent to showing
Z cov (Xo, Xy) = o(N -var (X,)).
aF#n
Applying the calculation in the proof of Proposition C.1,

var (Xo) = qr (1 —qr) = © (Bor) -

We calculate the covariances for the various cases of o, n and check when they are of lesser order.
We have two relevant cases: where the two indices intersect on one node and when they intersect
on two nodes. By independence if they do not intersect at all, the covariance is zero.

(1) lann|=1: cov(Xq, Xy) = O (Borq}) and there are O (n°) of these.

The triangles are node-adjacent. Since at least one link needs to form together, this
can only happen if the joint node is part of a triangle and neither of the triangles formed
directly. This gives ,6’6{#]% =0 (Bord}).

(2) lann|=2: cov(Xa, X)) = O (Borq? + ¢}) and there are O (n*) of these.

The triangles are edge-adjacent. This is because we need the common link from each
triangle to have formed together and not have already formed independently in both cases,
which can happen only if exactly one of the triangles formed directly and the other did
not, or else neither triangle formed and all of the links have to form. So, this is of order
Bord@s, + (@,)° < Bordt +aj-

Each of these must be of order o (n3ﬁ0,T) for the result to hold. The conditions therefore are
(1) 5—hp —4hr, <3 — hy or 1/2 < hp, which is satisfied since hz > 2/3.
(2) 4 — hp —2hp, <3 — hyp or 1/2 < hz, which is the same as above.
(3) 4 — 5hy, < 3 — hp or hp < 5hy, — 1. But notice that 3hy < bhy — 1 so long as hy, > 1/2,
and so this is implied by hr < 3hr
This completes the proof. m

C.3.2. Joint Asymptotic Normality. Let Y = (Y7, Yr)', the vector of the sums of links and triangles.
LeMMA C.3. If by € (%2) and hr € [hy, + 1,3hz], with hy < 3., then

a V2 (Y —E[Y]) ~ N (0,1)

where a is the variance-covariance matriz defined below.
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Proof. We will apply the Cramér-Wold device to show joint normality through showing all weighted
(normalized) sums are normally distributed. Specifically, Lemma 2.1 of Biscio et al. (2018) contains
a useful generalization which we use.

Let A = {ijk: i,j,ke[1:n]}U{ij: i,j € [1l:n]}. This consists of a set of (3) + (3) terms.
Notice that the set has two types of random variables coming from links and triangles. We now
alter the dependency set for the sake of links (for triangles they may remain the same). Specifically

A (ig; N) == {ik : Yk} U{jk: Vk}U {irs and jrs: Vr,s}.

ar artr
a = .
arr ar

where the two diagonal variance terms have been studied

Let

(1) ar = Zij,rseA(ij,N) cov (Xij, Xrs),
(2) ar =32, var (Xijx), and
(3) arr = Eij.rsteA(ij,N) cov (Xijv ert)-
We need to check that for every w € R?,
(w'an)_1/2 w' (Y — E[Y]) ~ N(0,1)

which is Lemma 2.1 of Biscio et al. (2018). But this reduces to checking the conditions of Theorem
4 for these now w-weighted sums.
We need to calculate growth rates for the new covariance term:

arr =Y _cov (X5, Xpst) = © (n4ﬁo,TQL + '8 + n350,T> :
We have for any weighted sum of ar, ar, and arr (w is fixed in n so does not matter) the order
(TLZQL + n3ﬁo,T> + <n4ﬁo,TQL +n' B + ngﬁo,T) + (n?’ﬂo,T)
or collecting terms and dropping the obviously dominated ones
n*Borqr +n’Bor + n’aL

where, notice, the latter two terms were the rates of a;, and ap and the possible new component is
given by the first term.

Again Conditions (6.3) is obvious, so we check the other two.

Condition (6.1) is as follows. We examine the new terms not covered by the prior two lemmas
and appeal to the sufficient condition in footnote 41. These are of the form

E| X X)X, =P (X X, X, =1)
which we now bound. The loose bounds across the two cases are

(1) one link and two triangles: This must constitute edge adjacent triangles. Otherwise we
automatically have independence. This leaves 4 nodes, so order n* terms with a bound on
probability ﬁ&T which is notably loose.

(2) one link, one triangle, and a second link: This has a loose upper bound of B&T + Borqs.
This leaves 4 nodes again so order n* of these.

This exhausts the list.
So we compare

(1) n4ﬁg’T < ”653,/1%(1%/2‘?”9/253,/1%‘?”3(12/2
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(a) 4 —2hp <6 — Shy — 3hy, so hy, < § + hy which holds for every hy > hy + 1.
(b) 4 —2hp < 9/2 — %hT so this is always true.
¢) 4—2hp <3 —3hg so § + 2hy, < hy which already holds.
(2) n* (B3 + Bora}) < n®By7ay” +n®2807 + nPqy%.
(a) 4—hp—2hp < 6— %hT — %hL so hp < 44 hp, but this holds precisely because hy < 2
and hr < 3hp,.
(b) 4 — hy — hy < 9/2 — 3hy is mechanical.
(¢) 4—hp—hp <3-— %hL follows from 1 + %hL < h7 which is true by assumption.

As a consequence, we have
> EXXX| =0 (a¥?)
on,yEA(a,N)
since we have controlled the within-link and within-triangle terms in the prior two Lemmas and
the cross-term above.
Next we need to verify Condition (6.2). The condition will be met with the exact same rates.
To see this, first observe that we only need to consider terms of the form

cov ((g’u - QL) . (gzk - QL) ’ (97‘8 - QL) . (erw - QT)) < E [gijgikgrsgrvgrw]
and
cov (955 — q) - (Xiw — ar) , (9rs — qr) - (Xrow — q1)) < E9i59ik9r19rsgrogro] -
That is, the reference nodes in this condition must be pairs because triples have dependency neigh-
borhoods that are singletons. Also observe that the neighbors considered must have at least one
triangle because the all-links case has already been covered in Lemma C.1.

We have two cases to consider: a 7-node case with {i,j,k} N {r,s,v,w} # 0 and an 8-node case
with {4, 7, k, [} N {r,s,v,w} # 0.

Let us begin with the 7-node case. Here we can have one or two intersections (we have already
calculated cases with 4 or fewer nodes, meaning three or more intersections). Begin with a single
node in common. One can check that amongst all configurations (which intersects a two-star ijk
with a triangle with a leaf (ruv and rs)), an upper bound on the probability of the structure forming
is of order BS,TQL There are order n® such potential structures. We need to compare this to the
square of the weighted sum of variance-covariance terms, which by the above is

2
(n4/80,TQL +n’Bor + n2qL)
Observe that the first term is the only one to consider—the other two have been studied,
6 —2hr —hp <4—2h;, < 24+ h;, < 2hp

follows directly from hp > hyr, + 1 so the result follows in this case.

Next we can look at two nodes in common. This involves a number of configurations of one or
two triangles and a collection of leafs and/or stars. Here we have order n® free nodes and we can
check a loose upper bound on the probability of formation is of order 8y rq?. As such we see

5—hp—2hp, <4 —2hy,

which is implied by hy > 1, which is satisfied in our setting since hp > hy +1 > 1+ 2/3.

This covers all cases that have not previously been calculated. So then we turn to the 8-node
case. We can have one or two nodes in common before we repeat calculations already covered. If
we have one node in common, the loose upper bound is probability of order 53;#1% and there are
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of course n” such potential collections of nodes. The condition to check is then
7 —2hy —2h;, <4 —2h;, <= 3 < 2hy.

But this is mechanical since hr > 1+ 2/3 in any case.

The final case to consider is with two nodes in common in this case of 8 nodes with two in
common. In this case, a loose upper bound is B&TQL and there are n®. But we have studied this
above and the restriction is already satisfied.

Therefore, with A and A(a, N) for a € A defined as above, we have shown that Conditions
(6.1) and (6.2) are satisfied. Since the remaining conditions were already discussed, the sum is
asymptotically normally distributed. But, since the weights were arbitrary (indeed fixed in n and
therefore did not contribute to any of the dependency calculations) the result held irrespective of
(w1, ws) € R?, so joint normality follows. m

C.3.3. Asymptotic Normality of SUGM FEstimators. It is useful to define the variance-covariance
matrix of the moments and a rate matrix

B var(n"r Sp) cov(n/t Sp,nr St) [ a0
Vo = ( cov(nht Sp, nr Sr) var(n/7 Sr) and fy, = 0 nhr |-

PROPOSITION C.3. Consider a links and triangles SUGM with associated parameters B o, By =
(fng ZLT) with 0 < D < bo.1,bor < D such that

hp
hr € (2/3,2) and ht € [hL + 1,3hL] with hp < 3.
Consider the minimum distance estimator B using moments S = (Sz(g), S7(g)). Then
an gn\ P
5 (5" 85) =0
and®

Vi 2R, (B = Bp) ~ N (0,1).

Proof of Proposition C.3.

The proof of the result follows the outline of standard results on asymptotic normality of param-
eter estimates (e.g., Newey and McFadden (1994)).

It is convenient to normalize things via a change of variables via the diagonal normalizing matrix
R, = diag{nhL,nhT} to a parameter vector b := R,(, so that the magnitude of the parameter
vector does not change with n. Observe that ¢ (B, 63) L, 0if and only if [ bo, and consistency
in the d-metric holds by Proposition C.2.

It is also useful to then define the expected and empirical moment functions in terms of this
rescaled parameter

My, (b Zgzj L (br,br)
1<J
and
— nhT
Mr (b) = 16} > 9ij9ikgik — @r (b, br)
3/ i<ji<k

where g, (b) = n/ q, and G (b) = n/7 g are the normalized expectations given parameter (bz,, br) =

R,B.

53The expression for V,, is different when hy = hy + 1, and is given in the proof of the proposition.



A NETWORK FORMATION MODEL BASED ON SUBGRAPHS 12

Let A = hqy — hy,. We treat two separate cases, A > 1 and A = 1. The second case allows links
to generate triangles at a similar rate as triangles, and so is a more complex case to treat, and so
each step of the argument involves different arguments for the two cases.

From the first order condition of GMM estimation, we take a mean value expansion around the
true normalized parameter by by applying the mean-value theorem, and then solve for b— bo.%4
Note that the mean value b is evaluated component by component in the matrix vM (5) This
abuse of notation is standard (e.g., Newey and McFadden (1994)).

R (5 ) = (5 tm) =~ [V (8) W7 (3)] V3 (5)' 31 o).
Below we will show that for A > 1
~[v () v ()] e () B
and by Lemma C.3, for

Vo var(n"r Sp) cov(nht Sp, 7 Sr)
"\ cov(ntSp,nhTSy) var(nT Sr)

it follows that
Vi V2M (bg) ~ N (0,1) .
Therefore by Slutzky’s theorem, it follows that
Vi 2R, (B = Bo) ~ N (0,1).
Thus, to complete the proof for the case of A > 1, it suffices to show that
~[v () v ()] () B
1

—~ N/ —~ - PN
For the case of A = 1 we will end up with a different expression for the limit of — {VM (b) VM (b)} VM (b)

and so will have a different covariance and normalization.
To find the limit of these gradient terms, we need to compute Vg, where we define

gz, (b) := " [qr, (B)]
—nht {,BL + (1 —-5L) {1 - (1= BT)H_QH
— by + (nhL - bL) (n—2) i

. ThT

Similarly
ar (b) == 1" [qr (B)]

= phT {BT + (1 - pr) {5L +(1—5L) {1 - (1= BT)HQ} }3}

3
:bT+(nhT_bT){bL+ br  br bL}

nhL nhTfl nhT‘i’hL*l

%4This is valid because by is assumed to lie in the interior of B, a compact set, which then implies the
sequence of B™ under consideration.
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3

br, br br

~b —
T+ nhr—hr/3 + n2hr/3=1 " phrthp—1-hr/3

br,

=T
where we dropped the final term that is of lesser order.
Note that the third term will always be of lesser order, so

br, br
r=0 <{nhL—hT/3 T hr/a-1 }) :

hyp —hp/3 <2hp/3—1 < A >1.
Thus, if A > 1 only the first term in x matters, while if A = 1 then the two terms are of the same
order.
Finally it will be useful to write

Also notice

and
—_— 322 (g7 (14 0(1)) ) |
1+ 322 (W(l + 0(1)))
Consider the case where A > 1. Then

1+o0(1 0
Vg, = < nl—A :0 En)m) > = ( ! Jor(lgl) )

and

since 3hy, > hp and hp > %
Now consider the case where A = 1. Again

_ o(1)
Var = ( 1+0(1) )

o — 1+o(1) [ 1+o0(1)
qr, = nl—A +o (nl—A) - 1 + 0(1) .
Notice that g(b) is a continuously differentiable function of b € B, where B is compact, and
V,q(b) has a bounded derivative. This allows us to write
VM (b) = VM (bo) + 0p(1) = =Vg(bo) + 0,(1).
We explicitly compute the inverse of Vq(b)'Vg(b) below, which exists.
If A > 1 we can write

—w\?(b):<§gf 3‘5£>:<1+o(1) o(1) )

= g% o(1) 1+0(1)

but in this case
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and if A =1 we can write

dq;,  9q
agf BZ; o(1) 1+0(1)

We can also compute

—~ 94, 4 9q;, 94y
vireyvire - (& & ) (& & )

obr obr oby, obr
97, \? 4 (9 2 9q, dq, o 04, 0ap
_ Jbr, Jbr, dby, dbp T Dby by

9qy, 99y, + 9qr 991 Jq, 2 + 9qr 2
oby, Obr oby, Obr obr obr
and so the inverse is

Foeno] ) @) [ BE
POVl oo | - [ ) &) (3

The determinant is given by

aqL aqT>2 (%)2 (aqT)2
det (VM —= —=
et [V (b)' [ by abT o, ) T \on,
[8QL gy, aQT 8qT} ?
obr, 8bT 0by, Obr
_ (aQL 9qr  9qr 8%)2
obr, Oby  Oby, Obr
If A > 1 then the determinant is 1 +0(1). If A =1 it is the same.
So the inverse is, if A > 1,

— —~ 71 1 1+0(1) o(1)
M (b) VM (b =— .
[V (byv ()} 1—|—0(1)< o(1) 1+0(1)
We can compute the final object in the case A > 1 as

e VI e N | 1+o(1)  o(1) 1+o(1)  o(1)
_[VM(bO)VM(bO)} VM(bo)—1+O(1)< o(1) 1+0(1)>< )

_ [ 1+o0(1) o1 Py
o(l) 1+4o0(1)
which completes the argument for the case of A > 1.
Meanwhile if A =1 then the inverse is

[vﬁ(b)/vﬂ(b)}1:1<2+o(l) —1—|—0(1)>.

I1+o0(1)\ =1+0(1) 1+o0(1)
Therefore,

— 1~ 1 24+0(1) —-1+0(1) 1+o(1) o(1)
_[VM(bO) VM(bO)} vM(bO)_1+o(1)<—1+o(1) 1+o(1) ><1+0(1) 1—|—0(1)>

[ 1+0(1) —-1+0(1) 1 -1
_< o(1) 14+o0(1) >L><o 1>
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Now consider the case with A = 1. In this case since n2 " = n3="7 it follows from our

calculations above that

. _ nL S gij — ar, (bo)
\/ 2_hLRn _ — v/m2—hp 1 1 ) h (2)
" (ﬁ 50) " < 0 1 % > 9ij9ik9ik — a7 (bo)
{% > 9ij —qr (bo)} — {% > 9ij9ikgjk — dr (bo)}
% > 9ij9ik9ik — Gr (bo) -

n
3

=V n27hL

which still jointly converge to a mean zero random variable, but with a different variance-covariance
matrix:

Vo var(nhr S — nhr Sp) cov(nt Sy — nr Sy nhr Sr)
"\ cov(nt Sy, — nhr Sy, nhr Sr) var(n"7 St)

for the A =1 case. m
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APPENDIX D. SIMULATIONS

We demonstrate the consistency of B, asymptotically normal distribution of 3, and quality
of estimated standard errors. We show that the minimum distance estimator performs well in
the links and triangles model—estimates are centered on the true value of the parameters, the
distribution indeed looks asymptotically normal, and the constructed 95% confidence interval has
proper coverage.

We set hy, = 1, hy = hy + 1, and bg 1, = bo,7, which we vary in order to generate the requisite
average degrees described below.

D.1. Consistency. First we present the point estimates of our minimum distance and direct esti-
mators over a wide range of average degrees. Consistent with the theory, the estimators coincide at
low densities and as we look at increasingly dense graphs, the direct estimator misattributes direct
link formation to triangles and inherits a bias, whereas the minimum distance estimator does not.
Figure D.1 presents the results.

D.2. Asymptotic Normality. Next, we turn to the asymptotic distribution of the estimator and
show that it is normal. We display the (standardized) parameter estimates (B I, BT) and a standard
normal distribution for lower and higher degrees in the range consistent with data and across a
broad range of network sizes. The results, displayed in Figures D.2 and D.3 clearly show that the
normal approximation is good.
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FiGURE D.2. CDFs of standardized parameter estimates BL, BT for average
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D.3. Coverage. Having seen that both the parameter estimates are accurate and appear to be
asymptotically normally distributed, consistent with theory, finally we investigate the analytic,
estimated standard errors. We construct these using the minimum distance estimator of Proposition
3. We omit for brevity but note that by simply simulating the model from the estimated parameters
and then calculating standard errors through this process has excellent coverage properties, but
developing the theory of a bootstrap is beyond the scope of the present paper and remains a topic
for future work.

TABLE D.1. Coverage for

Avg. Degree 100 150 200 250 300 350 400
7.80 0.960 0.950 0.960 0.960 0.935 0.925 0.940
9.78 0.965 0.985 0.975 0.975 0.975 0.960 0.870
11.66 0.935 0.950 0.985 0.96 0.955 0.970 0.94
13.54 0.930 0.930 0.955 0.965 0.97 0.985 0.965
15.44 0.890 0.935 0.940 0.920 0.955 0.970 0.965

Notes: Coverage of the 95% confidence interval for the link probability parameter implied by Proposition
3, for various average degrees for various network sizes. For each network size we and each degree we
conduct 200 simulations.

TABLE D.2. Coverage for Sr

Avg. Degree 100 150 200 250 300 350 400
7.80 0.960 0.950 0.960 0.960 0.895 0.925 0.940
9.78 0.965 0.985 0.975 0.975 0.975 0.960 0.870
11.66 0.935 0.950 0.985 0.990 0.955 0.970 0.985
13.54 0.930 0.930 0.955 0.965 0.995 0.985 0.965
15.44 0.890 0.935 0.940 0.920 0.955 0.970 0.965

Notes: Coverage of the 95% confidence interval for the triangle probability parameter implied by Proposition
3, for various average degrees for various network sizes. For each network size we and each degree we
conduct 200 simulations.

To take stock at an aggregate level, in this range the overall average coverage is 0.952 and 0.953
for links and triangles respectively.
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