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Abstract. A growing literature studies social networks and their implications for economic
outcomes. This paper highlights, examines, and addresses econometric problems that arise
when a researcher studies network effects using sampled network data. In applied work,
researchers generally construct networks from data collected from a partial sample of nodes.
For example, in a village, a researcher asks a random subset of households to report their
social contacts. Treating this sampled network as the true network of interest, the researcher
constructs statistics to describe the network or specific nodes and employs these statistics
in regression or generalized method-of-moments (GMM) analysis. This paper shows that
even if nodes are selected randomly, partial sampling leads to non-classical measurement
error and therefore bias in estimates of the regression coefficients or GMM parameters.
The paper presents the first in-depth look at the impact of missing network data on the
estimation of economic parameters. We provide analytic and numeric examples to illustrate
the severity of the biases in common applications. We then develop two new strategies to
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Karnataka, India.
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1. Introduction

A growing literature examines social networks and their implications for economic outcomes
(see e.g., Jackson, 2008b, 2009a,b for an extensive survey of the literature). A network
represents a set of connections (edges) among a collection of agents (nodes). For example,
in a village network, nodes may represent households and edges may represent social ties
between households. Applied researchers typically construct a network from data that has
been collected from a partial sample of nodes rather than from all nodes in the network.
Henceforth, such a network will be called the sampled network. This sampled network is
often naively treated as the true network of interest. The researcher uses a collection of
sampled networks to estimate how network structure affects economic outcomes. In our
example, a researcher may study how the shape of the social network influences a social
learning process. This paper highlights, examines, and addresses econometric problems that
arise when a researcher studies these network effects using sampled network data.

Examples of network-based regressions in applied work include Kremer and Miguel (2007),
who study the diffusion of deworming pill take-up, and Hochberg et al. (2007), who regress
fund performance on measures of network importance of venture capital firms.1 The applied
work typically has low sampling rates (the share of nodes sampled), with a median of 42%, and
2/3 of the papers having a sampling rate below 51% (see Appendix F for details). Despite the
prevalence of partial sampling, its implications for the estimation of economic parameters are
rarely considered. A notable exception is Conley and Udry (2010) who study the diffusion
of information among pineapple farmers in Ghana. Aware of the sampling problem, they
conduct robustness exercises.

Our goal is to analyze the effect of using sampled network data on the estimation of pa-
rameters in network models of economic behavior given a fixed underlying network structure.
Henceforth, we call these the “economic parameters” without meaning to suggest that network
formation itself is not economic.2 In general, we are interested in parameters in a generalized
method of moments (GMM) model, motivated by theory, describing the behavior of nodes in
a network. The biases in estimates of economic parameters have not yet been systematically
dealt with. While GMM is a general framework, two common classes of models allow us to
explicitly characterize biases and are easier to work with due to their linearity: regressions
of economic outcomes on network characteristics and regressions of a node’s outcomes on its
1There are numerous other examples. Kinnan and Townsend (2011) study whether whether households that
are socially closer to credit sources smooth consumption better. Leider et al. (2009b) and Goeree et al.
(2010) study the effect of social proximity between pairs on the offers made in dictator games. Alatas et al.
(2016) and examines whether networks with better diffusion properties actually induced greater information
spreading. De Giorgi et al. (2010) study how network neighbors’ major choices affect a student’s own major
choice. Banerjee et al. (2013) study how network centrality of the initially informed influences the diffusion of
microfinance. Cai et al. (2015) study how information about an insurance product spreads through a social
network and look at heterogenous peer effects by cenrality of the peer.
2While parameters which describe the process by which networks are formed certainly are economic, we
reserve “economic parameters” in our environment for parameters that describe a process that occurs on fixed
networks.
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network neighbors’ outcomes. After characterizing the biases, we propose two strategies to
correct such biases: a set of analytical corrections for commonly used network statistics and
a two-step estimation procedure using graphical reconstruction – i.e., integrating over the
missing data – that can be applied more broadly.

We focus on a running example throughout the paper: the diffusion of microfinance in 43
villages in rural Karnataka, India (Banerjee et al., 2013). A microfinance institution (MFI)
based in Bengaluru expanded into these villages. Upon entering a village, the MFI informed
certain households about its intentions and asked them to encourage others to join. The
researcher wants to estimate how networks affect the diffusion of microfinance participation
through these villages.

The present paper makes two core contributions. Our first contribution is to highlight and
analyze the biases in estimates of economic parameters when using sampled network data. We
develop analytical examples for commonly used network statistics, motivated by an applied
economics questions concerning diffusion of information, social collateral, and risk-sharing.
Next, we derive the corresponding biases that emerge when each of these statistics is used in
regression. We show that even with random samples of the network the standard argument
for attenuation due to classical measurement error does not apply; coefficients may expand,
attenuate, or switch signs depending on the network statistic of interest. In addition, we
consider a model in which a node’s outcome depends on its peers’ outcomes and a node’s
peer group is defined by the set of its social connections (Bramoulle et al., 2009; De Giorgi
et al., 2010). We show that the instrumentation technique used in the literature to overcome
the reflection problem (Manski, 1993) in such models is invalid since the measurement error
in the instrument will be correlated with the measurement error in the endogenous variable.
Similarly, we consider GMM estimation of the Jackson and Rogers (2007b) model of diffusion
and show that sampling the network induces expansion bias in the diffusion parameter. We
supplement our analysis with numerical evidence for a wide array of examples to illustrate
how sensitive econometric estimation is to the sampling of a network. In our numerical
experiments, we estimate many models across a number of network statistics. At a sampling
rate of 1/3 we find that the estimates of the economic parameters have a mean absolute bias
of 90% with a maximum of 260% for network-level regressions and a mean absolute bias of
63% with a maximum of 91% for node-level regressions.

Our second contribution is to develop two strategies to alleviate the biases: analytical cor-
rections that apply to commonly used network statistics and two-step estimation using graph-
ical reconstruction, which uses the observed part of the data to probabilistically reconstruct
the missing part and then estimate the economic parameter accordingly.

First, by explicitly characterizing the biases, we derive simple bias corrections when the
problem is tractable. We discuss several corrections and explore their reliability in address-
ing the biases. While computationally simple and easy to implement, these methods are
typically limited to network-level regressions and are dependent on the particular network
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statistic of interest. Thus we develop a second, more general method that works well in
practice – estimation by graphical reconstruction – to consistently estimate the economic pa-
rameter. Graphical reconstruction is simply asking the researcher to estimate the probability
distribution governing each network and then integrate over the missing data. Integration
over missing-at-random data is, of course, a well-practiced technique. We are particularly
interested in the complications arising from the fact that researchers will have many different
networks, each representing one draw from a distinct distribution, and ask whether, despite
the extensive heterogeneity, researchers can consistently recover their economic parameters.
This is analogous to fixed effects in a non-linear panel model. We establish checkable suf-
ficient conditions under which the heterogeneity in the data can be respected and yet the
economic parameter of interest is still consistently estimable. We check that several models
satisfy these conditions. Note that graphical reconstruction does not limit the researcher to
network-level regressions nor to specific and tractable network statistics.

Consider the case where a researcher wants to perform a network-level regression of the rate
of microfinance participation in a village on the average path length of the network.3 Without
data on the entire network, the researcher falsely codes some existing links between individuals
as if they do not exist. Graphical reconstruction builds on the simple idea that replacing every
regressor for each village with a conditional expectation of the regressor delivers a consistent
estimate of the regression coefficient. In our example, instead of using the mismeasured
average path length of each network, the researcher ought to use the conditional expectation of
the average path length, given the observed data. This requires integrating over all the missing
data, given the observed information and sampling scheme, as opposed to treating missing
links as if they did not exist. What complicates matters is that because different village
networks form heterogeneously – potentially depending on different distributions – we are
interested in the case where researchers respect this heterogeneity in their analysis. To do this,
researchers need to accurately estimate the distribution governing each network’s draw tightly
and then integrate over the missing data. By treating every network as an independent, but
not identically distributed, random variable, we estimate the conditional expectation of the
average path length in every network and consistently estimate the regression coefficient.

In practice, the researcher will have to estimate the distribution of missing links. We
propose a two-step procedure. In the first stage, the researcher fits a potentially different
model of network formation to each network in the sample by making use of the observed
data. We take no stand on the particular model and leave it to the researcher. Having
done so, the researcher uses the network formation models to take draws of networks from
their respective distributions, conditional on the observed information. Using these draws,
the researcher estimates the conditional expectation of the regressor or moment in a GMM
setting. In the second stage these conditional expectations are used in the usual way to

3The average path length is the mean of all shortest paths between all pairs of nodes in a network. Shorter
paths mean that nodes are more likely to hear about information in most reasonable models.
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estimate the economic parameter of interest. Conley and Udry (2010) perform a robustness
exercise where they estimate missing neighborhood data in their regression model, which is
an instance of graphical reconstruction.4

This two-step procedure is useful for several reasons. First, it allows the researcher to
capture realistic heterogeneity by estimating a different model of network formation for ev-
ery network.5 Second, our theoretical frame is general, and we establish sufficient conditions
ensuring that a desired class of network formation models can be used in graphical reconstruc-
tion. To build intuition, we make the analogy with panel data. Every network (individual in a
panel) is independent, but the edges within a network (outcomes for an individual across time
periods) exhibit dependence. Under regularity conditions, a large network, similar to a large
time series, may contain enough information such that the researcher can use the observed
data to accurately estimate the distribution which generates the network formation process
(see, e.g., Chandrasekhar and Jackson (2016)). The technical challenge that we overcome is
to control an incidental parameter problem, where a parameter for every network must be
estimated.6 Third, in our numerical experiments, it performs well. Even at a sampling rate of
1/3, the median bias is 5.7% for network-level regressions and 1.4% for node-level regressions.
The median reduction in bias is 62%. Each of the 96 estimated parameters shows reduction
in bias when the reconstruction estimator is applied. Fourth, in addition to regression of
economic outcomes on network statistics, the methodology can be applied to GMM models
and those with a family of moment functions indexed by some parameter which presents
technical challenges. Covering these cases is essential to network analysis because natural
models, such as stopping time models for diffusion, may carry an index.

Of course, given this procedure requires integrating over missing links, it is more demanding
in terms of assumptions. In addition to having a collection of sampled networks and outcome
variables, we assume that the researcher has covariates for each node (or pair of nodes) that
will be predictive in the network formation models. Examples include GPS coordinates,
ethnicity, and caste, which are often readily available in development applications and are
obtained during the listing process in each enumeration area. In the economics of education
settings, consider school networks, where it is straightforward to obtain school rosters and
demographic data for the entire collection of students.

To demonstrate another practical application of our results, we describe how researchers
can employ our framework to make better decisions in collecting sampled network data, given
their budget constraints. We provide an algorithm to assess the trade-off between the number
of networks in a sample and the sampling rate a researcher uses. This exercise is similar in

4The present paper develops a general theoretical framework, along with asymptotic analysis, that nests this
strategy. We believe that estimates from graphical reconstruction ought to be used not only for robustness
checks but also as estimates in their own right that exhibit substantially less bias. Additionally, with 4
networks in a sample, it is unlikely that the approach delievers consistent estimates in their case.
5In fact, we show in our empirical analysis that the degree of heterogeneity across our sample of 75 Indian
village networks is such that treating them as draws from the same distribution can lead to misleading results.
6This resembles non-linear fixed effects in a panel (Hahn and Kuersteiner, 2004; Hahn and Newey, 2004).
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spirit to power calculations frequently used in applied field work. First, the researcher obtains
100%-sampled network data for a small number of randomly chosen villages, using a pilot
budget. Second, the researcher performs a numerical experiment by simulating outcome data
from a specification that the researcher anticipates studying. In our microfinance example,
the researcher simulates outcome data as a function of the path length from the initially
informed households by assuming a regression coefficient and an R2. Third, the researcher
draws, with replacement, a set of villages sampled at a given rate such that her budget is
exhausted. By applying graphical reconstruction, the researcher can assess the mean-squared
error minimizing choice of sampling rate (or other sensible loss functions of their choosing).

We then apply our analysis of the sampling problem as well as the proposed solutions to
sampled network data, collected in part by the authors, from 43 villages in Karnataka, In-
dia. Banerjee et al. (2013) study the diffusion of microfinance and, inspired by this analysis,
we study natural specifications motivated by diffusion theory. We examine parameter esti-
mates using the raw sampled data and compare them to those obtained by applying graph-
ical reconstruction or analytical corrections. We find that applying our methods at times
greatly changes parameter estimates and economic inferences. For instance, the impact of
the network centrality of initially informed households on the microfinance take-up rate in
the village is under-estimated by 33% using the raw sampled network data when compared
to using graphical reconstruction. In addition, a regression of a node’s take-up decision on its
neighbors’ decisions shows that endogenous network effects may be severely under-estimated
(with a 60% bias relative to the corrected estimate) or even switch signs (with a 166% bias
relative to the corrected estimate). Moreover, regression coefficients in several specifications
are not significantly different from zero at conventional levels when using the raw sampled
data but are significantly different when applying the reconstruction estimator.

Related literatures across a number of fields including economics, epidemiology, statis-
tics, sociology, and computer science have extensively noted problems due to partial network
data. The classical literature begins with Granovetter (1973), Frank (1980, 1981), and Sni-
jders (1992) who identify how average degree and clustering are affected by several modes of
random sampling. Rothenberg (1995) provides an excellent overview of the literature. More
recently, the literature has focused on two classes of numerical experiments, typically with a
single network.7 The first class documents biases that emerge when estimating parameters in
a network formation model with partial data (e.g., in economics, Santos and Barrett, 2008).
Second, the literature numerically describes behavior of certain network statistics under sam-
pling (e.g., in epidemiology, Ghani et al., 1998 and sociology, Kossinets, 2006). Handcock and
Gile (2010) offer the straightforward solution to the first problem: by augmenting the like-
lihood to include the sampling scheme one can, in expectation, recover the correct network
formation parameter.

7Santos and Barrett (2008) also provide an extensive discussion of survey methodology and Thompson (2006)
discusses sampling methodology and inferences on the degree distribution and network size.
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Our work builds on the above literature, with several key differences. First, prior to
(the first version of) this paper, the literature typically has not focused on nor developed a
methodology to consistently estimate parameters from models of behavior on networks with
sampled data. The substantive distinction here must be stressed. We are not interested in
recovering the structural properties of the unobserved part of the network per se; instead,
our goal is to understand the biases in estimation of these economic parameters and develop
a method to recover them.8 Second, while augmented likelihood techniques for missing data
are well-known in econometrics and statistics, we note that a collection of networks provides
the researcher with a unique opportunity to set up the reconstruction problem in a manner
which respects the substantial heterogeneity across networks. That is, a number of technical
assumptions needed to control incidental parameter problems (e.g., nonlinear panel with
fixed effects, Hahn and Kuersteiner, 2004; Hahn and Newey, 2004) become very palatable
in the network context, given that each network carries within it tremendous amounts of
information. Consequently, graphical reconstruction focuses on conditional expectations of
network regressors or moments to consistently estimate economic parameters when graphs
are drawn from heterogenous network formation models. This environment generates distinct
technical challenges.

Finally, our work is of course related to the recent explosion in network formation mod-
els. An incomplete list of recent work includes Currarini et al. (2009), Christakis et al.
(2010), Goldsmith-Pinkham and Imbens (2013), Boucher and Mourifié (2012), Leung (2014,
2013), Kolotilin (2013), Graham (2014), Mele (2016), Badev (2016), Sheng (2016), de Paula,
Richards-Shubik, and Tamer (2014), and Menzel (2016), which all develop econometric net-
work formation models. These works vary in aspiration and implication (e.g., partial versus
point identified, consistently estimable parameters or not, nature of microfoundations), a dis-
cussion of which is well-beyond the scope of this paper. See de Paula (2015) for an excellent
review. From the point of view of this paper, the researcher is interested in network formation
models that can capture the attributes of the network that are relevant to her, and where
parameters can be consistently estimable in a way that allows her to recover her economic
parameters of interest. Note that modeling network formation, per se, is not the goal here.

The rest of the paper is organized as follows. Section 2 establishes the framework. The
main results are in sections 3 and 4. Section 3 provides analytical examples of bias along
with corrections. Section 4 discusses graphical reconstruction estimation. Section 5 contains
numerical experiments which supplement sections 3 and 4. Section 6 applies the results to a
study of the diffusion of microfinance. In section 7 we offer an algorithm for researchers to
trade off the sampling rate against the number of networks. Section 8 concludes. All proofs
are in the appendices.

8In that sense, while our conditional expectation of the structural properties of any given network will be
accurate, perhaps we do not correctly recover the exact structure. However, we will consistently recover the
economic parameter of interest without question.
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2. Framework

2.1. Notation and setup. A network or a graph is a pair G = (V,E) consisting of a set V of
nodes and a set E of edges, with n := |V |. Nodes i and j are either connected or unconnected
(the graph is unweighted) and if i is connected to j, then j is connected to i (the graph is
undirected). Most of what follows in this paper is applicable to directed and weighted graphs,
though following the bulk of the applied research we restrict our attention to the undirected,
unweighted case. A graph with n nodes is a member of the set of all undirected, unweighted
graphs, denoted by Gn.

A graph is represented by its adjacency matrix, A := A (G). It is a matrix of 0s and 1s that
depicts whether two nodes are connected, where Aij = 1{ij ∈ E} with the convention that
Aii = 0. We denote the neighborhood of i, the set of nodes it is connected to, by Ni := {j ∈
V : ij ∈ E}. Researchers are interested in economic models where an economic behavior or
outcome is predicted by network statistics. We let w(G) represent a dw-dimensional vector
of these network statistics. Since the dataset may contain multiple networks, we use R to
denote the number of graphs. The researcher is interested in economic parameter β0.

2.1.1. Sampling. We focus on the two most common types of sampled network data. First,
the researcher may survey a set of m nodes and ask each node about the social connections
with the other m− 1 nodes in that data set. This is the induced subgraph, as it restricts the
network among those who are sampled. Second, the researcher may have a list of the nodes
in the network (e.g., a household census list in a village). From this list, a sample of m nodes
may be surveyed. These nodes can name their social connections, not only to other m − 1
surveyed nodes, but connections to anyone from the list of n nodes. This is the star subgraph,
because the observed network is a union of stars with centers that are the sampled nodes.

Let S be the set of surveyed nodes, randomly chosen from V , with m = |S|. Let ψ := m
n

be the sampling rate. The researcher obtains a subgraph of the graph in question. There
are two potential resulting networks: the induced subgraph G|S = (S,E|S), which consists of
the sampled nodes and the edges restricted to the set of surveyed nodes (E|S), and the star
subgraph GS = (V,ES), where ES are edges such that at least one of the nodes is in S.

Figure 1 provides an illustration of the problem that this paper intends to address. Figure
1(a) displays G, the target network, Figure 1(c) shows the induced subgraph and Figure 1(f)
depicts the star subgraph.

We also write A = (Aobs, Amis) to denote the observed and missing part of the adjacency
matrix, which are random variables under the sampling procedure. Although this framework
idealizes the random sampling used in many applied contexts, our setting can easily be ex-
tended to other sampling methods such as independent edge sampling or snowball sampling.9

9Graphical reconstruction applies, with minimal modification of argument, to missing-at-random samples,
where the probability of information being missing is independent of the missing data itself (Rubin, 1976).
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(a) Graph G (b) Sampled nodes S (c) Induced subgraph

(d) Highlights links
used in star sub-
graph

(e) Star subgraph (f) Star subgraph

Figure 1. Sampled nodes S in red. The figure depicts the induced subgraph
and star subgraph.

2.2. Econometric Models. The researcher intends to study economic behavior on R net-
works, {Gr : r = 1, ..., R}.10 For simplicity, we assume every network has n nodes. An
economic process has taken place on every network and can be described by an econometric
model depending on an economic parameter β0. Returning to the microfinance example, in-
formation about microfinance has been introduced to certain households in every village and
households decide to participate as the information propagates throughout the villages. Our
goal is to estimate an economic parameter. We could easily do so if the networks were fully
observed. The general framework for analyzing such models is to presume that a conditional
moment restriction is satisfied,

(2.1) E [m(y, w(G);β0)|G] = 0.

where y ∈ Rdy is an outcome random variable, m(·, ·; ·) is a moment function, w(·) is function
on Gn, and β ∈ B is a parameter with true value β0.

Examples include diffusion models (Banerjee et al., 2013; Alatas et al., 2016), discrete
choice models, stopping time models (e.g., Iyer and Puri, 2012), quantile regression, and

10In this paper we take the view that the network is determined and then behavior operates on or through
the network (e.g., social learning, peer effects, games on graphs) as compared to being interested in network
formation itself.



ECONOMETRICS OF SAMPLED NETWORKS 9

network-based matching models (e.g., Aral and Walker, 2011).11 Partial sampling will gen-
erally generate biases as the moment will be a nonlinear function of the network statistic, so
the estimated parameter will be inconsistent.

While GMM is a general framework, two common classes of econometric models with
network data are easier to analyze due to their linearity. The first class consists of mod-
els wherein economic outcomes are regressed on network characteristics. The second class
consists of models where a node’s outcome depends on its network neighbors’ outcomes.

Class I: Regression of Economic Outcomes on Network Characteristics. Many
researchers12 study how network structure affects the economic outcome of interest, y, in
regressions of the form13

(2.2) y = α+ w (G)β0 + ε.

These researchers can estimate this regression at various observation levels. At the graph
level, the data is {(yr, w(Gr)) : r = 1, ..., R} where w(Gr) is a dw-vector of network statistics
(e.g., average degree, clustering, maximal eigenvalue, average path length) and the regression
contains R observations. In our example, the researcher may regress the microfinance take-up
rate in a village on the average network importance of the random set of households which
were initially informed about microfinance. A simple model of diffusion in a network predicts
that the centrality of these initial nodes correlates positively with take-up rates.

At the node level, the data is {(yir, wir(Gr)) : i = 1, ..., n, r = 1, ..., R} where wir(Gr) is
a dw-vector of statistics (e.g., degree of i, eigenvector centrality of i) and the regression has
nR observations.14 In our example, the researcher regresses a household’s decision to join
microfinance on its centrality. Theory suggests that central nodes will be more likely to learn
new information. Similarly, one may estimate regressions at the edge level. Here wij(Gr) is a
dw-vector of edge level statistics (e.g., social distance between the nodes) and the regression
contains

(n
2
)
·R observations.

Using sampled networks, the researcher runs regressions of the form

y = α+ w(G̃)β + u,

where G̃ is either G|S or GS , depending on the sampling scheme. In general, the measurement
error will not be classical and may result in attenuation bias, expansion bias, or in pathological
(in the univariate) or even mundane (in the multivariate) cases, sign switching. Sections 3.1
contain examples of common and economically meaningful network statistics where such
biases exist and section 5 provides further numerical evidence on these biases.

11More generally, our results apply to indexed GMM models with parameter β0 (u) where u ∈ U (e.g., time
in a stopping time model or quantile in quantile regression), though we omit this.
12Examples include Leider et al. (2009b), Goeree et al. (2010), Cai et al. (2015), Banerjee et al. (2013).
13A vector of demographic covariates may be included, though we omit it for simplicity.
14With missing data, there are O(nR) observations. For instance with G|S , one has mR = ψnR observations.
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Class II: Regression of Economic Outcomes on Neighbors’ Outcomes. In a social
equilibrium model, an economic outcome, yi, depends on exogenous covariates of the indi-
vidual, xi, as well as the outcome of i’s peer group, {yj : j ∈ Ni}. In our running example,
yi is the microfinance meeting attendance rate of a household and xi represents whether the
researcher has exogenously informed the household. Estimating such a model is difficult in
the usual way (Manski, 1993), but with network data, assuming exogeneity of xi as in the
above examples, Bramoulle et al. (2009) and De Giorgi et al. (2010) show that the model
may be identified as the peer groups for individuals are overlapping but not identical.

Formally, let y = (y1, ..., yn)′ be the vector of outcome variables, x = (x1, ..., xn)′ be the
vector of exogenous covariates and ι = (1, ..., 1)′. A researcher is interested in estimating

(2.3) y = α0ι+ ρ0w(G)y + γ0x+ δ0w(G)x+ ε,

where w(G) is a (possibly weighted) adjacency matrix that describes how much yi is affected
by others in the network. The economic parameter is β0 = (ρ0, γ0, δ0). Due to sampling, the
researcher mistakenly estimates the model,

(2.4) y = αι+ ρw(G̃)y + γx+ δw(G̃)x+ u,

where w̃ is defined analogously with G̃ either G|S or GS . The neighborhoods will be mis-
specified and the estimator exhibits bias. We discuss this model in Section 3.2.

2.3. Random Graphs and Asymptotic Framework.

Random Graphs. Until now we have described an economic process, such as diffusion, occur-
ring on a given collection of networks. Consider the example of a regression of y on network
covariate w(G). With missing data the researcher does not observe the true network statis-
tic. In section 3 we demonstrate the biases induced by using w(G̃) where G̃ is the star or
induced subgraph. Section 4 develops graphical reconstruction. We think of the network as
the realization of a stochastic network formation process. We describe a number of examples
in Section 4.4.1, but here we consider a simple but commonly used model: the probability
that individuals i and j are connected, conditional on covariate zij , is given by

P(Aij = 1|zij , θ0) = Φ(z′ijθ0),

where Φ is some link function. Thinking of the network as a random graph allows us to
compute the conditional expectation of the regressor w(G) given the observed portion of
the network Aobs and the sampling scheme: E[w(G)|Aobs; θ0]. If we knew the distribution
of G we could compute this expectation. By properties of conditional expectation using
E[w(G)|Aobs; θ0] as a regressor allows us to consistently estimate β0.

Formally, each network Gr is a random graph is independently though not identically
distributed over the space GnR , where nR is the number of nodes (which can depend on
R for this thought experiment). We model the random networks as a triangular array of
independent but not identically distributed random graphs, G1,R, ..., GR,R. Each Gr,R is a
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random draw from a distribution Pr,R(Gr; θ0r) over GnR , where θ0r ∈ Θr is a parameter
governing the distribution. We omit the R subscript indexing the triangular array.

Asymptotic Frame. Graphical reconstruction requires estimating a conditional expectation
for every network. Since the parameter θ0r for each network is unknown we must be able to
consistently estimate all of these together. Intuitively, we need conditions such that every
network has enough information in it so that its parameter can be precisely estimated. This
is similar to panel data with non-linear fixed effects, where both the number of individuals
and the number of periods grow.

Formally, we will assume that nR → ∞ as R → ∞. The rate requirements of n and R

are discussed in Section 4 and Appendix A.2. Moreover, Θr,R is typically finite dimensional,
though we discuss an example where its dimension grows as R→∞. We assume conditions on
n, R, and the random graph models such that every network asymptotically contains enough
information to estimate θ0r very well. In turn, we can estimate the conditional expectation
very accurately and therefore recover the economic parameter β0.

Finally, we employ the following notation throughout the paper. E [·] denotes expectation,
En [·] the empirical expectation.15 We will also make use of standard O(n), o(n), and Θ(n)
notation. Note fn ∈ Θ(gn) means ∃k1, k2 > 0, n0 such that ∀n > n0 |gn| ·k1 ≤ |fn| ≤ |gn| ·k2.

3. Analytical Examples of Bias

In this section we provide analytical examples which demonstrate the biases due sampled
network data for three common classes of models: regression of economic outcomes on network
statistics, regression of outcomes on network neighbors’ outcomes, and a nonlinear GMM
model of diffusion. The goal is to provide exact characterizations and develop intuitions for
the sorts of biases under common forms of random sampling.

3.1. Regression of Economic Outcomes on Network Characteristics. To gain intu-
ition, it is useful to recall general measurement error in OLS. If the researcher is interested
in a regression

yr = wrβ0 + εr

but instead uses mismeasured regressors w̃r, the resulting estimator satisfies

plim β̂ = β0
cov(w̃, w)

var(w̃) .

Expansion, attenuation, and sign-switching bias are possible without any other assumptions.
In our environment, wr = w(Gr), the relevant network statistic, but due to sampling the

researcher uses w̃r = w(G̃r), where G̃r is the star/induced subgraph. Thus, we are interested
in the covariance of the network statistic with its true value, under the sampling scheme.

The covariance is typically not tractable to characterize. However, sometimes mismeasure-
ment has a scaling effect in expectation. The scaling effect roughly means that E [w̃|w] =
15For a = (a1, ..., an), En [ai] = 1

n

∑
i
ai. Similarly, ER [ar] = 1

R

∑
r
ar and En,R [ai,r] = 1

nR

∑
r

∑
i
ai,r.
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πw + o(1), where π = π(ψ) is some known deterministic function. Clearly

plim β̂ = β0 · π−1︸︷︷︸
Scale

· var(w)
var(w) + var(v)π−2︸ ︷︷ ︸

Classical attenuation
where v = w̃ − E [w̃|w].

Note the two sources of biases: a scale effect which depends purely on π(ψ), and can
expand or attenuate the magnitude, and a dispersion effect which generates attenuation.
Average degree and graph clustering are commonly used network statistics that exhibit scale
transformations. However, more general statistics such as path length and eigenvalues are not
merely scaled in this manner. Finally, it is easy to note, by the Cauchy-Schwarz inequality,
that by looking at standarized effects, a researcher’s conclusions are always conservative under
sign-consistency.

Lemma 1. Let w̃ be a mismeasurement of w with cov(w̃, w) > 0. Then plim σw̃β̂ ≤ σwβ0.

As is well-known, the multivariate case is more complicated, though it is the more relevant
case. Researchers often work with multivariate regression with network features (e.g., Cai
et al. (2015)), but the story becomes messier. Consider a bivariate regression

yr = w1
rβ

1
0 + w2

rβ
2
0 + εr.

Let w2
r be observed without noise, w1

r be measured with noise, and cov(w1, w2) 6= 0. It turns
out that both estimates can be inconsistent and, moreover, the standardized effects need not
even be conservative anymore. The result depends on a number of parameters including the
variance of each regressor, their covariance, and parameters of the defining equation. (See
Pischke (2000) or Hyslop and Imbens (2001) for details.)

To make this concrete for our setting, before continuing on to our analytic characteriza-
tions, we take a simple, bivariate example of two network features: the average degree and
clustering. The average degree of a network, d(G) := n−1∑

i

∑
j Aij , is the average number

of links each node has in the network. The average clustering is the average, over all nodes
in the network, of the share of a node’s neighbors that are themselves linked.

Figure 2 presents results from a simulation where we assume average degree is not measured
with error, whereas average clustering is due to sampling.16 Here we vary the correlation
between clustering and average degree in the graphs that we draw as we also vary the sampling
rate. We can see that β̂1 (the coefficient on clustering) can expand or attenuate but, moreover,
β̂2 can expand, attenuate, and switch signs. This happens even though the regressor (degree)
was not measured with error.

In what follows, we return to looking at univariate regressions or simple linear-in-means
or GMM models geared to highlighting intuitions of the bias, but we caution that the biases
in the multivariate cases are considerably more complicated.
16The idea is that under star sampling, as seen below, it is easy to not mismeasure average degree. We assume
the researcher has not corrected for mismeasurement in clustering.
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Figure 2. Sampling rate ψ against correlation between average clustering
(w1) and average degree (w2). Heat map denotes estimate β̂j for j ∈ {1, 2}.
Note that β1

0 = 2.5 and β2
0 = 10.

Local Statistics. We begin with a warm-up and look at local network statistics. Here
we mean that the features of the statistic only depend on a node’s immediate neighbors or,
possibly a node’s neighbors and their common edges. The statistics we look at are the average
degree (average number of links), the graph clustering (how likely neighbors’ neighbors are
linked), and support (how likely there is some node that is linked to both nodes in an edge).
Support is particularly important in models of risk-sharing and favor exchange (Jackson et al.,
2012).

Recall average degree is the average number of links per node

d (G) = 1
n

∑
i

∑
j

Aij ,

graph clustering is the share of two-stars that are triangles,

c (G) =
∑
i<j<k AijAikAjk∑

i<j<k 1 {Aij +Ajk +Aik = 2} ,

and support is the share of links whose nodes have at least one friend in common

s (G) =
∑
i<j Aij1 {

∑
k AikAjk > 0}∑

i<j Aij
.

Finally it is useful to define Π(G) = 1 −
∑
x (1− ψ)x P (x|G), where P (x|G) is the share of

links ij that are supported by exactly x nodes in the underlying graph G.

Proposition 3.1. Consider a regression yr = α+w(Gr)β0 + εr with w being either average
degree, graph clustering or support. Assume the data (yrR, w(GrR)) is a triangular array
satisfying the regularity conditions of Assumption A.1.

(1) For average degree,
β̂(G|S) P−→ β0

ψ ·
var(w)

var(w)+ψ−2var(v|S) and β̂(GS) P−→ β0
1−(1−ψ)2 · var(w)

var(w)+(ψ(2−ψ))−2var(vS) .
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(2) For graph clustering,
β̂(G|S) P−→ β0· var(w)

var(w)+var(v|S) and β̂(GS) P−→
(
ψ(3−2ψ)

1+ψ(1−ψ)

)−1
β0· var(w)

var(w)+
(
ψ(3−2ψ)

1+ψ(1−ψ)

)−2
var(vS)

.

(3) For support,
β̂(G|S) P−→ β0

Π ·
var(w)

var(w)+Π−2var(v|S) and β̂(GS) P−→
(
ψ2+2ψ(1−ψ)Π
ψ2+2ψ(1−ψ)

)−1
β0· var(w)

var(w)+
(
ψ2+2ψ(1−ψ)Π
ψ2+2ψ(1−ψ)

)−2
var(v|S)

,

where Π = limR
1
R

∑
r Π (GrR).

These statistics are in increasing order of complexity. Note that degree only depends upon
the immediate edges for each individual while clustering only depends upon the observability
of common edges among a nodes’ neighbors. Support is a nonlinear function that expresses
the existence of connectivity among my neighbors and, hence, relies upon the graph structure,
making elimination of the bias much more difficult.

It is useful to note that under simple assumptions var(vS) and var(v|S) are going to be o(1).
And in these cases, one only needs to just rescale estimates appropriately: in a trivial way in
the case of degree, and in a more complicated way that involves estimating the distribution
of supporting nodes in the case of support. Even if one is not in this case, it is easy to just
estimate v̂ar(v) and directly use this to eliminate the bias.

By characterizing the bias, corrections are simple. Faced with induced subgraph sampling,

(1) for degree, rescale the estimate by the sampling rate,
(2) for clustering, use the estimate directly,
(3) but for support, there is not a clear simple solution.

Facing star subgraph sampling,

(1) for degree use only i ∈ S or with the full sample transform the estimate by 1−(1−ψ)2,
(2) for clustering use only induced subgraph or with the full sample transform the esti-

mate by
(
ψ(3−2ψ)

1+ψ(1−ψ)

)
.

(3) and for support use only i, j ∈ S or use the set of i, j ∈ S to estimate the distribution
of the number of nodes that provide support and then explicitly correct for the bias
using the full sample.

Our simulations suggest that one is better off using the full sample and estimating and
eliminating bias, rather than restricting to just the sampled nodes or sampled pairs in the
star subgraph case.

Global Statistics. Next we turn to what we call global network statistics. This is a catch-all
term that refers to functions of arbitrary collections of edges. Thus, this includes interactions
of individuals greater than distance two. Not surprisingly, studying biases in these cases
becomes considerably harder and at times requires more approximation.

Path Length and Graph Span. The first example is the path length. The path length between
two nodes i and j is given by the minimum number of steps taken on the graph to get from i to
j, denoted γ(i, j) := minl∈N∪∞[Ak]ij > 0. If there is no such finite path, we put γ(i, j) =∞.
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The average path length of a graph is the mean taken over all finite paths,

γ(G) :=
∑

i,j:γ(i,j)<∞
γ(i, j)/

∣∣∣{(i, j) ∈ V 2 : γ(i, j) <∞}
∣∣∣ .

Models of diffusion of information, flows of finance, risk-sharing, nepotism, and other phe-
nomena, build on the principle that the farther apart agents are, the less is transmitted
between them. For example, Kinnan and Townsend (2011) study how the network distance
to a bank affects consumption smoothing. Other papers that use path length or average
path length include Golub and Jackson (2010) who simulate diffusion processes; Leider et al.
(2009b) and Goeree et al. (2010) who study dictator games between members of a school;
Alatas et al. (2016) who look at the diffusion of information about poverty; and Banerjee
et al. (2013) who study the diffusion of microfinance.

The basic idea, as seen from Figure 1 is that γ
G̃

(i, j) ≥ γG (i, j) and therefore paths are
longer. However, the average path length is well-known to be a very difficult object to study
analytically.17 Both the economics and statistical physics literatures study an object we term
the graph span, mimicking average path length. Jackson (2008a) shows that for a general fam-
ily of random graph models the ratio of the graph span to average path length asymptotically
almost surely is one. The statistical physics literature uses such an approximation as well
(e.g., Newman et al., 2001; Watts and Strogatz, 1998, Watts and Strogatz, 1998). This moti-
vates the study of the graph span as a regressor. Let d2 (G) := n−1∑n

i=1
∑n
j>i

∑
k 6=i,j AijAjk

be the average number of second neighbors.18 The graph span is

`(G) := logn− log d(G)
log d2(G)− log d(G) + 1.

Larger networks have higher spans. Networks that are more expansive in the sense that
the number of second neighbors far exceeds the number of neighbors have lower spans; it
takes fewer steps to walk across the network. It is useful to define a constant which is a
bound on the ratio of the size of a neighborhood to the size of a neighborhod’s neighborhood:
c := supR≥1 supr≤R d(GrR)/d2(GrR). Finally let k(ψ) = ψ + ψ2 − ψ3.

Proposition 3.2. Consider a regression yr = α+w(Gr)β0 + εr with w being the graph span.
Assume the data (yrR, w(GrR)) is a triangular array satisfying the regularity conditions of
Assumptions A.1 and A.2. Then,

(1) β̂ is sign-consistent with attenuation if ψ ∈ (c, 1) or k(ψ)/(1− (1− ψ)2) ∈ (c, 1):

plim |β̂(G|S)| < |β0| and plim |β̂(GS)| < |β0|.

17Bollobas (2001) approaches path length from an exact analytical perspective but only for a very specific
random graph family. This approach is not suitable for gaining intuition for broader classes of graphs.
18Notice this defines second neighbor in the sense of taking a random node and then counting the number
of neighbors of each of the node’s neighbors. The definition is different from counting the number of distinct
nodes at path length two from a given node, which would be 1

n

∑
i

∑
k>i

∑
j 6=i,k AijAjk (1−Aik).
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(2) and β̂ may be sign-inconsistent otherwise.

Sampling a network thins out the set of edges, resulting in a higher graph span. As the
graph span approximates behavior of average path length, it captures the intuition that
due to sampling, paths on graphs seem longer than they truly are. The expansion of the
graph span has a slope effect on β̂, and as logψ < 0 and log(k(ψ)/(1 − (1 − ψ)2)) < 0, the
effect is either attenuation unless the sampling rate is too low, in which case sign-switching
becomes a possibility. One must proceed with caution when discussing cases where the
sampling probability is too low. In this case the network can shatter, yielding “islands” of
disconnected sets of nodes which have short average path lengths within the set but have
infinite distance across the sets.19 Since average path length is defined as a mean conditional
on all finite paths, this is precisely where sign-switching may occur in practice. Alatas et al.
(2016) contains an example where this happens in Indonesian networks.

Having characterizing the biases, the solutions are simple.

(1) For induced graph sampling use

˜̀(G|S) := log(ψ−1m)− log(ψ−1d(G|S))
log(ψ−2d2(G|S))− log(ψ−1d(G|S))

+ 1

(2) and for star graph sampling use

˜̀(GS) :=
logn− log(m−1∑

i∈S
∑
j A(GS)ij)

log(d2(GS)/k(ψ))− log(m−1∑
i∈S

∑
j A(GS)ij)

+ 1.

The corrected estimates are consistent as noted in the proof of Proposition 3.2.

Spectral Functions. Spectral functions are network statistics that relate to the set of eigenval-
ues of matrices which represent the graph, such as the adjacency matrix. They are useful in
characterizing properties of the network. The distribution of eigenvalues has applications to
models of information diffusion and risk-sharing as well. The number of k-length walks that
cycle back to the original node correspond to k-th moment of the eigenvalue distribution,
denoted µk(G),

µk(G) = n−1 ∑
i1,..,ik∈V k

Ai1i2 ...Aiki1 = n−1Tr(Ak)

where V k = V × ...× V (Barabasi and Albert, 1999). Given that the graph spectrum carries
a great deal of information about the diffusive properties of a network, it is a useful regressor.

There are several applications of spectral statistics in economic theory. For instance,
the first eigenvalue of the adjacency matrix, λ1(G), describes how well the graph diffuses
information (e.g., Bollobás et al., 2010).20 In models of social learning Golub and Jackson

19One can check that a graph H with d2(H)/d(H) < 1 cannot be connected. The sign-switching case requires
at least some d2/d < 1 which we note the researcher can immediately detect.
20In a percolation process the threshold probability above which a giant component emerges is precisely 1/λ1.
For another intuition, if A is diagonalizable, then the dominant factor in

∥∥Ak∥∥ is λk1 .
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(2009, 2010) show that the second eigenvalue of a weighted adjacency matrix is related to
the time it takes to reach consensus; similar results are shown in DeMarzo et al. (2003).
Ambrus et al. (2010) also characterize the risk-sharing capacity of a network as a function
of the expansiveness of the network; it is well-known in network theory that this maps into
the eigenvalues of a transformation of the adjacency matrix (Chung, 1997). It is difficult to
precisely characterize the behavior of these spectral regressors, though we present bounds on
their behavior under sampling.

Proposition 3.3. For an arbitrary graph G, we have

(1) λ1(G|S) ≤ λ1(GS) ≤ λ1(G).
(2) µk(GS) < µk (G).
(3) E

[
µk(G|S)|G

]
=
∑k
j=2

(m−1)j
(n−1)j

ηj < µk(G), where ηj is the number of sets of j-distinct
nodes that are counted.

Since λ1 can be thought of as measuring the number of walks through the graph (and with
missing edges there are fewer walks), we expect expansion bias in β̂ when using these regres-
sors. This follows from the interlacing theorem.21 This means that networks will appear to
be more diffusive than they actually are.

3.2. Regression of Outcomes on Network Neighbors’ Outcomes. We discuss the im-
pact of sampled networks on regressions of nodes’ outcomes on network neighbors’ outcomes.
The models we consider are developed in Bramoulle et al. (2009) and De Giorgi et al. (2010)
and naturally extend the models discussed in Manski (1993) to a network setting. Blume
et al. (2011) contains an extensive review of the literature. The network allows for nodes to
have overlapping but not identical peer groups.

The model is given by (2.3), and we are interested in β0 = (ρ0, γ0, δ0). There are two
natural examples for how neighbors’ outcomes ought to affect a node’s outcome. First, every
node’s outcome may be affected by the average outcome of its neighbors.22 Second, every
node’s outcome may be affected by the total sum of its neighbors’ outcomes.23 The reduced
form is

y = αι/(1− ρ0) + γ0x+ (γρ0 + δ0)
∞∑
k=0

ρk0w
k+1x+

∞∑
k=0

ρk0w
k+1ε.

Since a node’s neighborhood outcome, wy, is the endogenous regressor, the reduced form
suggests that extended neighborhood effects, powers wkx (k ≥ 2), can be used as instruments

21Whether there is expansion bias depends on how the eigenvalues shrink across the initial distribution. For
instance, if the contraction is by translation, the regression slope would clearly not change. Numerical with
simulated networks and empirical data provide evidence of expansion bias.
22We can write the model as yi = α+βENi [yj ]+γxi+δENi [xj ]+εi as ENi [yj ] =

∑
j∈Ni

yj/di =
∑

j
yjAij/di.

23We discuss the first case, though clearly by mimicking the argument the results follow for the second.
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for wy. We focus on the instrument Z = [ι, x, wx,w2x].24 Setting X = [ι, wy, x, wx], the
estimator is (X ′PZX)−1X ′PZy.

Identification comes from intransitive triads.25 If i and j are connected and j and k are
connected, but i and k are not connected, then k affects i only through j. As such, xk
is used as an instrument for yj ’s effect on yi. We caution that this identification strategy
convincingly works only when x is randomly assigned (e.g., Ngatia (2011)) as identification
crucially depends on exogeneity of x.

We examine the estimation of (2.4) using w̃ = w(GS) or w̃ = w(G|S) with instrument
Z
G̃

= [ι, x, w̃x, w̃2x]. We show that the exclusion restriction is invalid when using sampled
network data, even if the covariates are exogenous and the usual identification requirements
are met if the full network data was available.26

Proposition 3.4. Assume γ0ρ0 + δ0 6= 0 and w2 6= 0, so 2SLS is valid for (2.3). Then 2SLS
with

(1) w(GS) with (yi, xi) for all i ∈ V generically yields E [ZGSuGS ] 6= 0,27

(2) w(G|S) with (yi, xi) for all i ∈ S generically yields E [ZG|SuG|S ] 6= 0,
(3) w(GS) with (yi, xi) for all i ∈ V but restricting the second stage to i ∈ S, yields

E [ZGSuGS ] = 0.
Sampling induces an errors-in-variables problem, wherein the neighborhood effect is mis-
measured since the neighborhoods themselves are misspecified. Though typically one uses
instruments to address such a problem, here the instrument is correlated with the measure-
ment error in the regressor, as the instrument involves powers of the mismeasured adjacency
matrix. As such, the exclusion restriction is violated.

Figure 3 provides two examples where invalid instrumentation is generated. Figure 3(a,b)
show that if j is sampled but i and k are not, the sampled network falsely suggests that k is
a valid instrument for j’s effect on i. Similarly, figure 3(c,d) show a case with the induced
subgraph, where k instrumenting for j’s effect on i will be invalid as the other channels
through which k affects i are not accounted for due to sampling. In this case, the channel
through l is omitted.

With GS data, however, there is a simple analytical correction. For i ∈ S, notice that
[w̃x]i = [wx]i and [w̃y]i = [wy]i. Consequently, there is no measurement error in the second
stage for these observations. As only the first stage contains measurement error, uncorrelated
with the second stage residual, such an exercise satisfies the exclusion restriction.

3.3. A Model of Diffusion. Having discussed several examples of network-based regres-
sions, we now turn to a model of diffusion examined in Jackson and Rogers (2007b) which
24Other estimation strategies are suggested in the literature, on the basis of efficiency (Bramoulle et al. (2009);
Lee et al. (2010)). They require the validity of the instrument Z.
25Bramoulle et al. (2009) provide formal identification conditions.
26De Giorgi et al. (2010) are aware that measurement error may cause problems in this model and conduct a
numerical robustness exercise.
27We say generically in the sense that given (G, x, β0), only a finite set of ψ ∈ [0, 1] satisfy E [ZGSuGS ] = 0.
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(a) True structure: transitive triangle
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(b) Edge ik missed under sampling
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(c) True structure: square
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(d) Missed effect kl to li due to sampling

Figure 3. Red nodes are sampled. (a) and (c) show examples of true network
structures. (b) shows the star subgraph from (a) when j is sampled. The effect
of k on i is missed. (d) shows the induced subgraph from (c) when i, j, and
k are sampled. The effect of k on i through l is missed.

we discuss in the context of our microfinance example.28 The researcher is interested in es-
timating this diffusion model which satisfies equilibrium moment equations. There are two
states: whether or not a household endorses microfinance in a weekly village gathering. A
non-endorsing household with di links may choose to endorse with probability ν0diσi where
ν0 is a transmission parameter and σi is the fraction of i’s neighbors that have decided to
endorse. However, an endorsing household may naturally decide not to endorse, which can
happen with probability δ0. Jackson and Yariv (2007) extend this model to a number of
strategic environments.

The model is identified up to parameter β0 := ν0/δ0, which is the transmission to recovery
rate. Let P (d) denote the degree distribution and ρ(d) the share of nodes with degree d that
endorse. Finally, ρ̄∗ :=

∑
d ρ(d)P (d) is the average endorsement rate in the network and the

researcher observes y := ρ̄+ ε, with ε an exogenous zero mean shock.
The second neighbors endorsement rate is given by σ = (Ed)−1∑

d ρ(d)P (d) · d. Jackson
and Rogers (2007b) use a mean-field approximation to derive a steady state equation,

ρ(d) = β0σd

1 + β0σd
.

The equilibrium satisfies

(3.1) σ(β0) = (Ed)−1∑
d

β0σ(β0)d2

1 + β0σ(β0)dP (d).

28This class of models, developed by Pastor-Satorras and Vespignani (2001), have been extended to numerous
strategic interaction settings by Galeotti and Rogers (2013) and Jackson and Yariv (2007), who study the SIS
(susceptible, infected, susceptible) model of epidemiology, which they and others show have applications in a
wide variety of economic contexts.
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By combining (3.1) with the definition of ρ̄, we find that h(Gr;β) :=
∑
d

βσr(β)d
1+βσr(β)dP (d) = ρ̄.

Therefore the researcher can use as moments

m(yr, Gr;β) := yr − h(Gr;β),

and estimate β0 via nonlinear least squares. Jackson and Rogers (2007b) show that an
equilibrium with non-zero endorsement rate exists only if β > Ed/Ed2. The ratio of squared
degree to degree, similar to what we have encountered when studying graph span, again
becomes an important feature of the network. We put ζ := Ed2/Ed. Note that the typical
summand of h(Gr, β) is monotone and convex in d. Therefore, stochastic dominance relations
among various distributions P (d) will play a central role.

As one expects, due to sampling of networks the researcher will overestimate the trans-
mission parameter. An intuition for this is provided by the case of the star subgraph. This
form of subsampling leads to a degree distribution that will be first order stochastically dom-
inated by the true distribution. Therefore, the sampled network seems as if it has poorer
diffusive properties; to generate the same average endorsement rate, the parameter governing
the diffusion process must be higher. In addition, we show that the diffusion with the true
parameter β0 occurring on the sampled network may have no non-zero equilibria. When β0

is close enough to the threshold 1/ζ(G), the partially sampled network will make threshold
ratio 1/ζ(G̃) rise and therefore β0 may appear to be less than 1/ζ(G̃).

Proposition 3.5. Assume we have a triangular array (yRr, GRr) with degree distributions
PRr(d) and (i) (3.1) holds in expectation for each r, (ii) β0 is such that there is a positive
endorsement in every equilibrium, (iii) B is a compact subset of R++, (iv) (εr) are iid zero
mean finite variance disturbances, and (v) lim supR→∞ supr≤R supd |PRr(d)− P∞r(d)| = 0.

(1) The estimates exhibit expansion bias: plim β̂(GS) > β0 and plim β̂(G|S) > β0.
(2) For all r, β0 is outside the range generating positive endorsement rate in the esti-

mated equilibrium, with probability approaching one, under the following additional
assumptions. Put δr := β0 − 1/ζr > 0 and assume
(a) for star subgraphs:

• lim infR→∞ ζr > 1 + ψ

• lim supR→∞ δr < (1− ψ) · 1−ζ−1
r (1+ψ)

ζr+(1−ψ2)

(b) or for induced subgraphs, lim supR→∞ δr < (1− ψ) · 1+ζ−1
r

ψζr+(1−ψ) .

It is easy to see that for the star subgraph, an analytical solution to the bias is to use the
degree distribution of the sampled nodes. However, this is a highly non-generic solution. The
induced subgraph, for instance, does not allow this approach nor do other sampling schemes
(e.g., randomly chosen edges, etc.). A natural question to ask is whether we may use the
sampled degree distribution, such as P |S(d), to obtain P (d). We note that this will not be
straightforward to do, in general, because it generates an ill-posed inverse problem. The
researcher is faced with an under-determined system; while we can describe how P (d) maps
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into P |S(d) due to sampling, there appears to be no unique inverse. Graphical reconstruction,
however, will provide a way to address the problem.

3.4. From Analytical Examples to Graphical Reconstruction. In this section we have
analytically examined biases that emerge from sampled networks. We focused on network
statistics motivated by a number of applied questions concerning diffusion of information,
network importance, risk-sharing, and social collateral. By analytically characterizing the
biases, we were able to describe the mechanics of the non-classical measurement error and
construct analytical corrections to eliminate the biases, under regularity conditions. The
analytical study required us to focus on graph-level regressions; moreover, to be consistent,
the analytical corrections focused on eliminating a slope effect of the biases, but needed to
assume away or estimate a dispersion effect.

We also examined a model where a node’s outcome depends on its neighbors’ outcomes and
demonstrated that a network-based instrumentation method violates the exclusion restriction
when the network is sampled. With certain data structures, we provided a simple solution.
Furthermore, we extended our analysis to a GMM model of diffusion and pointed out how
the estimated parameters would exhibit expansion bias.

In general, our discussion has been on a case-by-case basis in this section. We have mostly
focused on graph-level regressions and have been only able to examine very tractable network
statistics. Numerous network statistics such as betweenness centrality, eigenvector centrality,
and the aforementioned spectral statistics do not permit easy analytical examination nor
corrections. The next section provides a more general method to estimate the economic
parameter. Though the method is not limited to graph level regressions nor tractable network
statistics, it comes at the cost of requiring more data and putting more structure on the
problem by assuming models.

4. Graphical Reconstruction

In this section, we discuss a two-step estimation procedure to consistently estimate eco-
nomic parameters from linear regression and GMM models. In our asymptotic frame, both
the size of each network and the number of networks grow. Every network is a draw from a
distribution governed by its own parameter θ0r. This will force us to control an incidental
parameter problem. Clearly, we can nest the special case where every network is drawn from
the same distribution, θ0r = θ0 for every r, and thereby assume away the incidental parame-
ter problem. However, based on our experiences with empirical data, forcing every network
to be drawn from the same model introduces enough misspecification to negate the benefits
of graphical reconstruction.

We present an informal overview in section 4.1. In section 4.2, we present the asymptotic
distribution of β̂ under high level assumptions on θ̂r, the regularity conditions for which are
listed in Appendix A.2, and detail the estimation procedure in section 4.3. We provide suffi-
cient conditions for network formation models that allow for θ̂r to satisfy the aforementioned
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high-level conditions and check several classes of network formation models, which also shed
light on the limits of our approach, in section 4.4.

4.1. Informal Overview. In our overview we describe our procedure for regression,

yir = α0 + wir(Gr)β0 + εir.

We assume that the researcher has the following data. First, she has outcome data for
every node in every graph, {yir : i = 1, ..., n, r = 1, ..., R}, such as whether household i in
village r participates in microfinance.29 Second, she has a set of partially observed graphs,
{GSr : r = 1, ..., R} or {G|Sr : r = 1, ..., R}. Third, she has variables which are predictive
in a network formation model {zr : r = 1, ..., r}.30 For instance, the researcher may have
basic demographic characteristics such as religion, caste, household amenities, occupation or
geographic location. This data structure is relatively innocuous and common in numerous
applications. In development economics, when deciding how to draw a random sample to
administer treatments, researchers usually conduct a listing in each enumeration area. This
requires obtaining a census of the economic units, which can be done directly (e.g., Townsend,
2007; Suri (2011); Banerjee et al., 2013) or indirectly by obtaining census information from
the village representatives (e.g., Macours, 2003; Takasaki et al., 2000; Alatas et al., 2016).31 It
is well-known that obtaining GPS and basic demographic data during enumeration is cheap;
the bulk cost of a network survey is the network module itself. For a different example,
consider school networks where it is straightforward to obtain rosters and demographic data
for all students. The full set of observed data is (yr, Aobsr , zr), consisting of yr the vector of
outcome data, Aobsr the observed part of the graph, and zr the vector of network formation
covariates. The missing data for each network is Amisr and recall Gr = (Aobsr , Amisr ).

Every network is thought of as a realization of a random network formation process, drawn
from a distribution which depends on zr and parameter θ0r ∈ Θr. To estimate β0 we use an
argument based on conditional expectations. If θ0r were known for all r, we could estimate
a conditional expectation of wir(Gr) given the observed data,

Eir(Aobsr , zr; θ0r) := E
[
wir(Gr)|Aobsr , zr; θ0r

]
.

By the properties of conditional expectation, using Eir in the regression instead of wir yields
consistent estimation of β0. The least squares estimator is given by32

β̂ols =
(

R∑
r=1

n∑
i=1
Eir(θ̂r)Eir(θ̂r)′

)−1

·
R∑
r=1

n∑
i=1
Eir(θ̂r)yir.

29In what follows it is not necessary for yir to be observed for every node, but it simplifies notation.
30E.g., zr = {zir : i = 1, ..., n} or zr = {zij,r : i, j ∈ V } where zir or zij,r are covariates for nodes or pairs.
31Researchers can either collect simple covariate data from all nodes or from representatives who carry infor-
mation.
32For notational simplicity, assume the regressors are demeaned.
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Notice β̂ols = β̂ols(θ̂1, ..., θ̂R) depends on θ̂r for all r. A similar but more involved result is
true for GMM. We must use the fact that the outcome variable provides information about
the likelihood of missing links; this extra complication disappears under the linearity of OLS.

To control the estimation of θ̂r, we need to argue not only that it is consistent for θ0r, but
uniformly so. That is, supr ‖θ̂r−θ0r‖ = OP(a−1

R ·R
1/b
n ), where aR is the rate of convergence of

θ̂r to θ0r for every r, and b > 1 is the number of moments that the network formation model
has. This imposes a rate requirement on the problem which says that the network-formation
parameter needs to be estimated fast enough:

√
nR · a−1

R ·R1/b → 0.
The consistency of θ̂r follows from assumptions on the model of graph formation and the

sampling procedure. With missing-at-random data, under assumptions on the graph model, a
consistent estimator exists. Consider a model where an edge forms independently, conditional
on covariates,

P(Aijr = 1|zr; θ0r) = Λ
(
f(zir, zjr)′θ0r

)
,

where Λ(·) is some link function (e.g., logistic or normal), zi is a vector of covariates for
vertex i, and f is a vector-valued function. For instance, f may be the difference between
characteristics of two nodes f(zi, zj) = ‖zi − zj‖. If the sampling procedure is orthogonal to
the network formation, a random subset of the

(n
2
)

pairs of nodes is observed. Therefore, θ̂r
is consistent.

This model converges with aR = n, since we have on the order of n(n− 1)/2 observations.
The requirement becomes n−1/2R1/2+1/b → 0, so the number of networks must grow suffi-
ciently slower than the number of nodes. In other models, the rate aR may be different (e.g.,
n/ logn, nτ for τ ∈ [1/2, 2),

√
n/ logn). If the rate is too slow, the requirement for node-level

regression may not be met, though usually the requirement for graph-level regressions will
be satisfied.

4.2. Formal Theory for β̂. We begin by establishing that β̂ is consistent and asymptotically
normal. The main theorem is stated in section 4.2.1, under regularity conditions, including
simple high level assumptions about the behavior of θ̂r, which we will verify in section 4.4.
In Appendix A.2 we discuss the regularity conditions in depth.

We have already introduced the regression environment. We consider the GMM envi-
ronment of (2.1). Relative to regression, in GMM the value of y affects the conditional
expectation of w. Observe (2.1) implies an unconditional moment restriction holds:

0 = Em(X;β0) =
∑
G∈Gn

E [m(X;β0)|G] Pθ0(G)

where X = (y, w(G)). Let xr denote the triple of observed data, xr := (yr, Aobsr , zr). By
iterated expectations, the conditional function

(4.1) Eir(xr;β0, θ0) := E [m(Xir;β0)|xr;β0, θ0]
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satisfies EEir(xr;β0, θ0) = 0. Given an observed data series {(Xir, zir) : i = 1, ..., n, r =
1, ..., R} and an estimator θ̂r of θ0r, the estimator is

β̂gmm := argmin
β∈B

(
En,REir(xr;β, θ̂r)

)′
Ŵ
(
En,REir(xr;β, θ̂r)

)
where Ŵ is a consistent estimator of W .33

In order to compute the conditional moment in (4.1) we need to be able to integrate
with respect to a conditional probability for every graph in our sample, Pβ0,θ0(Amisr |xr).
Computing the expectation requires a reweighting term,

Eir(xr;β0, θ0r) =
∑
Amr

m(Xir;β0)Pβ0,θ0r(Amisr |xr),

with Pβ0,θ0r(Amisr |xr) ∝ fβ0(yr|Gr)Pθ0r(Amisr |Aobsr , zr). To be able to utilize this approach,
the researcher must make assumptions on the distribution of y given G.

4.2.1. Asymptotic Distribution. In this section we show that β̂ols and β̂gmm are consistent
and asymptotically normally distributed. We define covariance matrices which characterize
the asymptotic variance. For linear regression,

Hols := lim
R→∞

EnR
[
EEirE ′ir

]
and Vols := lim

R→∞
ER

[
var

(√
nEn

[
Eirεir + Eir(wir − Eir)′β0

])]
,

and for GMM,

M := lim
R→∞

En,R
[
E ∂

∂β′
Eir(xr;β0, θ0r)

]
, Ω := lim

R→∞
ER

[
var

(√
nEnEir(xr;β0, θ0r)

)]
,

Hgmm := M ′WM and Vgmm := M ′WΩW ′M.

Theorem 4.1 (Asymptotic Distribution). Under Assumption A.3,
(1) Assumption A.4 implies

√
nR(β̂ols − β0) N

(
0, H−1

ols VolsH
−1
ols

)
.

(2) Assumption A.5 implies
√
nR(β̂gmm − β0) N

(
0, H−1

gmmVgmmH
−1
gmm

)
.

Intuitively, if we can uniformly replace θ̂r with θ0r, since conditional expectations are centered
correctly and, under regularity conditions, also satisfy central limit theorems if the uncon-
ditioned random variables do, the estimator is consistent and normal. While we wrote the
theorem for vertex-level analysis, similar results with modified regularity conditions extend
to regressions at the graph-level, edge-level, vertex-triples, etc. Each will allow for different
amounts of interdependency in the graph formation process. To be concrete, under the above
normalizing assumptions, graph-level regression converges at

√
R while edge-level regression

converges at
√(n

2
)
R = n

√
R.

To build further intuition, we comment on what could go wrong. First, for GMM, if one
estimates the conditional expectation without reweighting, unless the model was additively
separable, β̂gmm would be inconsistent. Second, there are several reasons why uniform es-
timation may fail: the size of the networks relative to the number of networks may be too
33In the case of maximum likelihood where E is the conditional score, W = I.
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small, the network formation process may have dim(Θr) exploding too fast, and the level of
interdependency in the random graph processes may be too high. We provide a more detailed
discussion in section 4.5.

4.3. Estimation in Practice. We describe the estimation algorithm for linear regression.
Algorithm (Estimation of β̂ols).

(1) Use (zr, Aobsr ) to estimate θ̂r based on the assumed network formation model.
(2) Estimate Eir(Aobsr , zr; θ0r) := E

[
wir(Gr)|Aobsr , zr; θ0r

]
.

(a) Given (zr, Aobsr ), for simulations s = 1, ..., S, draw Amis∗r,s from P
θ̂r

(Amisr |Aor, zr).
(b) Construct wir(G∗rs) where G∗rs = (Aobsr , Amis∗r,s ).
(c) Estimate Êir(Aobsr , zr; θ̂r) := 1

S

∑S
s=1wir(G∗rs).

(3) Estimate β̂ols using data {(yir, Êir(Aobsr , zr; θ̂r)) : i = 1, ..., n, r = 1, ..., R}.
The GMM algorithm is similar, requiring a reweighting term. We provide an overview of
standard errors and estimation methods in Appendix G, though a theoretical development
of them is well-beyond the scope of this paper. In practice, clustering at the graph level
in vertex-level regressions and using heteroskedasticity robust standard errors for network-
level regressions perform well, though we have explored various bootstrapping procedures
(available upon request).

4.4. Formal Theory for θ̂r. In this section we discuss the uniform estimation of the network
formation model parameters. We are interested in the joint convergence of supr

∥∥∥θ̂r − θ0r
∥∥∥ in

the sense of Assumption A.3.3. The literature on consistently estimable network formation
models is young and limited, though has seen considerable growth in econometrics since
the first version of this paper. Many models of network formation lack asymptotic frames
(see, e.g., exponential random graphs models (ERGMs)) that allow for consistently estimable
parameters, or the models may not even be projective (Shalizi and Rinaldo, 2012). So larger
networks do not lead to tighter parameter estimates and seeing a slice of the network may
not allow recovery of the true parameter. There are a few classes of models known to be
consistent, and we discuss several as examples below. Given how nascent this literature is,
it is useful to reflect on a simple, checkable sufficient conditions for joint convergence so
that one could check new models as they develop. After this, we discuss three common
classes of network formation models and check the condition that can be used in graphical
reconstruction. The examples have been chosen to provide intuition about different problems
that may arise.

We have a collection of network formation models which maximize criterion functions, θ0r =
arg maxθQ(r)(θ0r). We estimate these parameters with a collection of empirical criterion
functions, Q̂(r)(θr), with θ̂r = arg maxθ Q̂(r)(θr). The lemma following is analogous to Hahn
and Newey (2004); we include it here to point the reader to what we need for our procedure
to work well.
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Lemma 4.1. Let V(r)(θr) := ∇θQ(r)(θr) and V̂(r)(θr) := ∇θQ̂(r)(θr). Assume the following.

(1) ∀r, Q(r)(θr) has unique maximum θ0r; Θr is compact; Q(r)(θ) ∈ C2(Θ); supθ |Q̂(r)(θ)−
Q(r)(θ)| = oP(1).

(2) The criterion functions uniformly converge in the sense that for some v > 0

P
(

sup
r≤R

sup
θ∈Θr

∣∣∣Q̂(r)(θ)−Q(r)(θ)
∣∣∣ ≥ η) = o(a−vR ).

(3) There exists a sequence of constants (aR) such that (i) for all r, aR ·V̂(r)(θ0r) = OP(1);

(ii) for some b > 1, supr≤R E
∥∥∥aR · V̂(r)(θ0r)

∥∥∥b <∞.
(4) ∇V̂(r)(θr) satisfies a Lipschitz condition with coefficient Br, supr ‖Br‖ = OP(1).
(5) The Hessian satisfies supr

∥∥∥∇V̂(r)(θr)−∇V(r)(θr)
∥∥∥ = oP(1).

Then aR ·R−1/b · supr≤R
∥∥∥θ̂r − θ0r

∥∥∥ = OP(1).
This provides checkable conditions to ensure Assumption A.3 holds and therefore the main

theorem holds. The argument comes from a usual first order expansion argument. Condition
1 adds extra smoothness to a standard assumption for consistency. Condition 2 requires that
all the criterion functions Q̂(r)(θ) uniformly lie in an η-“sleeve”, [Q(r)(θ)− η,Q(r)(θ) + η]; in
practice this is argued by applying union bounds and controlling interdependencies across
summands in the objective function. Condition 3 provides a rate of convergence of the first-
order term and a moment requirement. Condition 4 requires an envelope condition for the
third derivative of the objective. Condition 5 requires uniform convergence of the Hessian.
Below, we check that Lemma 4.1 holds under low-level assumptions.

4.4.1. Classes of Models. The goal of this section is to outline several network formation
models that could fit into this framework. This is not meant to be exhaustive but instead
give the reader a sense of how various models could be used.

Class 1: Conditional Edge Independence Models. We begin by considering a class of models
in which edges form independently, given covariates. This is the most common class of model
used in the literature (see e.g., Jackson, 2008b, Christakis et al., 2010, Goldsmith-Pinkham
and Imbens, 2011, and Santos and Barrett, 2008). Let Ξ be a set consisting of all pairs ij.
Ξ is implicitly indexed by n and has n(n− 1)/2 elements. We denote an element s ∈ Ξ and,
when referencing explicitly which pair it corresponds to, we write s = sij . Let zs denote a
covariate for the pair of nodes sij . Examples include whether two villagers are of the same
caste, the distance between their households, etc. The probability that an edge forms in
graph r is

(4.2) P (Asr = 1|zsr; θ0r) = Φ
(
z′srθ0r

)
where Φ (·) is some link function. This framework allows us to consider undirected graphs,
directed graphs, and models in which nodes have to agree for a link to form. The undirected
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case is clear. If the graph formation model is directed, then Ξ consists of all n(n− 1) ordered
pairs of ij.34

We maximize the log-likelihood, |Ξ|−1∑
s∈Ξ q(Xs; θr), Xs = [As, z′s], with summand

q(Xs; θr) = Asr log Φ(z′srθr) + (1−Asr) log
(
1− Φ(z′srθr)

)
.

To be able to apply Lemma 4.1, we need to control the interdependence in the covariates zsr.
We assume that the set of nodes itself has an embedding into an integer lattice, Λ ⊂ Zd. Let
t ∈ Λ denote a generic element, and when referencing the corresponding node we write t = ti.
To build intuition imagine that the nodes are embedded in Z2 as analogous to geographic
placement; households in a village are placed on a grid on the ground and certain households
are closer to others. This closeness determines the covariance of their other characteristics.
Then, every node is given a random covariate zi, ti ∈ Λ. The pair-level covariate zij is given
by zij = f(zi, zj) for some function f(·, ·). The interdependency in the node-level covariates
will translate to interdependencies among the edge-level covariates which is what we will
ultimately use in our argument. We will need to assume that the level of interdependence
goes to zero as the distance between the two subsets goes to infinity. Figure 4 provides an
illustration.

(a) (b) (c)

Figure 4. This figure presents a schematic of this model. In Panel A, nodes
are on a lattice. In Panel B, nodes draw covariates zi correlated over the
lattice, here represented in colors (red, purple, blue). In Panel C, nodes are
linked with higher probability if they have closer traits (‖zi − zj‖ is low).

This assumption we make is analogous to those made in time series and spatial econometrics
contexts. We require that the random fields zr satisfy uniform mixing requirements where, as
the distance between the sites of two random variables increase, the level of interdependency
decays quickly. The assumption on f(zi, zj) is not very restrictive. The most natural example
is a covariate based on the difference in characteristics of nodes i and j: zij = ‖zi − zj‖.

34When the model is undirected but both nodes need to agree, one may use a model such as Aijr = 1{z′ijθ0r−
εijr ≥ 0} · 1{z′jiθ0r − εjir ≥ 0} with link function Φ (z′srθ0r) := Ψ(z′ijθ0r)Ψ(z′jiθ0r), where Ψ (·) is the cdf of ε.
One may even want to assume εij and εjr being jointly normal.
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Proposition 4.1. Assumptions A.6 and A.7 imply the conditions of Lemma 4.1.

Until now we have not discussed the role of random sampling. It is easy to see with
random sampling of nodes (GS or G|S) or random sampling of pair data Aij that the cri-
terion function Q(r)(θ) := limn→∞

∣∣∣ΞS∣∣∣−1∑
s∈Ξ E[q(Xsr; θ)1{s ∈ ΞS}] is minimized at true

parameter θ0r. For instance, under the star subgraph we have E[q(Xsr; θ)1{s ∈ ΞS}] =
(1− (1−ψ)2)Eq(Xs; θ0r) while

∣∣∣ΞS∣∣∣ = (1− (1−ψ)2)
(n

2
)
. More generally, if the sampling pro-

cedure is known, then in such a model augmenting the likelihood to account for the sampling
will produce consistent estimates.

Class 2: Subgraph Generated Models (SUGMs). One limitation with models in which the
covariates direct the correlation between links is that there still may no be enough cluster-
ing. Chandrasekhar and Jackson (2016) provide another class of models, subgraph generated
models (SUGMs), in which this is accounted for. Here we describe a special case of one of
these models.

Let a network be formed in the following manner. Each
(n

2
)

pairs of nodes are considered
and independently, with probability p0L,r, a link forms. Similarly, each

(n
3
)

triple of nodes are
considered and independently, with probability p0T,r, a triangle forms. The observed graph
Gr is the union of these processes. Figure 5 provides an illustration.

(a) (b) (c)

Figure 5. This figure presents a schematic of the links and triangles SUGM.
In Panel A, nodes are placed arbitrarily, as there is no ex ante natural embed-
ding. In Panel B, triads are drawn uniformly at random. In Panel C, links
are drawn uniformly at random, and the resulting network is presented.

There are a number of microfoundations for such models: mutual consent, directed search
for group formation, among others give rise to such models. Practically speaking, these
models have the advantage of, in a simple and naturalistic way, coding in correlation in link
structure and therefore being able to generate sparse and clustered networks. This is impor-
tant because empirical data is typically sparse and clustered. Chandrasekhar and Jackson
(2016) shows that a links and triangles SUGM outperforms a conditional edge independence
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model with numerous demographic covariates in terms of matching various network features:
clustering, average path length, maximal eigenvalue, etc.

Proposition 4.2. Assumption A.8 implies the conditions of Lemma 4.1.

Class 3: Group Models. By allowing for an increasing number of parameters, a network for-
mation model may be able to better and more flexibly describe the random graph process.
Models of this vein are discussed in Bickel and Chen (2009), among others, who provide a
discussion of what they call a nonparametric view of network models. Our specific example
comes from Chatterjee et al. (2010), who study an environment in which the degree distribu-
tion is the sufficient statistic for graph formation: given (d1, ..., dn), one estimates a formation
model.35 Following Diaconis and Freedman (1984) they show the network is described by

P(Aij = 1) ∝ exp (θ0i + θ0j) ,

which is a model that allows the number of parameters to grow at a Θ(n) rate. Obviously
we cannot have a parameter per node because we will not have observations for a number of
nodes, especially under induced subgraph sampling.

(a) (b) (c)

Figure 6. This figure presents a schematic of the groups model. In Panel
A, nodes are placed arbitrarily, as there is no ex ante natural embedding. In
Panel B, we denote θ0,blue in blue: these nodes have a high fixed-effect value,
Meanwhile θ0,white nodes have a low fixed-effect value. In Panel C, links are
drawn independently, with probability proportional to the sum of the fixed
effects and the resulting network is presented. There are many links between
the blue nodes, fewer links between the blue and white nodes, and rarely any
links between white nodes.

So, we tweak this framework to our environment and assume there are kn categories of
nodes. For instance, if graph formation depends on two characteristics, gender (male/female)
and education (high/low), there are four such categories. By allowing kn to grow rapidly
35Conditional on the degree distribution there is no information about the model from the actual network
data.
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with n, we can capture substantial variation in the formation of the network. We allow
kn = Θ(n). Define an equivalence class of nodes: if i and j are in the same class, then
they have the same parameter, θ0i = θ0j . In our example, two individuals in the same
category (e.g., female and high education) are governed by the same parameter θ0,female,high.
If we have qn characteristics with uniformly bounded values (e.g., two genders, a bounded
number of education levels), the number of categories can grow at qn = Θ (logn), which yields
kn = Θ(n). One can think of this model as having group fixed effects with a growing number of
groups. It turns out that with probability approaching one, supr≤R

∥∥∥θ̂r − θ0r
∥∥∥
∞
.
√

logn/n
which is a very slow rate, though expected given how rapidly we are increasing the parameter
dimension. Figure 6 provides an illustration.

Proposition 4.3. Let the maximum coordinate value of θr ∈ Θr be uniformly bounded over
all r, R = o(n·log−1 n), and kn = Θ(n), kn < n. Then, under stratified random sampling with
either the induced or star subgraph and Assumption A.4 or A.5, the conclusion of Theorem
4.1 holds.

This example shows that even when we are adding parameters at rate n, graphical re-
construction is possible in network-level analyses. Here aR =

√
n/ logn and therefore

a−1
R ·
√
R1+2/b → 0. Meanwhile, the sufficient condition is not met for vertex-level analy-

sis as a−1
R ·
√
nR1+2/b →∞. This example provides an illustration of both the strengths and

limitations of graphical reconstruction by testing the limits as we add dimensions at the same
rate as the number of nodes.

4.5. Discussion.
In this section we have developed a general method to consistently estimate the economic

parameter using graphical reconstruction. The method allows the researcher to estimate
network effects using a general set of network statistics, such as eigenvector centrality, where
no analytical solutions are available.

Of course, we may be interested in how misspecification of the network formation model
affects graphical reconstruction. In practice, we do not know the family of models which
generated the empirical networks. Clearly, misspecification is problematic only to the extent
of the covariance between the conditional expectation of the misspecified model and its devi-
ation from the true model. While this is not easy to analytically characterize, it does suggest
that the model one needs relates to the network statistic one is interested in studying. For
instance, graphical reconstruction with Erdos-Renyi style models may be sufficient to study
questions pertaining to the degree distribution, but may perform poorly if one is interested
in clustering. Numerical simulations confirm precisely this intuition, suggesting that chosen
models ought to be a function of the statistic of interest.
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Another natural avenue for future work could assess the trade-off of dense versus sparse
network formation models. Loosely speaking, in dense models, there is more information but
on the other hand, identification issues can be thornier.

5. Numerical Experiments

This section reports the results of numerical simulations that characterize the biases due
to sampling as well as the behavior of the analytical and graph reconstruction estimators.

5.1. Simulation Setup. We specify a data-generating process for a set of random graphs
and outcome data, and then carrying out the following steps.
Algorithm (Simulation).

(1) Generation of data.
(a) Draw R networks from the network formation families (below).
(b) Generate outcome data from a model with β0 and data-generating process (y, ε)|G;β0.
(c) For each graph Gr construct sampled graphs {GSrb, G

|S
rb : b = 1, ..., B}.

(2) Estimation of β̂ using {GSrb, G
|S
rb : b = 1, ..., B}.

(a) Estimate β̂b(G|S) and β̂b(GS).
(b) If applicable, estimate the adjusted estimator β̃b(G|S) and β̃b(GS).
(c) Estimate the graphical reconstruction estimators.

(3) Perform (1)-(2) for ψ ∈ {1/4, 1/3, 1/2, 2/3}.
We generate networks of n = 250 nodes using the following simple conditional edge inde-
pendence model. We set parameters such that the average degree, clustering, path length,
maximal eigenvalue and variance of the eigenvector centrality distribution from networks in
our simulations mimics those moments in the empirical Indian networks data-set. Dividing
the set of nodes into 6 approximately equally sized groups, we place those groups on a line,
indexed from 1 to 6. The probability that an edge formed between two members within the
same group is high. The probability that an edge formed between two members of two differ-
ent groups declines in the cross-group distance, represented by the difference in the indexed
location of those groups on the line. Formally, let g(i) denote the group of vertex i. We set

P(Aijr|zijr) = z′ijrθ0r.

θ0r is a
(6
2
)
-vector with elements θ0r,lm with 1 ≤ l < m ≤ 6 and zijr is a

(6
2
)
-vector with

zijr,lm with 1 ≤ l < m ≤ 6. θ0r,lm is the probability that a member of group l is linked to a
member of group m. The lm-component of zijr is a dummy for whether i and j are in groups
l and m respectively, zijr,lm = 1 {g(i) = l}1 {g(j) = m}. In order to generate θ0r,lm we use
a simple distance function, with θ0r,lm = pr (1− |l −m| /6) where pr is a uniform random
variable chosen such that the average degree generated mimics the average degree from the
empirical application.

We have conducted simulations for alternative formation models, such as one in which
covariates are generated by an autoregressive process and the edge formation probability
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is governed by a logistic regression. Another example is the subgraph generated models
(Chandrasekhar and Jackson, 2016). Results are qualitatively and quantitatively similar.

5.2. Regression of Outcomes on Network Characteristics. We simulate and estimate
a model with heteroskedastic residuals, yir = α0 +wir(Gr)β0 +σ0 ·uir, where (α0, β0) = (1, 2),

uir := N
(
0, σir/

√
µ̂2
σir

)
, σir := 3 wir − wirmin

wirmax − wirmin
+ 0.2, and µ̂2

σir := En,R
[
σ2
ir

]
.

This formulation creates a fan-like heteroskedasticity. We then can easily set the R2 of the
regression to approximately 0.3 by defining σ2

0 :=
(
1/R2 − 1

)
· En,R(ỹir − ¯̃yir)2 for ŷir =

α0 + wir(Gr)β0.
Columns 1-5 of Tables 7 and 8 show the estimation bias, in percentages, for regression

parameters when using sampled network data for a variety of network statistic regressors.
Table 7 shows the biases when estimating regressions at the network level while Table 8 shows
the biases when estimating regressions at the node level.

At the network level, we consider average degree, graph clustering, graph span, average
path length, and λ1. In addition, we show results for the standard deviation of the eigenvec-
tor centrality distribution and the spectral gap. The eigenvector centrality represents how
important a node is in information transmission (Jackson, 2008b) and the spectral gap of a
graph characterizes how rapidly diffusion processes on networks spread (Chung, 1997). The
latter is closely related to the expansiveness of a network that Ambrus et al. (2010) show
characterizes good risk-sharing properties.

At the node level, we show results for the degree, clustering coefficient, and eigenvector
centrality of a node. Moreover we consider two regressions which characterize how far a node
i is from another node j. We select a random node j (corresponding to a randomly treated
node in an experimental setting) and generate a regressor which is the path length from i to
j. In addition, we partition the nodes into two subsets which communicate the most within
themselves and least across the sets. We say i is on the same side of the spectral partition
of j if they are in the same subset. This partition is related to the spectral gap (Chung,
1997) and therefore has implications for the Ambrus et al. (2010) approach to characterizing
risk-sharing.

Overall we find that sampling the network leads to significant biases. Figures 7 and 8
present the corresponding results, graphically. Here we discuss the biases at 1/3 sampling
for the graph and node level. At the graph level the maximum bias is 260% (λ1, induced
subgraph), the mean is 90.9%, and the minimum is 15% (clustering, induced subgraph).36

The biases include expansion bias in the cases of degree, maximal eigenvalue, spectral gap,
and graph clustering (for the star subgraph). The node-level regressions exhibit a similar

36When we looking at maximum, mean, and minimum, we are interested in the magnitude of the biases, so
our discussion focuses on the absolute value of the bias.
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pattern: the maximum bias magnitude is 91% (degree, induced subgraph), the mean is 63%,
and the minimum is 7% (same side of the spectral partition).

In Figure 7, we also present the results using the analytical corrections from section 3.37

We find that the adjusted regression estimators perform uniformly better than the unadjusted
estimators. The biases are usually low. Overall, the analytical corrections improve 100% of
the parameter estimates in the simulations. At 1/3 sampling, the mean reduction in bias
percentage when comparing the analytical correction to the raw network statistic is 69pp
with a median reduction of 69pp and a maximum of 243pp. Similarly Figure 8 applies the
analytical corrections which were derived for the case of graph level regression, to node-level
analysis; the results are not motivated by theory and of course are mixed.38

We also consider the graphical reconstruction estimators in Figures 7 and 8. It nearly
uniformly outperforms the estimator using the sampled data alone. Biases are mostly very
low across a number of linear and nonlinear network statistics. For illustration we discuss
examples with 1/3 sampling: at the graph level the median bias is 5.7%, the minimum is
0.6%, and the reconstruction estimator reduces the bias in 54 of the 56 parameters estimated
in Figure 7. The mean reduction in bias is 73pp and the maximum reduction is 254pp. We
find similar results at the node level. The median bias is 1.4% and graph reconstruction
reduces the bias in 100% of the parameters estimated in the table. Furthermore, the median
reduction in bias is 62pp with a maximum of 85pp. Not surprisingly, at a given sampling
rate reconstruction with GS performs uniformly better than with G|S . The effective share
of edges observed in the star subgraph is 1 − (1− ψ)2 but is ψ2 in the induced subgraph.
Typically 2/3 sampling with G|S (4/9 share of the edges observed) yields a reconstruction
procedure which is only as good as 1/4 sampling with GS (7/16 share of the edges observed).

In Table 1 we study the behavior of significance testing and provide evidence that graphical
reconstruction may often increases t-statistics.39 Specifically, we present the ratio of the t-
statistic under graphical reconstruction to the t-statistic under the naive estimator using
the sampled network statistic. We find that at the network level across 86% of the cases
the t-statistic increases (48 of 56 estimated parameters) and at the node level across 96%
of the cases (46 of the 48 estimated parameters) graphical reconstruction yields a higher t-
statistic than the naive estimator. Moreover, we find that the average ratio of the t-statistic
of reconstruction to the naive estimator is high.

5.3. Regression of Outcomes on Network Neighbors’ Outcomes. Table 2 presents the
results for simulations for the model of equation (2.3) with (α0, ρ0, γ0, δ0) = (1, 0.5, 2, 0.5).
We use three specifications to demonstrate the emergence of biases in peer effects regression
due to two distinct causes: correlation of the instrument with the errors-in-variables problem

37In Table H.1 of Appendix H we show an example of an analytical correction that involves estimating σ̂2
v.

38The correction working for degree with GS is mechanical since there is no mismeasurement for di with i ∈ S.
39Note that this is a numerical result and not a theoretical one. The results may be specific to network
formation models and statistics examined.
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and a weak instrument/finite sample problem induced by sampling. The table presents the
mean bias percentage as well as the standard error of the bias.

We present three methods of estimating peer effects with sampled data and one correction.
First, we show an estimate of the peer effect model with the network given by the induced
subgraph. Second, we present an estimation where (y, x) are known for every node, but the
network used is the star subgraph. Finally, we present the same specification but only allow
the researcher to have covariates for surveyed nodes. Each specification exhibits biases.

We vary the number of networks and disturbance size across three models to study how the
bias varies. In Model 1, we use one network with 250 nodes per simulation drawn from the
aforementioned model and set the number of simulations to 50, 000. In Model 2, we use one
network with 250 nodes per simulation and use 50, 000 simulations, but reduce the variance
of the disturbance. Model 3 presents results a from 2, 500 simulations of 20 networks each
with 250 nodes, drawn from the model.40

All specifications show significant bias in the estimates of the endogenous and exogenous
peer effects. Comparing Panels A and B of the first and second set of columns shows the
biases are greater when there is more noise in the system. Moreover, comparing Panels A
and B of columns 1-5 and 11-15 shows that increasing the number of graphs in the estimation
from 1 to 20 only modestly reduces the bias due to sampling. Non-trivial biases which remain.

Overall, the analytical correction performs well. In the Models 2 and 3, the estimates are
essentially unbiased across all sampling levels presented. Moreover, the analytical correction
for Model 1 exhibits negligible bias for sampling rates of 2/3 and 1/2. However, biases emerge
at very low sampling rates, 1/3 and 1/4, in the case of Model 1. Furthermore, as evidenced
by the standard errors at 1/4, the estimates are extremely unstable.

To measure whether there is a weak instruments problem, in Panel C we display a gen-
eralization of the concentration parameter of the first stage, allowing for interdependence in
the variance following Kleibergen (2007).41 The intuition is that in these networks, even for
the analytical correction there is measurement error in the instrument. Since the number of
connections to neighbors and second neighbors in a network is low, the amount of noise in
the first stage increases.42 Panel C shows that the concentration parameter is very low for
the first stage estimates in Model 1, especially at low sampling levels. Moreover, once the
number nodes in the network is high enough or the amount of independent data (20 networks)
is high enough, the concentration parameter is extremely high. In these cases our analytical
correction removes the bias entirely while biases remain with the sampled estimators.

40The number of simulations was chosen to roughly equate the computation time, on the order of
n4 ·# of simulations, for each of the three specifications.
41For a first stage X = Zπ + v, we use the generalized concentration parameter µ2 := π′Σ−1

π π where π̂ =
(Z′Z)−1

Z′X and Σπ = var (π̂).
42The extent to which this matters can be seen by noticing that the concentration parameter is 2 for ψ = 1/4,
while if the signal to noise ratio had stayed the same in the first stage, the concentration parameter should
have only decreased from 16 to 4.
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5.4. A Model of Diffusion. We numerically study the Jackson and Rogers (2007b) model of
diffusion and present the results in Table 3. In Panel A we use the aforementioned simulated
network data to generate a model with β0 = e−2.43 Columns 1-5 present evidence of severe
expansion bias in the estimates β̂ when using sampled data. At 1/3 sampling, the transmission
parameter is overestimated by 250% when we study the induced subgraph and 85% when we
turn to the star subgraph. Columns 6-10 presents the graphical reconstruction results; the
procedure removes the entire bias.

5.5. Robustness to Misspecification. To investigate how well the procedure works with
empirical data, where we do not know the data generating processes, we conduct numerical
experiments using the networks of the Banerjee et al. (2013) data-set, described in greater
detail in section 6. We repeat the simulation algorithm of section 5.1 with the only difference
coming in step 1(a). Instead of generating networks from the aforementioned model, we take
50 independent draws with replacement from the Banerjee et al. (2013) data-set.44 When
we fit a network formation model in step 2(c), we use the model given by (4.2). We use as
covariates the GPS distance between households as well as the difference in the number of
rooms, beds, roofing material type, and electricity access. Table 4 presents summary statistics
from graphical reconstruction exercises analogous to those of Figures 7 and 8. We find that
graphical reconstruction reduces the bias in 98% of the network statistics when using the
induced subgraph and 100% when using the star subgraph. In addition, the median bias is
9% with the star subgraph when using reconstruction with a median reduction of bias of 23pp.
Similarly, the median bias is 32% with the induced subgraph and the median reduction in bias
is 32pp. We have also conducted exercises (available upon request) where we do graphical
reconstruction but force all villages to be drawn from a model with common parameter θ0

instead of θ01, ..., θ0R: there is little reduction in bias, showing that allowing for heterogeneity
is essential.

Panel B of Table 3 presents the results from numerical experiments done for the Jackson
and Rogers (2007b) model of diffusion using the empirical networks instead of simulated
networks. We find that at 1/3 sampling graphical reconstruction yields biases of 5% and 8%
for the star and induced subgraphs, respectively. Taken together, the results of these exercises
suggest that even when allowing for network formation model misspecification, graphical
reconstruction typically outperforms what the researcher otherwise would have estimated.

43This choice was motivated by Jackson and Rogers (2007b) who numerically show this corresponds to a 20%
steady-state rate of diffusion. This matches the microfinance take-up rate in our empirical application.
44We treat the networks as if they are fully-observed. In step 1(c) of the algorithm we sample each graph at
rate ψ. The authors of Banerjee et al. (2013) currently are obtaining a 100% network sample in a resurvey.
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6. Empirical Application

This section presents an empirical application using data from Banerjee, Chandrasekhar,
Duflo, and Jackson (2013), which studies how households’ decisions to participate in microfi-
nance diffuses through village networks. We use detailed demographic and social network data
in 43 villages in Karnataka, India, which range from a 1.5 to 3 hour’s drive from Bengaluru.
The data was collected six months before a microfinance institution started its operation in
those villages. The networks are randomly sampled at ∼ 46%.

The key outcome variable is the microfinance take-up decisions of households in the net-
work. Information about microfinance access is typically spread by members and the MFI has
administrative data which allows us to observe the diffusion of membership. Identification
is based on the principle that the MFI followed the same procedure in informing villagers
about microfinance in each village. The MFI identified a collection of pre-set individuals
in the village (anganwadi teachers, shop keepers, etc.), informed them about the program
in a private meeting, and then asked them to invite individuals to an information session.
Banerjee et al. (2013) contend that this scheme provides arguably exogenous variation in the
centrality of those households.

To account for the partial sampling, we assume that an edge forms between a pair of
households conditionally independently, given a set of covariates (GPS coordinate Euclidean
distance between the two households and the difference in the number of beds, number of
rooms, electricity access, and roofing material of the two households). We estimate the model
separately on each village using a logistic regression in which the observed data between two
households are coded as 1 (connected) and 0 (not connected). We have also repeated the
exercise but using a more sophisticated model, the subgraph generated model (Chandrasekhar
and Jackson, 2016). Results are qualitatively similar.

Panel A of Table 5 reports estimates of village-level regressions where the microfinance take-
up rate in a village is regressed on network characteristics. Columns 1-4 presents regressions
of microfinance take-up on network statistics, suggested by diffusion theory to be associated
with take-up. Column 1 shows the regression of take-up rate on the average eigenvector
centrality of the set of initially informed households. Diffusion theory suggests that eventual
take-up of microfinance ought to be higher when the first people to be informed are more
central. The increase of the average centrality in the set of nodes by 0.1 corresponds to a
16.3pp increase in take-up rate when using the sampled data; graph reconstruction places
this estimate as a 24.2pp increase in take-up rate. If the initially informed households were
from the 75th percentile of the centrality distribution as compared to the 25th percentile,
this represents a 7.5pp increase in microfinance take-up when estimated using reconstruction
as compared to a 4.5pp increase when using the sampled data. Recalling that the average
take-up rate is 18.49%, this suggests that sampling the network causes significant under-
estimation of the network effect. Column 2 presents the regression of take-up on the average
path length. If it takes one extra step on average to traverse the graph, this corresponds
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to a 5.4pp decrease in take-up of microfinance, according to the sampled network, though
reconstruction suggests that the estimate ought to be a 9.3pp decrease (with a t-statistic of
1.56). Furthermore, consistent with the results of Table 1, the t-statistics associated with the
estimates typically increase after reconstruction, suggesting that the researcher can better
detect anticipated effects with reduced measurement error.

In Panel B, we turn to household-level regressions where whether a household joins mi-
crofinance is regressed on network characteristics. Column 1 reports a regression on the
eigenvector centrality of a node (more central nodes should be more likely to hear about
the opportunity, under a simple diffusion model). Graphical reconstruction only yields a
modest change in this example: an increase in 0.1 of a household’s eigenvector centrality
corresponds to a 5.5pp increase in take-up likelihood using the sampled data and a 6.6pp in-
crease in take-up likelihood using graphical reconstruction. Column 2 provides a more stark
example in a regression of take-up on the inverse social distance of a household to the set of
initially informed households. The network effect more than doubles when using graphical
reconstruction. Being distance 1 versus 4 increases the probability of joining microfinance by
3.4pp under graphical reconstruction but only 1.6pp using the star graph. In addition, the
point estimate is not statistically significant at conventional levels (with a t-statistic of 0.9),
but graphical reconstruction establishes that zero is nearly excluded from a 90% confidence
interval (with a t-statistic of 1.62).

Finally, in Panel C we consider the regression of a household’s decision to join microfi-
nance or not on the sum of its neighbors’ decisions.45 The of ρ estimate corresponds to the
impact of one neighbor joining microfinance on the probability that a household joins micro-
finance. Column 2 displays the parameter estimate of the effect of the exogenous covariate,
γ, whether a household is initially informed about microfinance. Column 3 displays the pa-
rameter estimates of exogenous network effect, δ. This estimate describes the impact of one
extra neighbor being a initially informed on a household’s likelihood of joining microfinance.
We focus on column 1 as the endogenous network effect is the key parameter of interest. The
star subgraph data suggests that a one neighbor’s take-up corresponds to a 2.7pp decrease
in the likelihood of a household joining microfinance (which a researcher might interpret as a
substitution effect). Meanwhile, the star subgraph data where we use the microfinance data
and injection point data only for sampled households suggests that a one more neighbor’s
take-up corresponds to a 4.7pp increase in the likelihood of a household taking up (which a
researcher might interpret as an information or endorsement effect). Finally, the analytical
correction shows that a one neighbor’s take-up corresponds to a 7pp decrease in likelihood
of take-up by a household (again, suggesting that the substitution effect may dominate).
Therefore, the sampled data has lead to severe under-estimation and even sign-switching of

45The estimating approach ignores problems raised by a discrete dependent variable, following the approach
taken in this literature (e.g., Bramoulle and Kranton, 2007; Gaviria and Raphael, 2001; Sacerdote, 2001). The
estimated standard errors handle the heteroskedasticity of the binary response variable.
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the endogenous network effect of interest. In particular, partial sampling may cause the re-
searcher to mistake a substituting peer effect for a complementary peer effect. The remainder
of the table suggests that, in addition, the exogenous peer effect is also under-estimated and,
in the sampled data cases, the effects seem to load on the exogenous own covariate coefficient.

7. Sample Design

We discuss how researchers can adopt our framework to think about data collection. The
question we are interested in is: given that a researcher faces a budget constraint and needs
to trade off the sampling rate and the number of networks in her sample, is there a method
by which she can assess the trade-off?

Suppose that a researcher is interested in estimating a coefficient in a regression of an
outcome on a network statistic. Assume that the researcher has a project budget b and a
pilot budget p. Each village has a fixed cost f associated with the survey as well as a variable
cost c for sampling.46 We assume that the cost to sample individuals is linear and therefore
the cost to sample a ψ-sample of the village is cψn. Finally, let R̄ be the maximum number
of villages available to study.

We posit that the researcher is interested in minimizing mean-squared error (MSE) in the
estimation of β0.47 The relevant program is48

(7.1) min
ψ∈[0,1],R≤R̄

MSE(ψ,R) s.t. (cψn+ f)R ≤ b.

At the optimum ψ = (b/R−f)/(cn) and therefore we may consider the concentrated objective
function MSE(R) = MSE(ψ(R), R). The researcher may estimate the MSE by fully sampling
a small number of networks and hypothesizing β0 and R2 from the linear regression, in a
manner analogous to performing power calculations by positing effect sizes and intra-cluster
correlations before conducting a field experiment (e.g., Duflo et al., 2007). A researcher first
randomly selects k of the R̄ graphs using the pilot budget, where k = p/(cn + f). Then,
using these k networks, the researcher conducts a numerical experiment, sampling them at
different rates and applying graphical reconstruction to estimate the MSE. By doing this, she
can select the optimal ψ and R.
Algorithm (Research Design).

(1) Pick network statistics and network-based hypotheses to test.
(2) Hypothesize β, R2, and generate outcome variable.
(3) Randomly sample k = p/(cn+ f) out of R̄ villages and obtain entire networks.
(4) For each R ∈ {R, ..., R̄}

(a) Randomly draw, with replacement, R villages from the collection of k networks.

46This method can be applied to richer budgeting frameworks.
47Researchers can replace this with an objective function of their choosing.
48For formal asymptotics we may have to let b = bn grow such that bn

R̄n
→ k some positive constant.
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(b) Estimate MSE(R) using the sample and hypothesized parameter values.
(i) Sample each of the R village networks at rate ψ(R) = (b/R− f)/(cn).

(ii) Apply graphical reconstruction to estimate β̂ols using outcome variable
from (2).

(iii) Repeat 4(a) and 4(b).i-ii for B simulations.
(5) Pick R∗ ∈ argminR M̂SE(R) and pick ψ∗ = ψ(R∗).

The algorithm enables the researcher to estimate the trade-off she faces, given her interest in
specific network effects and the distribution of graphs in her region of study. We conduct a
simulation exercise to demonstrate this procedure. We set b = $152, 400, f = $1200, c = $12,
n = 200, R̄ = 150 and assume that the networks are drawn from the family described in
section 5 and the empirical Indian networks.49 We consider a grid of R ∈ {33, 40, 50, 60, 70}
and ψ ∈ {1, 0.7, 0.4, 0.2, 0.1}.

Figure 9 displays results for two node-level statistics, eigenvector centrality and clustering,
as well as a network-level statistic, the maximal eigenvalue of the adjacency matrix (λ1).
We repeat the exercise for both our simulated network data as well as the Indian networks.
The figure shows MSE(ψ(R), R) for sampled networks and graphical reconstruction. It also
displays a theoretical lower bound on MSE by plotting the MSE corresponding to using R

graphs sampled at 100% instead of at ψ(R). Of course, we find that MSE increases greatly as
we move away from 100% sampling and use the raw sampled data. Next we turn to graphical
reconstruction and focus on the star subgraph. Looking at the Indian networks, eigenvector
centrality has the lowest MSE at 40% sampling while clustering has an optimum at 70%. For
these statistics, the simulated networks give 100% as the optimum. Meanwhile, λ1 has the
lowest MSE at 100% sampling with the Indian networks but 20% sampling is the optimum
in the simulated networks.

Taken together, the results suggest that, first, performing graphical reconstruction is very
important, even with model misspecification as the researcher will not know the true families
generating the empirical networks. Second, the MSE-minimizing sampling rate depends
greatly on parameters, the network family, and the statistic of interest. It is difficult, if not
impossible, to say ex ante where the optimum lies: systematic procedures that depend on
the setting may be better than rules of thumb. Third, the results push against the prevailing
habit of researchers to obtain more cluster-units (e.g., villages) at lower sampling rates when
conducting cluster-level analysis. Our results suggest that, at times, just obtaining better
data with fewer cluster-units may be worthwhile. Though it is not surprising that network-
level statistics exhibit higher levels of MSE, as there are only R as opposed to nR observations,
this says nothing about the trade-off between the sampling rate and number of villages.

49The numbers are motivated from Banerjee et al. (2013).
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8. Conclusion

Applied social network analysis often use graphs constructed from data collected from a
partial sample of nodes. Even when nodes are selected randomly, the partial sampling induces
non-classical measurement error and consequently biases estimates of regression coefficients
and GMM parameters. Moreover, these biases are of unclear sign and magnitude. We
analytically examine the biases in the estimation of a number of network-based regression
and GMM models with applications to a variety of economic environments. To address
the problem in general, we develop a method to construct estimators that are consistent
and asymptotically normally distributed using graphical reconstruction, while allowing for
substantial heterogeneity across networks. Specifically, the method allows for every network
in the sample to be generated by a different model.

We conclude that network-based applied work must proceed cautiously, paying close at-
tention to network data quality. From an applied perspective, researchers should be careful
to work either with specifications which provide conservative results when facing sampled
data or implement bias correction procedures if possible. Moreover, researchers ought to
address the bias problem ex ante, either by choosing a unit of study where more complete
data is available, using graphical reconstruction to understand how mean-squared error may
vary with the sampling rate, or in cases where possible sampling in a way that preserves the
properties of the network of economic interest (recognizing that this may not always be possi-
ble). Undoubtedly, the performance of graphical reconstruction with empirical network data
will only improve as the burgeoning literature on consistently estimable network formation
models matures. To that end, from a theoretical perspective the lacuna in the literature is
the absence of network formation models that both allow for higher-order dependencies in
link formation and are also consistently estimable. This has now become a space of active
research.
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Table 1. t-statistic Diagnosis (Simulated Network Data)

1/4 1/3 1/2 2/3 1/4 1/3 1/2 2/3

[1] [2] [3] [4] [5] [6] [7] [8]

Panel A: Graph Level Regressions

6/7 7/7 7/7 7/7 5.32 2.15 1.61 1.29

5/7 7/7 6/7 3/7 1.61 1.41 1.26 1.08

Panel B: Node Level Regressions

5/6 5/6 6/6 6/6 4.09 2.74 2.21 1.83

6/6 6/6 6/6 6/6 3.23 2.94 2.46 1.93

# of Stats where tGR / tNaive > 1 out of total Mean of tReconstructed / tNaive

G|S

GS

G|S

GS

Notes: The left panel displays the fraction of times the t-statistic increases when using graphical reconstruction as compared to using the raw 
sampled network statistic across network statistics. The right panel displays the average ratio of t-statistic under graphical reconstruction to t-
statistic under the raw sampled network statistic across network statistics. We use 7 graph-level statistics and 6 node-level network statistics, 
identical to those used in Tables 1 and 2.  The simulation data is the same as that used in Tables 1 and 2.
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Table 3. Bias in Estimation of β0 in Jackson and Rogers (2007a) Model

Raw Network Data Graphical Reconstruction

1/4 1/3 1/2 2/3 1/4 1/3 1/2 2/3

[1] [2] [3] [4] [5] [6] [7] [8]

329.0% 250.0% 104.0% 55.0% 1.0% 0.0% 0.0% 0.0%

117.0% 85.0% 28.0% 12.0% 0.0% 0.0% 0.0% 0.0%

263.0% 230.0% 103.0% 53.0% 8.0% 8.0% 7.0% 6.0%

129.0% 92.0% 31.0% 14.0% 6.0% 5.0% 3.0% 1.0%

Panel A: Simulated Networks, Bias % in Estimation of β0

G|S

GS

Panel B: Indian Networks, Bias % in Estimation of β0

G|S

GS

Notes: Table presents bias in estimation of β0 the transmission parameter in the Jackson-Rogers diffusion model described in section 
3.3 of the text. Data generating process for the simulated networks is the same as in Table 2. Networks in panel B are same as those 
described in Table 6. We set β0 to exp(-2) and perform each simulation 100 times.
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Appendix A. Regularity Conditions

A.1. Regularity Conditions for Section 3.
Assumption A.1. Let (aR) be a sequence of normalizing constants.

(1) The data consists of (yrR, XrR)r≤R with E [εR|XR] = 0 and the model is yrR = α +
XrRβ0 + εrR.

(2) 0 < σ2
x <∞ where σ2

x := plimR→∞ a
−2
R ER

(
Xr − X̄Rr

)2
.

(3) σ2
v := plimR→∞ a

−2
R ERv2

r <∞.
(4) The mismeasured regressor is X∗rR = πRXrR + vrR, with limR→∞ πR = π, and

plimR→∞ a
−2
R ER [vrXr] = 0.

Assumption A.2. The sequence of networks {(GrR) : r = 1, .., R; R ≥ 1} is such that d (GrR) /a1n
P−→ c1

and d2 (GrR) /a2n
P−→ c2 for constants a1n, a2n ∈ o (nR).

A.2. Regularity Conditions for Section 4. Let P(Gr|zr; θr) be the distribution of the
graph Gr given covariates zr.
Assumption A.3 (Random Graph Model and First Stage Estimation).

(1) ∀r, Θr is a compact subset of Rdθ ; Gr is a Gn-valued random graph with P(Gr|zr; θr) ∈
C2(Θr) at every (G, z) ∈ Gn×Z; H̄r,R := supz maxG,θr

∣∣∣ ∂∂θP(G|z; θ)
∣∣∣, supR supr H̄R,r <

∞.
(2) The first stage estimation satisfies for some sequence of normalizing constants (aR),

b > 1, and r ≤ R, aR · (θ̂r − θ0r) = OP(1) and supr≤R ‖θ̂r − θ0r‖ = OP(a−1
R ·R1/b).

(3) For node-level analysis a−1
R ·
√
nR1+2/b → 0 and graph-level analysis a−1

R ·
√
R1+2/b → 0.

(4) β0 is an interior point of B, a compact subset of Rdβ .

Condition 1 ensures that the random graph family is smooth enough in the parameter, so
small deviations from the true parameter do not result in very different probability distribu-
tions. Condition 2 is a high-level condition on the first stage estimation which we microfound
in section 4.4. It guarantees that we can uniformly replace the estimated network formation
parameter for every graph in the sequence with its true value. Condition 3 is a rate require-
ment which relates the rate of estimation of the network formation process to the rate of
estimating the economic model of interest. Condition 4 is a standard interiority condition.

Let h denote a random variable.
Definition A.1. A sequence of measurable (potentially matrix-valued) functions {φi,r(hir;α) :
i = 1, .., nR, r = 1, ..., R} satisfies an envelope condition over α ∈ A if there exist measurable
functions Li,r(hir), with ‖φi,r(hir;α)‖ ≤ Li,r(hir) for every hir and α, and

√
nEnLi,r,R has

uniformly integrable vth moment for v ≥ 2.
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Definition A.2. A sequence of measurable (potentially matrix-valued) functions {φi,r(hir;α) :
i = 1, .., nR, r = 1, ..., R} is Lipschitz continuous in α ∈ A if there exist measurable functions
Mi,r(hir) with ‖φi,r(hir;α)− φi,r(hir; ᾱ)‖ ≤Mi,r(hir) ‖α− ᾱ‖ for every hir and α, ᾱ ∈ A, and
√
nEnMi,r,R has uniformly integrable vth moment for v ≥ 2.

We also use Ih|x(α) := E
[
∂
∂α′ log f(h|x;α) ∂

∂α log f(h|x;α)|x;α
]

to denote the conditional
information matrix with random variable h|x, density or pmf f(h|x), and parameter α.

Turning to the economic model, observe that the network statistic w(G) may be growing
or shrinking in n. For instance, the eigenvector centrality declines as it is a unit norm object.
The degree of a node may be Θ(1), Θ(logn), or Θ(n) depending on the graph family. In what
follows, in regression we assume that the model is such that all regressors are rescaled at the
appropriate rate: if they exhibit growth or shrinkage at bn, we assume that the models are
specified using w̃ := b−1

n w as regressors. Similarly, in GMM we assume that the moments and
network statistics, both of which may depend on R, are appropriately rescaled. We present
regularity conditions for least squares and GMM separately, though they essentially can be
nested since least squares does not require assuming the joint distribution of y and G.

Assumption A.4 (Linear Regression).

(1) E [ε|w] = 0, E [εε′|w] = Ω, p.d. with supR λmax (Ω) <∞
(2) E

[
‖wir‖k |xr; θr

]
and

∥∥∥Iwir|xr(θr)∥∥∥ for k = 1, 2 satisfy the envelope condition with
Li,r(xr).

(3) supR≥1 supr≤R var (
√
nEnwir(Gr)) < C1 <∞ and infR≥1 infr≤R var (

√
nEnEir(xr; θ0r)) >

C0 > 0, uniformly over the array.

Define gR(β) := En,REm(yir, wir(Gr);β) and f(m|x;β, θ) be known up to parameters.
Assumption A.5 (GMM).

(1) Ŵ = W + oP(1), W is p.s.d. and the model satisfies limR→∞WgR(β) = 0 only if
β = β0.

(2) The limits limR→∞ En,R [EEir(xr; θr, β)] and limR→∞ En,R
[
E ∂
∂β′Eir(xr; θr, β)

]
exist

uniformly over B ×
∏
r∈N Θr.

(3)
∥∥∥Imir|xr(β, θr)∥∥∥, E

[∥∥∥ ∂
∂β′m(Xir;β)

∥∥∥ |xr; θr, β′], and E
[
‖m(Xir;β)‖k |xr; θr, β′

]
for k =

1, 2 satisfy the envelope condition with envelope Li,r(xr).
(4) m(X;β) is continuously differentiable on the interior of B for every X ∈ X and

both m(X;β) and ∂
∂β′m(X;β) satisfy the Lipschitz condition with constant Mi,r(Xir),

where E [Mi,r(yir, wir)|xr] ≤ Li,r(xr).
(5) supR≥1 supr≤R var (

√
nEn [m(Xir;β0)]) < C1 <∞ and infR≥1 infr≤R var (

√
nEn [Eir(xr;β0, θ0r)]) >

C0 > 0, uniformly over the array.
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Assumptions A.4 and A.5 are similar, and not particularly restrictive, so we discuss the
GMM case. Assumption A.5.1 is a standard identification condition. Assumption A.5.2 is
standard (e.g., Andrews, 1994) and Assumption A.5.3 places uniform restrictions on higher
moments of the conditional moment, slope of the moment, and information matrix allowing
weak laws of large numbers to be applied. Assumption A.5.4 allows these convergences to be
uniform over the parameter space.

Assumption A.5.5 is what allows us to pass a central limit theorem to the conditional
random variable if the unconditional satisfies one.50 It is reasonable in practice because we
use independence across graphs and simply a uniform boundedness condition within graph.
This is substantially weaker than having to assume a within-graph central limit theorem for
mir, which would depend on the idiosyncrasies of the network formation model and network
statistics. However, it comes at the cost of requiring data from multiple networks. We make
this assumption because currently the statistics of networks literature has not character-
ized within-graph node characteristic interdependencies (e.g., the correlation of eigenvector
centrality between nodes for various random graph families).

A.3. Regularity Conditions for Section 4.4 (Examples).

A.3.1. Example 1: Conditional Edge Independence Model. First define a distance (pseudo-
metric) dΞ(·, ·) over the set of pairs, given by Ξ, where two pairs ij and kl’s distance is said to
be the minimum coordinate-wise distance between an element of the first pair and an element
of the second pair. Specifically, for sij , skl ∈ Ξ and dΛ(ti, tj) := ‖ti − tj‖1,

dΞ(sij , skl) := dΛ(ti, tj) ∧ dΛ(ti, tl) ∧ dΛ(tj , tk) ∧ dΛ(tk, tl).

To describe interdependence in the data, we define a mixing coefficient. Let D ⊂ Zd be an
integer lattice and to each s ∈ D We associate a random variable zs. Then {zs : s ∈ D} is
a random field and we are interested in controlling the dependence of zs and zs′ . Let AΩ be
the σ-algebra generated by a random field {zs : s ∈ Ω}. We define the mixing coefficient

αk,l(m) := sup {|P (A1 ∩A2)− P (A1) P (A2)| : Ai ∈ AΩi , |Ω1| ≤ k, |Ω2| ≤ l, d (Ω1,Ω2) ≥ m}

where d(Ω1,Ω2) = minx,y∈Ω1×Ω2 ‖x− y‖1. We will need to assume that the level of interde-
pendence goes to zero as the distance between the two subsets goes to infinity.51

50Since this paper focuses on the effect of sampling on network analysis and not on regression or GMM models
on graphs, we make the assumption that the underlying model satisfies reasonable regularity conditions if the
full networks were observed and focus on the effect of sampling and graphical reconstruction.
51The triangular array notation is cumbersome, see Jenish and Prucha (2009), but formally is {zs,R : s ∈
DR, R ∈ R} a triangular array defined on a sequence of probability spaces where DR is a finite subset of D
and
αk,l(m) := sup

R≥1
sup
{∣∣PR (A1 ∩A2)− PR (A1) PR (A2)

∣∣ : Ai ∈ ARΩi
,
∣∣ΩR1 ∣∣ ≤ k, |Ω2| ≤ l, Ωi ⊂ DR, d (Ω1,Ω2) ≥ m

}
.



ECONOMETRICS OF SAMPLED NETWORKS 58

Assumption A.6 (Mixing Conditions). ∀r, zr :=
{
zir : ti ∈ Λ ⊂ Zd

}
is a stationary mixing

random field, zijr := f(zir, zjr) satisfies supr E‖zijr‖p+δ . supr E‖z1r‖p+δ, and supr E ‖z1r‖p+δ <
∞ for p > 2 with (i) supr αr2,∞ (m) ≤ Cam for a ∈ (0, 1) or (ii) supr αr2,∞ (m) = o(m−d).
The assumption on f is not very restrictive. The most natural example is a covariate based
on the difference in characteristics of nodes i and j: zij = ‖zi − zj‖. It is easy to see that
E‖zij‖k ≤ 2kE‖z1‖k by the binomial theorem and stationarity. Because Asr is a measurable
function of zsr, it will inherit stationarity and mixing properties and therefore so will Xsr.

Assumption A.7 (Joint Convergence). Let Q(r)(θr) := plimn→∞ |Ξ|
−1∑

s∈Ξ Eq(Xs; θr).

(1) ∀η > 0, infr≤R
[
Q(r)(θ0r)− supθ:‖θ−θ0r‖>η Q(r)(θ)

]
> 0.

(2) D|v|q(Xsr; θ) satisfies a Lipschitz condition with B(Xsr) , for multi-index |v| ≥ 2.
(3) 2b−1 moments exist for envelope B(zsr) ≥ ‖∂Q(r)(θr)/∂θr‖.
(4) R = O(|Ξ|h) with h < p/2− γdp− 1 for some γ ∈ (0, 1)

Condition 1 is standard for identification, 2 requires sufficient smoothness, and 3 requires
that the score functions have well-behaved envelopes. If the link function is logistic, this is
satisfied. Condition 4 relates the number of networks to the number of nodes per network:
it needs to grow slow enough to be able to uniformly control the estimation error.

A.3.2. Example 2: Links and Triangles SUGM.
Assumption A.8 (Links and Triangles SUGM). Let the probability of links and triangles be
(p0L,r, p0T,r) =

(
θ0L,r
nhL

, θ0LTr
nhT

)
, where

(1) (θ0L,r, θ0T,r) ∈
[
D,D

]2
⊂ R2

+,
(2) hL ∈ (1/2, 1] and hT ∈ (hL + 1,min {3, 3hL}) or hL ∈ (1, 2) and hT ∈ [hL +

1,min {3, 3hL}),
(3) and R = nk for k < max {2− hL, 3− hT }.

This first two are just the assumptions required to get consistent and asymptotically normally
distributed parameter estimates in Chandrasekhar and Jackson (2016), Proposition 4. The
third will allow us to maintain a slow enough rate to get a uniform convergence of the objective
functions across the R networks.

Appendix B. Proofs for Section 3

Proof of Lemma 1. This follows from σw̃ · plim β̂ = σw̃ · β0
cov(w̃,w)
var(w̃) ≤ β0σw, using Cauchy-

Schwarz since |cov(w̃, w)| ≤ σwσw̃ and cov(w̃, w) > 0.

Lemma B.1. Under Assumption A.1, β̂ P−→ π−1β0
σ2
x

σ2
x+π−2σ2

v
.

Proof. The proof is standard and follows from plim β̂ = plim
(
a−2
R X∗

′
RX

∗
R

)−1
a−2
R (πRXR + vR)′XRβ0 =

β0
π

σ2
x

σ2
x+π−2σ2

v
.
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Proof of Proposition 3.1. For degree, from Lemma D.1 and D.2,

E[d(G|SrR)|GrR] = (ψ + Θ(n−1))︸ ︷︷ ︸
πR

d(Gr)︸ ︷︷ ︸
XrR

and E[d(GSr )|Gr] = (1− (1− ψ)2 + Θ(n−1))︸ ︷︷ ︸
πR

d(Gr)︸ ︷︷ ︸
XrR

.

Similarly, for graph clustering, from Lemma D.3 and D.4,

E
[
ρ(GS)
τ(GS) |GrR

]
= 1 · ρ(G)

τ(G) + o(1). and E
[
ρ(GS)
τ(GS) |GrR

]
= ψ(3− 2ψ)

1 + ψ(1− ψ) ·
ρ(G)
τ(G) + o(1).

Finally, for support, from Lemma D.5,

E
[
s
(
GS
)
|G
]

= ψ2 + 2ψ (1− ψ) {1−
∑
x (1− ψ)x P (x|G)}

ψ2 + 2 (1− ψ)ψ s (G) + o (1) ,

and
E
[
s
(
G|S

)
|G
]

=
{

1−
∑
x

(1− ψ)x P (x|G)
}
s (G) + o (1) .

So Assumption A.1 holds so the result follows from Lemma B.1.

Proof of Proposition 3.2. Recall ζr = d2(Gr)/d(Gr) and let log ζ̃r := log ζr + log γ which we
can write by Lemma D.6. To sign the bias we are interested in

lim
R→∞

R−1∑ cov
(
log−1(d2(G̃r)d(G̃r)−1), log−1 ζr

)
R−1∑ var

(
log−1(d2(Ḡr)d(G̃r)−1)

) .

First observe that

R−1∑ cov
(
log−1(d2(G̃r)d(G̃r)−1), log ζr

)
= R−1∑ cov

(
log−1 ζ̃r, log−1 log ζr

)
+ oP(1).

This follows from
∣∣∣log−1(d2(G̃r)d(G̃r)−1)− log−1 ζ̄r

∣∣∣ = oP(1) which we can see by considering
the numerator of the fraction and noting∣∣∣log ζ̃r − log(d2(G̃r)d(G̃r)−1)

∣∣∣ ≤ ∣∣∣log d2(Gr)− log d(Gr) + log γ − log d2(G̃r) + log d(G̃r)
∣∣∣ = oP(1),

by Lemma D.6, where γ = k(ψ)/ψ or ψ depending on GS or G|S , using the fact that log (·)

is Lipschitz on R≥1. Therefore we are interested in limR→∞
R−1

∑
cov
(
log−1 ζ̃r,log−1 ζr

)
R−1

∑
var
(
log−1 ζ̃r

) .

If γ > ζ−1
r for every r, then cov

(
log−1 ζ̃r, log−1 ζr

)
is positive for every r by definition. In

addition, for every r, since log γ < 0,

cov
(
(log ζr + log γ)−1, log−1 ζr

)
< var

(
log−1 ζr

)
.

This shows limR→∞
R−1

∑
cov
(
log−1 ζ̃r,log−1 ζr

)
R−1

∑
var
(
log−1 ζ̃r

) < 1.
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Next, assume that γ < ζ−1
r . Then sign

{
cov

(
log−1 ζ̃r, log−1 ζr

)}
depends on the distribu-

tion of ζr; it cannot be signed. Therefore plimR−1∑ cov
(
log−1 ζ̄r, log−1 ζr

)
can take either

sign. This is easily seen geometrically.
Finally, that the analytical corrections are consistent follows from the above argument in

the first step, noting that we use log(γd2(Ḡr)d(Ḡr)−1) and therefore∣∣∣log ζr − log(γd2(G̃r)d(G̃r)−1)
∣∣∣ ≤ ∣∣∣log ζ̃r − log(d2(Ḡr)d(G̃r)−1)

∣∣∣+ |log γ − log γ| = oP(1)

which completes the result.

Proof of Proposition 3.3.
Step 1: G|S is a compression of both GS and G, so λk(G|S) ≤ λk(G), λk(GS) by the Cauchy

interlacing theorem. Noticing [A(GS)]ij ≤ [A(G)]ij , λ1(GS) = supα∈Sn−1 α′A(GS)α ≤
supα∈Sn−1

∑
αiαj [A(G)]ij = λ1(G).

Step 2: It is clear that Tr(A(GS)k) < Tr(Ak), since we can partition

n−1 ∑
i1,..,ik∈V k

Ai1i2 ...Aiki1 = n−1∑
A
Ai1i2 ...Aiki1 + 1

n

∑
V krA

Ai1i2 ...Aiki1

withA = {i1, ..., ik : ∀t ∈ [k], it∨it+ε(t) ∈ S, ε(t) ∈ {−1, 1}} and
∑
V krAA(GS)i1i2 ...A(GS)iki1 =

0. Let Sk,σ be the set of all k-sequences using elements from σ. Let ηj be the number of
terms in the sum with j distinct nodes. Then notice 1

n

∑
ηj = µk. For A(G|S), we have

E
[
µk(G|S)|G

]
= m−1 ∑

σ∈S

∑
i1,...,ik∈Sk,σ

Ai1i2 ...Aiki1P (σ)

= m−1P (σ)
∑
σ

k∑
j=2

(
n− j
m− j

)
ηj = m−1

k∑
j=2

(m)j
(n)j

ηj = n−1
k∑
j=2

(m− 1)j
(n− 1)j

ηj ,

completing the proof.

Proof of Proposition 3.4. We use T to denote the row-stochastized adjacency matrix, Tij =
Aij/di, instead of w, where di is the degree of node i to follow the literature (e.g., Jackson,
2008b). Let T̄ = T (G̃).

Step 1: We show the argument for the case with GS . The argument for G|S is similar, but
omitted. Let

ū = M0
(
ρ(T − T̄ )y + δ(T − T̄ )x+ ε

)
= M0u,

where M0 = In−ιι′/n. The instrument is Z̄ = [ι, x, T̄ x, T̄ 2x]. It suffices to show E[Z̄ ′M0u] 6=
0. We can write

E
[
Z̄ ′ū|x,G

]
= E

[(
ι′M0u, x′M0u, x′T̄ ′M0u, x′T̄ 2M0u

)′∣∣∣∣x,G] .
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The first two components mechanically have expectation zero. By the reduced form rep-
resentation in section 3.2, we can write y as a function of x and powers of T . The third
component requires considering terms of the form x′E

[
T̄ ′M0

(
T̄ − T

)
|x,G

]
δx. For generic

x, this is zero if and only if E
[
T̄ ′M0

(
T̄ − T

)
|x,G

]
= 0. If we show Tr

(
E
[
T̄ ′M0T̄ |G

])
6=

Tr
(
E
[
T̄ ′M0T |G

])
, the preceding equation does not hold. We pass the expectation by lin-

earity, use a cyclic permutation and write

E
[
Tr(T̄ ′M0T̄ )

]
= E

[
Tr(M0T̄ T̄ ′)

]
= E

[
Tr(T̄ T̄ ′)

]
− n−1E

[
Tr(T̄ ′ιι′T̄ )

]
.

Let 〈·, ·〉F be the Frobenius inner product, 〈A,B〉F = Tr (AB′) and ‖·‖F the Frobenius
norm, ‖A‖2F = Tr(AA′). In Lemmas D.7, D.8, D.9, and D.10 we compute the following four
terms E

[
‖T̄‖2F

]
, E

[〈
T, T̄

〉
F

]
, n−1E

[
Tr(T̄ ′ιι′T̄ )

]
, and n−1E

[
Tr(T̄ ′ιι′T )

]
which we then use

to complete the argument. We find

Tr
(
E
[
T̄ ′M0T |G

])
= (1− n−1){‖T‖2F +

∑
i

ξ2(di, ψ)} − n−1ξ4(~d, ψ), Tr
(
E
[
T̄ ′M0T̄ |G

])
= (1− n−1){‖T‖2F +

∑
i

ξ1(di, ψ)} − n−1ξ3(~d, ψ).

In Lemma B.2 we show that (n− 1)
∑
i {ξ2(di, ψ)− ξ1(di, ψ)}−

{
ξ4(~d, ψ)− ξ3(~d, ψ)

}
6= 0 for

all but finitely many ψ ∈ (0, 1), with an upper bound of 2 ·maxi di points, which completes
the argument.

Step 2: We now show that the restriction of the set of observations in the second stage to
i ∈ S yields E [ZGSuGS ] = 0. This follows from the fact that T̄ y = Ty for all such i ∈ S, and
therefore ū = ε. The result follows from the fact that the instrument is correlated with Ty

but orthogonal to ε, despite measurement error.

Lemma B.2. Given a graph with non-degenerate coefficients above, for only a finite number
of ψ ∈ (0, 1) can Tr

(
E
[
T̄ ′M0T̄ |G

])
6= Tr

(
E
[
T̄ ′M0T |G

])
.

Proof. Let f (ψ,G) := (n− 1)
∑
i {ξ2(di, ψ)− ξ1(di, ψ)} −

{
ξ4(~d, ψ)− ξ3(~d, ψ)

}
. Showing

Tr
(
E
[
T̄ ′M0T̄ |G

])
6= Tr

(
E
[
T̄ ′M0T |G

])
is equivalent to showing f(ψ,G) 6= 0. By the

definitions of ξk, f(ψ,G) is a rational function in ψ, with a numerator polynomial of degree
bounded by 2·maxi di and coefficients given by G. As we assume that the graph does not yield
coefficients so that the rational function is degenerate at zero, by the fundamental theorem
of algebra, there are at most 2 ·maxi di roots of the numerator polynomial in ψ. This bounds
the number of sampling rates ψ ∈ (0, 1) that would exactly satisfy the exclusion restriction
for G.

Proof of Proposition 3.5.
Step 1: Let β∗ solve ρ̄ =

∑
d

β∗σ(β∗)d
1+β∗σ(β∗)d P̄(d) where P̄(d) is a sampled degree distribution.

By (3.1) and that βσ(β)d
1+βσ(β)d is strictly increasing in d when β > 0, we have β∗ > β0 provided
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first order stochastic dominance of P(d) over P̄(d). For GS , for every d the count of nodes
with at most degree d is weakly increasing under sampling; first order stochastic dominance
follows. For G|S the argument is more delicate and relies on this being true in the limit.
We use lim supR→∞ supr≤R supd |PRr(d)− P∞r(d)| = 0 which we did not need for the star
subgraph, which implies lim supR→∞ supr≤R supd

∣∣∣P|SRr(d)− P|S∞r(d)
∣∣∣ = 0. Let F|S(x) be the

CDF for P|S∞ and F (x) for P∞.

F|S(x) =
∑
d≤x

∑
i≥d

P(i)
(
i

d

)
ψd(1− ψ)i−d =

∞∑
i=1

P(i)
∑
d≤i∧x

(
i

d

)
ψd(1− ψ)i−d

=
x∑
i=1

P(i) · FBin(i,ψ)(i) +
∞∑

i=x+1
P(i) · FBin(i,ψ)(x)

=
x∑
i=1

P(i) +
∞∑

i=x+1
P(i) · FBin(i,ψ)(x) ≥

∑
d≤x

P(d) = F (x),

which confirms the stochastic dominance. The usual argument for GMM consistency shows
plim β̂ > β0 since in the limit β∗ for every graph is greater than β0, proving the result.

Step 2: By Jackson and Rogers (2007b), in graph r infection can spread only if β0 > ζ−1
rR .

By arguments analogous to those in Lemma D.6,

E[d(G|S)]/E[d2(G|S)] = ψEd
ψ2Ed2 + (1− ψ)ψEd+o(1) = ζ−1+(1−ψ)· 1 + ζ−1

ψζ + (1− ψ)︸ ︷︷ ︸
Positive

+o(1) and

E[d(GS)]/E[d2(GS)] = ψ(2− ψ)Ed
ψEd2 + ψ(1− ψ2)Ed+o(1) = ζ−1 +(1−ψ)

{
1− ζ−1(1 + ψ)
ζ + (1− ψ2)

}
︸ ︷︷ ︸
Positive if ζ>(1+ψ).

+o(1).

The result follows since, by assumption on δrR, β0 < ζ−1(G̃rR) w.p.a.1 for every r, for G̃
either G|S or GS .

Appendix C. Proofs for Section 4

Proof of Lemma 4.1. For every network an ·(θ̂r−θ0r) = −
(
∇θV̂(r)(θ̄r)

)−1
·an · V̂ (θ0r). By the

Lipschitz condition 4 of the Lemma and Lemma E.2, supr
∥∥∥∇θV̂(r)(θ̄r)−∇θV̂(r)(θ0r)

∥∥∥ = oP(1),
which can be seen from

sup
r

∥∥∥∇θV̂(r)(θ̄r)−∇θV̂(r)(θ0r)
∥∥∥ ≤ sup

r
‖Br‖ · sup

r

∥∥∥θ̂r − θ0r
∥∥∥ = oP(1).

By condition 5 of the Lemma supr
∥∥∥∥an · (θ̂r − θ0r) +

(
∇θV(r)(θ0r)

)−1
· an · V̂ (θ0r)

∥∥∥∥ = oP(1).

By condition 3, we have that an·supr ‖V̂(r)(θr)‖ = OP(R1/b), since E[‖ supr an·V̂(r)(θ0r)‖b]1/b ≤
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R1/b supr ‖an · V̂(r)(θ0r)‖`b and therefore an · supr
∥∥∥θ̂r − θ0r

∥∥∥ = OP(R1/b). If instead of b mo-
ments we assume all moments exist, then

√
log(R+ 1) replaces R1/b by a standard Orlicz

inequality (e.g., Van der Vaart and Wellner, 1996).

C.1. Proof of Theorem 4.1. The argument is entirely standard and follows by expanding
around θ̂ uniformly and then checking that conditional expectations preserve asymptotic
normality. We separate the OLS and GMM cases.

Proof of Theorem 4.1.1. Consistency is clear so we directly check normality. Let uir =
εir+(wir(Gr)−Eir(xr; θ̂r))β0 and HR(θ̂) := (nR)−1E(x; θ̂)′E(x; θ̂). As usual

√
nR

(
β̂ − β0

)
=

HR(θ̂)−1 · (nR)−1/2E(x; θ̂)′u.
Step 1: To showHR(θ̂)−HR,0(θ0) = oP(1), whereHR,0(θ0) := EnR [E[Eir(xr; θ0r)Eir(xr; θ0r)′]].

By a term-by-term expansion,

HR(θ̂) = HR(θ0) + EnR
[
Ψ̇ir(θ̄r)

(
Ip ⊗ (θ̂r − θ0r)

)]
where Ψ̇ir(θ̄r) = ∂

∂θ′

{
Eir(xr; θ̄r)Eir(xr; θ̄r)′

}
is a p × pk matrix of derivatives w.r.t. θrk,

which exists by Assumption A.3. By Lemma E.4 the second term oP(1) since
∥∥∥Ψ̇ir(θ̄r)

∥∥∥ .∥∥∥ ∂
∂θ′Eir(xr; θ̄r)

∥∥∥ ∥∥∥Eir(xr; θ̄r)∥∥∥ . Li,r(xr)2, which by Assumption A.4.2 follows from∥∥∥Eir(xr; θ̄r)∥∥∥ ≤ Li,r(xr) and
∥∥∥∥ ∂∂θ′Eir(xr; θ̄r)

∥∥∥∥ ≤ √E
[
‖wir‖2 |xr; θ̄r

]
·
√

E
[∥∥∥Iwir|xr(θ̄r)∥∥∥ |xr; θ̄r] ≤ Li,r(xr).

That HR(θ0)−HR,0(θ0) = oP(1) follows from Lemma E.3.
Step 2: We show (nR)−1/2E(x; θ̂)′u  N (0, V ). Let fir(θr;β) := Eir(xr; θr)(wir(Gr) −

Eir(xr; θr))′β. Then

E(x; θ̂)′u/
√
nR = f(θ0;β0)/

√
nR+ E(x; θ0)′ε/

√
nR+

√
nREnR

[
Φ̇ir(θ̄r)

(
Ip ⊗ (θ̂r − θ0r)

)]
where Φ̇ir(θ̄r) = ∂

∂θr

{
fir(θ̄r;β0) + Eir(xr; θ̄r)εir

}
.

Clearly E [fir(θ0r, β0)] = 0 and E [Eir(xr; θ0r)εir] = 0.52 Let gir(θ0r;β0) := fir(θ0r;β0) +
Eir(xr; θ0r)εir. That

√
nREn,Rgir(θ0r, β0) N (0, V ), where V = limERvar (

√
nEngir(θ0r, β0)),

follows from Lemma E.4 which can be applied by Assumption A.4.3.
Finally, the Φ̇ir(θ̄r) term is controlled by Lemma E.1 using

∥∥∥ ∂
∂θ′ fir(θ̄r;β0)

∥∥∥ .P Li,r(xr)2,
which follows from∥∥∥∥ ∂∂θ′ fir(θ̄r;β0)

∥∥∥∥ ≤ sup
β∈B
‖β‖ ·

∥∥∥∥ ∂∂θ′Eir(xr; θ̄r)
∥∥∥∥ ∥∥∥∥wir(Gr)− ∂

∂θ′
Eir(xr; θ̄r)

∥∥∥∥
. Li,r(xr) ‖wir(Gr)‖+ Li,r(xr)2 .P Li,r(xr)2

as ‖wir(Gr)‖ .P E [‖wir(Gr)‖] ≤ E [Li,r(xr)].

52The former by iterated expectations and the latter by assumption on ε.
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Next, we turn to GMM. The argument is conceptually similar and depends on uniform
expansions. The main difference is control of score functions. Let us define the conditional
score53 with respect to β and the conditional score with respect to θr as Smir|xr(β; θr) :=
∂
∂β′ log f(mir|xr;β, θr) and Smir|xr(θr;β) = ∂

∂θ′r
log f(mir|xr;β, θr). The corresponding infor-

mation matrices are

Imir|xr(β; θr) = E
[
Smir|xr(β; θr)Smir|xr(β; θr)′|xr;β, θr

]
and

Imir|xr(θr;β) = E
[
Smir|xr(θr;β)Smir|xr(θr;β)′|xr;β, θr

]
.

Notice that
∥∥∥Imir|xr(β; θr)

∥∥∥ ≤ ∥∥∥Imir|xr(β, θr)∥∥∥ and
∥∥∥Imir|xr(θr;β)

∥∥∥ ≤ ∥∥∥Imir|xr(β, θr)∥∥∥, since
each is a projection of the larger information matrix, by Cauchy’s interlacing theorem. We
also use a shorthand Eir(β, θr) for Eir(xr;β, θr).

Lemma C.1. Under Assumptions A.3 and A.5, β̂gmm
P−→ β0.

Proof. In four steps we check conditions 1-4 of Andrews (1994), Theorem A-1.
Step 1: The first part is clear by Assumption A.5.2, since E [m(yir, wir;β)|xr; θr, β] =

Eir(β, θr). That Eir(β, θr) satisfies a uniform law of large numbers,

sup
(β,θ)∈B×

∏
r∈N Θr

‖EnR {Eir(β, θr)− EEir(β, θr)}‖ = oP(1),

follows from a pointwise convergence, which is clear, and stochastic equicontinuity. Stochastic
equicontinuity follows from a Lipschitz condition. Define the following.

ε1i,r(β̄, β, θ′r) := E
[
∂

∂β′
m(yir, wir(Gr); β̄)|zr, Aor, yr; θr, β

]
,

ε2i,r(β′, β̃, θ′r) := E
[
m(yir, wir(Gr);β′) · Smir|xr(β̃; θ′r)′|zr, Aobsr , yr; θr, β̃

]
,

and ε3i,r(β′, θ̄r, θr) := E
[
m(yir, wir(Gr);β′) · Smir|xr(θ̄r;β

′)′|zr, Aobsr , yr; θr, β′
]
.

By a Taylor expansion it follows that∥∥∥E [m(yir, wir(Gr);β′)|zr, Aobsr , yr; θ′r, β′
]
− E

[
m(yir, wir(Gr);β)|zr, Aobsr , yr; θr, β

]∥∥∥
is bounded by

∥∥∥ε1i,r(β̄, β, θ′r) + ε2i,r(β′, β̃, θ′r)
∥∥∥ ‖β′ − β‖+

∥∥∥ε3i,r(β̄, θ′r)∥∥∥ ‖θ′r − θr‖. Then we have
by Assumption A.5.3,∥∥∥ε1i,r(β̄, β, θ′r)∥∥∥ ≤ E

[∥∥∥∥ ∂

∂β′
m(yir, wir(Gr); β̄)

∥∥∥∥ |xr; θ′r, β] ≤ Li,r(xr),

53The right-hand side of the expression abuses notation. Given that graphs occupy a discrete space, with
continuously distributed disturbances in the model we may formally have to decompose the measure into its
absolutely continuous part and its pure point part (e.g., Lebesgue decomposition theorem). We rule out the
singular part by assumption.
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[
‖mir(β′)‖2 |xr; θ′r, β̃

]
·
√∥∥∥Imir|xr(β̃; θ′r)

∥∥∥ ≤ Li,r(xr), and

∥∥∥ε3i,r(β′, θ̄r, θr)∥∥∥ ≤ √E
[
‖mir(β′)‖2 |xr; θ′r, β̃

]
·
√∥∥∥Imir|xr(θ̄r;β′)∥∥∥ ≤ Li,r(xr).

As such, with dB×
∏
r∈N Θr((β, θ), (β

′, θ′)) := ‖β − β′‖ ∨ supr∈N ‖θr − θ′r‖,∥∥En,R {Eir(β, θr)− Eir(β′, θ′r)}∥∥ ≤ En,RLi,r·sup
r≤R

(∥∥β′ − β∥∥+
∥∥θ′r − θr∥∥) ≤ En,RLi,r·dB×∏

r∈N Θr((β, θ), (β
′, θ′))

Since supR≥1 En,R [ELi,r] < ∞, by Andrews (1992) Lemma 2 it follows that stochastic
equicontinuity holds and that En,REEir(β, θr) is uniformly continuous in (β, θ) ∈ B×

∏
r∈N Θr.

Step 2: The second and third part of the second condition are clear: by Assump-
tion A.5.1 Ŵ − W = oP(1) and by Assumption A.3

(
θ̂1, ..., θ̂R

)
∈
∏R
r=1 Θr. We need

only show supβ∈B
∥∥∥limR→∞ En,REEir(β, θ̂r)− limR→∞ En,REEir(β, θ0r)

∥∥∥ = oP(1) for θ0 ∈∏
r∈N Θr. This follows from a Taylor expansion and the fact that

sup
β∈B

lim
R→∞

En,R
∥∥∥∥E ∂

∂θ′
Eir(β, θ̄r) ·

(
I ⊗ (θ̂r − θ0r)

)∥∥∥∥ ≤ lim sup
R→∞

En,RELi,r · sup
r

∥∥∥θ̂r − θ0r
∥∥∥ = oP(1)

where supr
∥∥∥θ̂r − θ0r

∥∥∥ = oP(1) by Assumption A.3.3 and lim supR→∞ ER,RELi,r < ∞ by

A.5.3. This, in turn, results from the fact that
∥∥∥E ∂

∂θ′Eir(β, θ̄r)
∥∥∥ ≤ ELi,r. To see this, note∥∥∥E ∂

∂θ′Eir(β, θ̄r)
∥∥∥ ≤ E

[∥∥∥E [mir(β)Smir|xr(β; θ̄r)|xr;β, θ̄r
]∥∥∥]. By Assumptions A.5.3 and A.5.4,∥∥∥E ∂

∂θ′Eir(β, θ̄r)
∥∥∥ ≤ E

[√(
E
[
‖Mi,r(Xir)‖2 |xr;β, θ̄r

])
·
√∥∥∥Imir|xr(β; θ̄r)

∥∥∥] ≤ ELi,r(xr).
Step 3: This follows from E ‖Eir(β, θr)‖ ≤ ELi,r and lim supn→∞ En,RELi,r <∞.
Step 4: By iterated expectations gn(β) = En,RE [E [m(Xir;β)|xr; θ0r, β0]] = En,REηir(β, θ0r, β0)

where ηir(β, θr, β) := Eir(β, θr). By the identification condition, Assumption A.5.1

W lim
R→∞

En,REηir(β, θ0r, β0) 6= 0 and W lim
R→∞

En,REEir(β, θ0r) 6= 0

for β 6= β0, but W limR→∞ En,REEir(β0, θ0r) = W limR→∞ En,REηir(β0, θ0r, β0) = 0. By
positive semi-definiteness of W , letting K ′K = W , observe that 0 6= Wf(β) = K ′Kf(β)
implies Kf(β) 6= 0. It follows that Q(β, θ0,W ) > Q(β0, θ0,W ) for any β 6= β0.

Proof of Theorem 4.1.2.
Step 1: The estimator satisfies for γ̂n,R(β̂; θ̂) := En,R

[
Eir(β̂, θ̂r)

]
,[

∂

∂β′
γ̂n,R(β̂; θ̂)

]′
Ŵ
√
nRγ̂n,R(β̂; θ̂) = oP(1).

A term-by-term expansion yields
√
nRγ̂n,R(β̂; θ̂) =

√
nRγ̂n,R(β̂; θR0 )+

√
nREn,R

[
Ψ̇ir(θ̄r; β̂)

(
Iq ⊗ (θ̂r − θ0r)

)]
,

where Ψ̇ir(θ̄r; β̂) = ε3i,r(β̂, θ̄r, θ̄r) has been controlled in the preceding lemma. Similarly
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∂
∂β′ γ̂n,R(β̂; θ̂) = ∂

∂β′ γ̂n,R(β̂; θR0 ) + En,R
[
Φ̇ir(θ̄r; β̂)

(
Iq ⊗ (θ̂r − θ0r)

)]
,

Φ̇ir(θ̄r; β̂) = E
[
∂

∂β′
m(yir, wir; β̂)Smir|xr(θ̄r; β̂)|Aor, yr, zr; θ̄r, β̂

]
+ E

[
m(yir, wir; β̂)Smir|xr(β̂; θ̄r)Smir|xr(θ̄r; β̂)|Aor, yr, zr; θ̄r, β̂

]
.

We can bound the first term by (E[‖ ∂
∂β′m(yir, wir; β̂)‖2|xr; θ̄r, β̂]·E[‖Smir|xr(θ̄r; β̂)‖2|xr; θ̄r, β̂])1/2

and the second by√√√√E
[∥∥∥∥ ∂

∂β′
m(yir, wir; β̂)

∥∥∥∥2
|xr; θ̄r, β̂

]√√√√√E
[∥∥∥Smir|xr(β̂; θ̄r)

∥∥∥4
|xr; θ̄r, β̂

]
·
√

E
[∥∥∥Smir|xr(θ̄r; β̂)

∥∥∥4
|xr; θ̄r, β̂

]

and therfore
∥∥∥Φ̇ir(θ̄r; β̂)

∥∥∥ ≤ 2Li,r(xr). By Lemma E.1,
[
∂
∂β′ γ̂n,R(β̂; θR0 )

]′
Ŵ
√
nRγ̂n,R(β̂; θR0 ) =

oP(1).
Step 2: A term-by-term expansion for the jth term yields

√
nRγ̂jn,R(β̂; θR0 ) =

√
nRγ̂jn,R(β0; θR0 )+

√
nR ∂

∂β′ γ̂n,R(β̃; θR0 )
(
β̂ − β0

)
, so it remains to be seen that

∥∥∥ ∂
∂β′ γ̂n,R(β̃; θR0 )−M

∥∥∥ = oP(1),

where M = limn→∞ EnR
[
E ∂
∂β′Eir(xr;β0, θ0r)

]
, and that

√
nRγ̂n,R(β0; θR0 ) N (0,Ω), where

Ω := limn→∞ ER [var (
√
nEnEir(xr;β0, θ0r))]. For the derivative,∥∥∥∥ ∂

∂β′
γ̂n,R(β̃; θR0 )−M

∥∥∥∥ ≤ ∥∥∥∥ ∂

∂β′
γ̂n,R(β̃; θR0 )− EnRE ∂

∂β′
Eir(xr; β̃, θ0r)

∥∥∥∥
+
∥∥∥∥EnRE ∂

∂β′
Eir(xr; β̃, θ0r)− lim

n→∞
EnRE ∂

∂β′
Eir(xr; β̃, θ0r)

∥∥∥∥
+
∥∥∥∥ lim
n→∞

EnRE ∂

∂β′
Eir(xr; β̃, θ0r)−M

∥∥∥∥ .
The first term is oP(1) by a uniform law of large numbers for the derivative which exists by
Assumption A.5.4 and the second term is oP(1) by as the limit exists uniformly over B by
Assumption A.5.2. The final term is oP(1) as β̃ − β0 = oP(1) by continuity.

To show
√
nRγ̂n,R(β0; θR0 )  N (0,Ω), by Assumption A.5.5 we may apply Lemma E.4

with m(Xir;β0) = Yir, Eir(xr;β0, θ0r) = Zir, and xr = Xr in the notation of the lemma. It
is clear that Ω := limn→∞ ER [var (

√
nEnEir(xr;β0, θ0r))] , exists under these conditions since

for every r, λmax (var (
√
nEnm(Xir;β0))) ≥ λmax (var (

√
nEnEir(xr;β0, θ0r))).

C.2. Example 1: Conditional Edge Independent Models.
Proof of Proposition 4.1. We check the conditions of Lemma 4.1. The first condition is clear
by definition and Assumption A.7. Condition 2 is shown in Lemma E.6. We show directly
supr

∣∣∣|Ξ|−1/2 EΞ[v(Xrs; θ0r)]
∣∣∣ = OP(R1/b) in Lemma E.5, which is what condition 3 is used

for in the proof of Lemma 4.1. The Lipschitz condition, condition 4, follows from a secondary
expansion and the assumption of the existence of an envelope function. That is,

|Ξ|−1 ∑
s∈Ξ
{∇θv(Xrs; θ∗r)−∇θv(Xrs; θ0r)} = |Ξ|−1 ∑

s∈Ξ
Frs (I ⊗ (θ∗r − θ0r))



ECONOMETRICS OF SAMPLED NETWORKS 67

where Frs is a conformable matrix of derivatives evaluated at an intermediate value and
Frs ≤ B, which can be done by Assumption A.7.2. The Hessian condition, condition 5, hold
by the envelope condition and Chebyshev’s inequality.

C.3. Example 2: Links and Triangles SUGM.
Proof of Proposition 4.2. We sketch the proof here for brevity, checking the conditions of
Lemma 4.1. The argument is similar to the proof of Proposition 4.1. Condition 1 requires
standard conditions for consistency: a unique maximum at θ0r, compactness which is as-
sumed, smoothness of derivatives (the moment function is analytic in parameters so this
holds), and uniform law of large numbers, all of which are shown in Chandrasekhar and
Jackson (2016), proof of Proposition 4 (in particular in proofs of Proposition D.1 which
shows identification and D.2 which shows consistency). Condition 4 requires a Lipschitz
condition, which is shown in Chandrasekhar and Jackson (2016), proof of Proposition D.2.
Condition 3(i) follows from the the proof of asymptotic normality in Chandrasekhar and
Jackson (2016) in Lemma D.4. Condition 3(ii) follows from an argument identical to that of
Lemma E.5. Since the (appropriately normalized) moment function is asymptotically nor-
mally distributed, and because the summand is just a binary variable indicating presence
or absence of a subgraph, then certainly any bth moment exists (all moments exist), so the
same argument of Lemma E.5 applies. Condition 5 follows from the fact that the moment
summand has an envelope with arbitrary moments and Chebyshev’s inequality.

The main item to check is condition 2: that the objective functions uniformly converge.
The argument is nearly identical to that in the proof of Lemma E.6. Where we then use
Lemma E.7 to control the final term, we can replace it with the computations below.

Here it is useful to write the GMM objective function, call it Q̂ in terms of the moment
functions, call them M̂ , since we need to only control the moment functions, as is clear by
adding and subtracting:∣∣∣Q̂(r) (θ)−Q(r) (θ)

∣∣∣ =
∣∣∣M̂(r) (θ)′ M̂(r) (θ)−M(r) (θ)′M(r) (θ)

∣∣∣
≤
∥∥∥M̂(r) (θ)′

∥∥∥ ∥∥∥M̂(r) (θ)−M(r) (θ)
∥∥∥+

∥∥∥M̂(r) (θ)′ −M(r) (θ)′
∥∥∥ ∥∥∥M(r) (θ)

∥∥∥
where

M̂(r)(θ) =

nhL(n
2
) ∑
i<j

{Aij − EθAij},
nhT(n

3
) ∑
i<j<k

{AijAikAjk − EθAijAikAjk}

′ .
To simplify notation let Xij = Aij − EAij and Xijk = AijAikAjk − EAijAikAjk.

The argument is identical to that in the proof of Lemma E.6, but in the final step instead
of using the envelope B we can directly use the moment summands themselves. There we
had to appeal to the random field that generated the covariates and show that under sensible
assumptions, sets that are far apart are near independent.



ECONOMETRICS OF SAMPLED NETWORKS 68

In this case we can rely on computations in Chandrasekhar and Jackson (2016) that directly
show under reasonable assumptions the covariance terms are small relative to the variance
terms. By the proof of Lemma D.4 in Chandrasekhar and Jackson (2016), with SL, the share
of links, observe that (applying Corollary D.1), we can write

P

∣∣∣∣∣∣ 1(n
2
) ∑
i<j

Xij

∣∣∣∣∣∣ > ηn−hL

 ≤ var (
∑
Xij)(n

2
)2
η2

n2hL ≤ n2hL
(n

2
)
var (Xij) + o

((n
2
)
var (Xij)

)(n
2
)2
η2

. n2hL var (Xij)(n
2
) = n2hL p0L (1− p0L)(n

2
) . Θ

(
nhL−2

)
.

Similarly, turning to ST , the share of triangles,

P

∣∣∣∣∣∣ 1(n
3
) ∑
i<j<k

Xijk

∣∣∣∣∣∣ > ηn−hT

 . n2hT var (Xijk)(n
3
) = n2hT p0T (1− p0T )(n

3
) . Θ

(
nhT−3

)
.

Then by a union bound, we can bound the order of the maximum:

P

max
r

∣∣∣∣∣∣ 1(n
2
) ∑
i<j

Xij,r

∣∣∣∣∣∣ > ηn−hL

 . R ·Θ (nhL−2
)

and similarly

P

max
r

∣∣∣∣∣∣ 1(n
3
) ∑
i<j<k

Xijk

∣∣∣∣∣∣ > ηn−hT

 . R ·Θ (nhT−3
)
.

Then for R = nk, under our assumption that

k < max {2− hL, 3− hT } ,

we have uniform convergence of the objective function.

C.4. Example 3: Groups Model. The proof of Proposition 4.3 is a corollary to the fol-
lowing lemma. We need to replicate the arguments from section C.1 replacing Lemma E.1
by Lemma C.2. The model satisfies Assumption (2) below by Chatterjee et al. (2010).

Lemma C.2. Assume (1) for all θr ∈ Θr, ζr(θ̄r) are q × knq matrix (or vector) valued func-
tions, supr ‖ζr(θr)‖ ≤ Br with plimEnR[Bir] < ∞, (2) for each r, supi≤kn

∥∥∥θ̂ir − θ0ir
∥∥∥ ≤

C(L)
√

logn
n with probability at least 1 − cn−2, where L, c depend only on Θr ⊂ Rkn and ψ,

(3) Θr ⊂ [a, b]kn for all r, and (4) R = O(nγ) with γ < 1. Then

R1/2
∥∥∥ERζr(θ̄r)(Iq ⊗ (θ̂r − θ0r))

∥∥∥
2
.

√
R · logn

n

with probability approaching one. Specifically the probability is at least
(
1− cn−2)Rn.

Proof of Lemma C.2.
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Step 1: This follows from ‖·‖2 ≤ ‖·‖1 and

R1/2
∥∥∥ERζr(θ̄r)(Iq ⊗ (θ̂r − θ0r))

∥∥∥
1
≤ R1/2ER

[∥∥∥ζr(θ̄r)∥∥∥1

∥∥∥(Iq ⊗ (θ̂r − θ0r))
∥∥∥
∞

]
≤ R1/2ER

[∥∥∥ζr(θ̄r)∥∥∥1

∥∥∥θ̂r − θ0r
∥∥∥
∞

]
≤ ER

∥∥∥ζr(θ̄r)∥∥∥1
·
√
R sup
r≤R

∥∥∥θ̂r − θ0r
∥∥∥
∞
.

We have that 1√
q

∥∥∥ζr(θ̄r)∥∥∥1
≤
∥∥∥ζr(θ̄r)∥∥∥2

≤ Br and therefore

R1/2
∥∥∥ERζr(θ̄r)(Iq ⊗ (θ̂r − θ0r))

∥∥∥
1
.
√
R sup
r≤R

∥∥∥θ̂r − θ0r
∥∥∥
∞

+ oP(1)

by assumption on the envelope functions. It suffices to control supr≤R
∥∥∥θ̂r − θ0r

∥∥∥
∞

.

Step 2: Observe that supr≤R
∥∥∥θ̂r − θ0r

∥∥∥
∞
≤ C(L)

√
logn
n with probability at least (1 −

cn−2)Rn , since the bound holds for each of the R (independent) terms with probability at
least 1− cn−2. This approaches one for γ < 1.
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Appendix D. Supplementary Proofs for Section 3

In what follows, we let t(G) :=
∑
i<j<k AijAjk denote the number of two-stars (AijAjk =

1), and p(G) :=
∑
i<j<k<lAijAkl denote the number of disjoint pairs in the graph.

Lemma D.1. Under uniform random sampling of m out of n nodes, with m/n → ψ and as
n→∞,

E[d(G|S)|G] = (ψ+Θ(n−1))d(G) and var(d(G|S)|G) = Θ(n−1d(G))+Θ(n−1t(G))+Θ(n−2p(G)).

Proof. Step 1: Let S be the set of all combinations of m vertices with σ a generic element.
Then

E[d(G|S)|G] =
∑
σ∈S

d(σ)P (σ) =
(
n

m

)−1 ∑
σ∈S

m−1 ∑
i∧j∈σ

Aij .

Each pair ij appears |{σ ∈ S : i ∧ j ∈ σ}| =
(n−2
m−2

)
times, it follows that E[d(G|S)|G] = m−1

n−1 ·
1
n

∑
i,j Aij = (ψ + Θ(n−1))d(G).

Step 2: Use |{σ ∈ S : i1 ∧ ... ∧ ik ∈ σ}| =
(n−k
m−k

)
and let ε1 :=

∑
Aij , ε2 :=

∑
{AijAkl :

i ∨ j ∈ {k, l} ,¬i ∧ j ∈ {k, l} }, and ε3 :=
∑
{AijAkl : i /∈ {j, k, l} , j /∈ {k, l} , k 6= l }. Then

ε1 = 2 |E|, ε2 = 8t(G), ε3 = 8p(G), and

E[d(G|S)2|G] = 1
m2

m!
(n)m

3∑
j=1

(
n− (j + 1)
m− (j + 1)

)
εj .

Some algebra yields E[d(G|S)2|G] = 1
m

(m−1)
(n−1)

2|E|
n + 1

m
(m−1)2
(n−1)2

8t(G)
n + 1

m
(m−1)3
(n−1)3

8p(G)
n . Meanwhile,

we can expand the square of the mean and obtain coefficients with the exact same summand
terms (E[d(G|S)|G])2 = 1

n2

(
m−1
n−1

)2 (∑
i,j Aij +

∑
AijAkl

)
. We have three sets of coefficients.

Working with the coefficients on
∑
i,j Aij , we have that

1
m

(m− 1)
(n− 1)

2 |E|
n
− 1
n

(
m− 1
n− 1

)2 2 |E|
n

= 1
n− 1

(
m− 1
m

− (m− 1)2

n (n− 1)

)
d(G)

=
(
n−1(1− ψ2) + Θ(n−2)

)
d(G).

The second term is given by(
1
m

(m− 1)2
(n− 1)2

− 1
n

(
m− 1
n− 1

)2
)

8t(G)
n

= 1
n− 1

(
1
m

(m− 1) (m− 2)
(n− 2) − (m− 1)2

n (n− 1)

)
8t(G)

=
(
n−1ψ (1− ψ) + Θ(n−2)

)
8t(G).

Finally, we compute the last term
(

1
m

(m−1)3
(n−1)3

− 1
n

(
m−1
n−1

)2
)

8p(G)
n = Θ(n−2)p(G), which com-

pletes the proof.
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Lemma D.2. Under uniform random sampling of m out of n nodes, with m/n → ψ and as
n→∞,

E[d(GS)|G] = ψ(2−ψ+Θ(n−1))d(G) and var
(
d(GS)|G

)
= Θ(n−1d(G))+Θ(n−1t(G))+Θ(n−2p(G)).

Proof. Same as previous lemma, noting each pair ij appears |{σ ∈ S : i ∨ j ∈ σ}| = 2
(n−1
m−1

)
−(n−2

m−2
)

times in S.

Lemma D.3. Under uniform random sampling of m out of n nodes, with m/n → ψ and as
n→∞,

ρ(G|S)
τ(G|S)

= ρ(G)
τ(G) + o(1).

Proof. Since the sampling probability is ψ3+o(1) for both the numerator and the denominator,
there is no bias asymptotically in the estimate of clustering.

Lemma D.4. Under uniform random sampling of m out of n nodes, with m/n → ψ and as
n→∞,

ρ(GS)
τ(GS) = ψ(3− 2ψ)

1 + ψ(1− ψ) ·
ρ(G)
τ(G) + o(1).

Proof. The expected number of triangles is given by E[ρ(GS)|G] = (3ψ2(1−ψ)+ψ3+o(1))ρ(G)
since with probability 3ψ2(1− ψ) a transitive triangle can be counted with two nodes being
sampled and ψ3 with all three being sampled.54 Meanwhile, E[τ(GS)|G] = (ψ(1 − ψ)2 +
3ψ2(1−ψ) +ψ3 + o(1))τ(G) where the extra term comes from the fact that the exact center
of the triple in question can be selected. In turn,

ρ(GS)
τ(GS) = 3ψ2(1− ψ) + ψ3 + o(1)

ψ(1− ψ)2 + 3ψ2(1− ψ) + ψ3 + o(1) ·
ρ(G)
τ(G) = ψ(3− 2ψ)

1 + ψ(1− ψ) ·
ρ(G)
τ(G) + o(1),

which proves the claim.

Lemma D.5. Under uniform random sampling of m out of n nodes, with m/n → ψ and as
n→∞,

E
[
s
(
G|S

)
|G
]

=
{

1−
∑
x

(1− ψ)x P (x|G)
}
s (G) + o (1)

and
E
[
s
(
GS
)
|G
]

= ψ2 + 2ψ (1− ψ) {1−
∑
x (1− ψ)x P (x|G)}

ψ2 + 2 (1− ψ)ψ s (G) + o (1) ,

where P (x|G) is the share of links ij that are supported by x in the underlying graph G.
Proof. Start with the star subgraph. Observe there are three types of linked pairs: i, j ∈ S,
i ∈ S and j /∈ S (or vice vesa), and i, j /∈ S. Obviously if neither are sampled, then observing
ij is impossible. So we need only to check the rate of correctly observing a supported link

54We simply count, e.g.,
{

3
(
n−3
m−2

)
+
(
n−3
m−3

)} (
n
m

)−1 = m(m−1)(m−2)
n(n−1)(n−2) = ψ3 + o(1).
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when either one or both are sampled. If both are sampled, clearly support is observed. So if
only one is sampled, support is observed if and only if at least one of the supporting nodes
is sampled. Let xij =

∑
k AikAjk be the number of supporting nodes of the pair ij. Then

the probability of not observing support is (1− ψ)xij . Since sampling is random, this implies
that integrating over the distribution of the number of friends in common, the rate of support
we observe among pairs where only one node is sampled is

1−
∑
x

(1− ψ)x P (x|G)

where P (x|G) is the share of links ij that are supported by x in the underlying graph G.
Putting this together we have

E
[
s
(
GS
)
|G
]

= ψ2 + 2ψ (1− ψ) {1−
∑
x (1− ψ)x P (x|G)}

ψ2 + 2 (1− ψ)ψ s (G) + o (1) ,

which proves the result.
Next turn to the induced subgraph and note here we correctly score support if and only if

at least one of the nodes in common are also sampled. Therefore

E
[
s
(
G|S

)
|G
]

=
{

1−
∑
x

(1− ψ)x P (x|G)
}
s (G) + o (1)

which also proves the result.

Lemma D.6. Put k(ψ) = ψ+ψ2−ψ3. For any sequence of random graphs (Gn)n∈N satisfying,
as n→∞, d(G)/a1n

P−→ c1, d2(G)/a2n
P−→ c2, a1n, a2n ∈ o(n), and c1, c2 > 0,

(1)
∣∣∣d(G|S)− ψd(G)

∣∣∣ = oP(1),
∣∣∣d2(G|S)− ψ2d2(G)

∣∣∣ = oP(1),

(2)
∣∣∣d(GS)− (1− (1− ψ)2)d(G)

∣∣∣ = oP(1),
∣∣∣d2(GS)− k(ψ)d2(G)

∣∣∣ = oP(1).
This observation is general in the sense that it only requires that degree and the number of
second neighbors to grow sufficiently slowly, which is reasonable for realistic applications.

Proof of Lemma D.6. We show
∣∣∣d(GS)− (1− (1− ψ)2)d(G)

∣∣∣ = oP(1). The arguments for

G|S and d2(·) are analogous. We have already shown that E
[
d(GS)|G

]
= (1 − (1 − ψ)2 +

Θ(n−1))d(G) in Lemma D.2. Let χij be an indicator of i∨j ∈ S. Condition on the sequence of
events En := {d(G) ∈ (c1a1n ± ε1a1n) ∩ d2(G) ∈ (c2a2n ± ε2a2n)}. By assumption of growth
rates a1n and a2n, we these events happen with probability approaching one,

P
(∣∣∣∣d(G)

a1n
− c1

∣∣∣∣ < ε1

)
→ 1 and P

(∣∣∣∣d2(G)
a2n

− c2

∣∣∣∣ < ε2

)
→ 1.

Notice that the probability distribution and d(G) are both implicitly indexed by n. Then
using Chebyshev’s inequality and letting ϕ = (1− (1− ψ2) + Θ(n−1)),

P

∣∣∣∣∣∣ 1n
∑
i

∑
j

Aijχij − ϕd(G)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ En
 = P

∣∣∣∣∣∣ 1n
∑
i

∑
j>i

Aij(χij − ϕ)

∣∣∣∣∣∣ > ε/2

∣∣∣∣∣∣ En
 ≤ 4

n2ε2
var

∑
i

∑
j>i

Zij |En


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where Zij = Aij(χij − ϕ). If we condition on a graph G ∈ En,

var

∑
i

∑
j>i

Zij |G

 = |E (G)| var (Zij |G) +
∑
i

∑
j>i

∑
k 6=i,j

cov(Zij , Zjk|G),

since var(Zij |G) = ϕ(1−ϕ) and cov(χij , χi′j′ |G) = ψ3(1−ψ), with the covariance terms only
entering when ij and i′j′ share a vertex. Recall that d(G) = 2 |E(G)| /n, we have

P

∣∣∣∣∣∣ 1n
∑
i

∑
j

Aijχij − ϕd(G)

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ En, G
 . 1

n

{
d (G)ϕ(1− ϕ) + d2 (G)ψ3 (1− ψ)

}
for every G ∈ En where the constant is uniform. Notice that d(G) ∈ (c1a1n ± ε1a1n) implies
d(G)/n→ 0 because by assumption a1n/n→ 0. The same is true for a2n/n→ 0. This proves
the result.

Next we look at
∣∣∣d2(GS)− k(ψ)d2(G)

∣∣∣ = oP(1).

E[n−1∑
i

∑
j 6=i

∑
k 6=i,jAijAjkχijχjk|G] = n−1∑

i

∑
j 6=i

∑
k 6=i,jAijAjkE [χijχjk|g] = k(ψ)d2(G).

This follows from E[χijχjk|G] = 1− (1− ψ)2 [2− (1− ψ)]. A similar argument to the above
completes the proof.

Lemma D.7. E
[∥∥∥T̄∥∥∥2

F

]
= ‖T‖2F +

∑
i ξ1(di, ψ), where

ξ1(di, ψ) := 1
1− (1− ψ)di

di∑
r=1

1
r

(
di
r

)
ψr(1− ψ)di−r+1 − (1− ψ)/di.

Proof. Observe that
∥∥∥T̄∥∥∥2

F
=
∑n
i=1

∑n
k=1 T̄

2
ik =

∑
i:d̄i>0 d̄

−1
i since T̄ 2

ik = d̄−2
i is greater than

zero exactly d̄i times. Note that E
[
d̄−1
i |i /∈ S, d̄i > 0

]
is the conditional expectation of the

first negative moment of a binomial Bin(di, ψ), namely55

E
[
d̄−1
i |i /∈ S, d̄i > 0

]
= 1

1− (1− ψ)di
di∑
r=1

1
r

(
di
r

)
ψr(1− ψ)di−r.

The result follows from the fact that

ψ
1
di

+ (1− ψ) 1
1− (1− ψ)di

di∑
r=1

1
r

(
di
r

)
ψr(1− ψ)di−r = 1

di
+ (1− ψ) 1

1− (1− ψ)di
di∑
r=1

1
r

(
di
r

)
ψr(1− ψ)di−r

− (1− ψ)
di

= 1
di

+ ξ1i.

Summing over the i nodes yields the result.

55See, e.g., Stephan (1945).
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Lemma D.8. E
[〈
T, T̄

〉
F

]
= ‖T‖2F +

∑
i ξ2(di, ψ), where ξ2(di, ψ) := −d−1

i (1− ψ)di+1.

Proof. We can wite
〈
T, T̄

〉
F

=
∑n
i=1

∑n
k=1 TikT̄ik =

∑
i:d̄i>0 d̄

−1
i d−1

i d̄i =
∑
i:d̄i>0 d

−1
i . As

P
(
d̄i > 0

)
= 1− (1−ψ)di+1, where none of the di neighbors nor i is sampled, E

[〈
T, T̄

〉
F

]
=∑

i
1−(1−ψ)di+1

di
= ‖T‖2F +

∑
i ξ2(di, ψ).

Lemma D.9. E
[
Tr(T̄ ′ιι′T̄ )

]
= ‖T‖2F +

∑
i ξ1(di, ψ)+ ξ3(~d, ψ), where ξ3(~d, ψ) is defined in the

proof.
Proof. Notice that

Tr(T̄ ′ιι′T̄ ) =
∑
i

∣∣∣[ι′T̄ ]
i

∣∣∣2

=
∑
i

∑
k

T̄ 2
ki + 2

∑
l>k

∑
k

T̄kiT̄li


=

∑
k:d̄k>0

d̄−1
k + 2

∑
l>k

∑
k

∑
i

T̄kiT̄li

=
∥∥∥T̄∥∥∥2

F
+ 2

∑
l>k:d̄l>0

∑
k:d̄k>0

∣∣∣N̄k ∩ N̄l

∣∣∣
d̄kd̄l

.

With probability ψ2 both k ∈ S and l ∈ S, so d̄−1
k d̄−1

l

∣∣∣N̄k ∩ N̄l

∣∣∣ = d−1
k d−1

l |Nk ∩Nl| =: c(k, l).
With probability ψ(1 − ψ) we have ζ4(k, l) and with the same probability we have ζ4(l, k),
where ζ4 is defined in Lemma D.10 below. Finally, with probability (1− ψ)2

ζ3(k, l) :=
Nl−|Nk∩Nl|∑

r=1

Nk−|Nk∩Nl|∑
t=1

|Nk∩Nl|∑
s=1

(Nl − |Nk ∩Nl|
r

)(Nk − |Nk ∩Nl|
t

)(|Nk ∩Nl|
s

)ψs+t+r(1− ψ)|Nk∪Nl|−s−t−r

(t+ s)(r + s)
.

Then E
[
Tr(T̄ ′ιι′T̄ )

]
= ‖T‖2F +

∑
i ξ1(di, ψ) + ξ3(~d, ψ) where

ξ3(~d, ψ) := 2
∑
l>k

∑
k

{
ψ2c(k, l) + ψ(1− ψ)ζ4(l, k) + ψ(1− ψ)ζ4(k, l) + (1− ψ)2ζ3(k, l)

}
which completes the proof.

Lemma D.10. E
[
Tr(T̄ ′ιι′T )

]
= ‖T‖2F +

∑
i ξ2(di, ψ)+ξ4(~d, ψ), where ξ4(~d, ψ) is defined below.

Proof. We have

Tr(T̄ ′ιι′T ) =
∑
i

[T̄ ′ι]i
[
ι′T
]
i =

∑
i

∑
k

T̄kiTki + 2
∑
l>k

∑
k

T̄kiTli

 =
〈
T, T̄

〉
F

+2
∑
l>k

∑
k:d̄k>0

∑
i

T̄kiTli.

The first term has already been controlled in Lemma D.8. To compute the second term,
observe that with probability ψ, k ∈ S and therefore and in this case

∑
i T̄kiTli = c(k, l).
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With probability 1− ψ, k /∈ S, and as such the conditional expectation is given by

ζ4(k, l) :=
Nk−|Nk∩Nl|∑

t=1

|Nk∩Nl|∑
s=1

(
|Nk ∩Nl|

s

)(
Nk − |Nk ∩Nl|

t

)
ψs+t(1− ψ)Nk−s−t

(s+ t)dl
.

So E
[
Tr(T̄ ′ιι′T )

]
= ‖T‖2F+

∑
i ξ2(di, ψ)+ξ4(~d, ψ) where ξ4(~d, ψ) = 2

∑
l>k

∑
k {ψc(k, l) + (1− ψ)ζ4(k, l)}

which completes the proof.

Appendix E. Supplementary Proofs for Section 4

E.1. Useful Results. In what follows, for p × q matrix D, let ‖ · ‖ := ‖ · ‖2 be the matrix
norm induced by vector norm ‖ · ‖, with ‖D‖ := maxx∈Sq−1 ‖Dx‖.

Lemma E.1. Assume for all θr ∈ Θr, ζir(θr) are q × kq matrix (or vector) valued functions
satisfying supi,r ‖ζir(θr)‖ ≤ Bir with lim supR→∞ EnR[EBir] <∞ and Assumption A.3.3 hold.
Then

(nR)1/2
∥∥∥En,R [ζir(θ̄r)(Iq ⊗ (θ̂r − θ0r))

]∥∥∥ = oP(1)

for θ̄r on the line between θ̂r and θ0r.56

Proof of Lemma E.1. This follows from

(nR)1/2En,R
[∥∥∥ζir(θ̄r)∥∥∥ ∥∥∥Iq ⊗ (θ̂r − θ0r)

∥∥∥] ≤ (EnR[Bir]) ·
√
nR sup

r≤R

∥∥∥θ̂r − θ0r
∥∥∥

≤ EnR[Bir] ·OP
(
a−1
n ·

√
nR1+2/b

)
= oP(1)

as the mean of the envelopes converges and the rates obey the assumed relationship.

Lemma E.2. Conditions 1 and 2 of Lemma 4.1 imply supr
∥∥∥θ̂r − θ0r

∥∥∥ = oP(1).

Proof of Lemma E.2. Arguing along the lines of Theorem 5 of Supplementary Appendix I of
Hahn and Newey (2004), among others, pick η > 0, define ε := infr≤R

[
Q(r)(θ0r)− supθr:‖θr−θ0r‖>η Q(r)(θr)

]
,

and condition on the event
{

supr≤R supθ
∣∣∣Q̂(r)(θ)−Q(r)(θ)

∣∣∣ < ε
3

}
which has probability 1−

o(a−vn ) by Condition 2. If we look for θ̂r outside an η-radius ball of the true parameter, we
have supθr:‖θr−θ0r‖>η Q̂(r)(θr) < supθr:‖θr−θ0r‖>η Q(r)(θr)+ ε

3 < Q(r)(θ0r)− 2ε
3 < Q̂(r)(θ0r)− ε

3 ,
contradicting Q̂(r)(θ̂r) ≥ Q̂(r)(θ0r), implying

∥∥∥θ̂r − θ0r
∥∥∥ < η for all networks.

The next lemma is useful throughout and we make explicit the dependence on R in PR(·)
and ER here.

56Each component of θ̄r may be at a different intermediate point.
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Lemma E.3 (Extended Vitali Convergence). Let {ZR : R ∈ N} be L1
R-integrable functions on

a sequence of measure spaces indexed by R. (1) ZR
P−→ 0 and (2) ZR is uniformly integrable,

supR≥1 ER [|ZR| · 1 {|ZR| > c}]→ 0 as c→∞, imply ER [ZR]→ 0.

Proof. The argument is analogous to the proofs of Theorem 10.3.5 and 10.3.6 in Dudley
(2002). Let ZR ≥ 0 w.l.o.g. First, observe (2) implies that for every ε > 0 there exists δ > 0
such that for each AR with PR(AR) < δ, ER [ZR · 1 {AR}] < ε for all R. To see this, by
uniform integrability, given ε > 0 and pick δ < ε/(2K) where K is large enough such that
ER [ZR · 1 {ZR > K}] < ε/2. Then

ER [ZR · 1 {AR}] ≤ ER [ZR · 1 {AR} · 1 {ZR ≤ K}]+ER [ZR · 1 {AR} · 1 {ZR > K}] < ε

2+ ε

2 = ε

as PR(AR) < δ. Second, given ε > 0, let AR := {ZR > ε}. By (1), PR(AR) → 0 as R → ∞.
As such, for R large enough PR(AR) < ε/(2K). Therefore ER [ZR] = ER [ZR · 1 {ZR ≤ ε}] +
ER [ZR · 1 {AR}] ≤ 2ε.

Lemma E.4. Let Yir,R be a triangular array of mean-zero random variables, Zir,R := E [Yir,R|Xr],
and define

λr :=
√
nEn [Yir] and ζr :=

√
nEn [Zir] .

If (1) supR supr var (λr) < C1 and (2) infR infr var (ζr) > C0, then
√
nREn,R [Zi,r] N (0, VZ).

Proof. Identical to the proof of step 1 in “Proof that Lemma 11 of Chernozhukov et al. (2009)
applies”.

E.2. Supplementary Proofs for Example 1.

Lemma E.5. Under Assumption A.7.3, supr
∣∣∣∣ 1√
|Ξ|

∑
s∈Ξ v(Xrs; θ0r)

∣∣∣∣ = OP(R1/b).

Proof. Let T := |Ξ| and define yrT :=
∑
v(Xrs; θ0r)/

√
T . We assume yrT has bth mo-

ments, supr≤R E ‖yrT ‖b < ∞, which will be shown below. That
(
E ‖supr yrT ‖

b
)1/b

≤

R1/b supr
(
E ‖yrT ‖b

)1/b
implies supr yrT = OP(R1/b).Notice E

[
‖yrT ‖b

]
= E

[∥∥∑
s
v(Xrs; θ0r)

∥∥b]T−b/2.
We need only control E

[∥∥∑
s
v(Xrs, θ0r)

∥∥b] ≤ E
[(∑

s
B(Xrs)

)b]. Observe E
[(∑

s∈Ξ
B(Xrs)

)b]
=

E
[∑

B(Xrs)b
]

+ E
[∑∏

j
B(Xrsj )γj

]
where

∑
γj = b. If 2b−1 moments exist for the envelopes,

then this can be majorized into terms of
∏

E[B(Xrsj )δj ] where δj ≤ 2b−1 by repeated appli-
cation of Holder inequalities.

Lemma E.6. Under Assumptions A.7 and A.6, P
(
supr supθ∈Θ

∣∣∣Q̂(r) (θ)−Q(r) (θ)
∣∣∣ ≥ η) =

o
(
|Ξ|−1

)
.
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Proof. The argument is along the lines of Lemma 2 of Hall and Horowitz (1996) and Lemma
3 of Supplementary Appendix I of Hahn and Newey (2004). We use Lemma E.7. First we use
a union bound over the R graphs and focus on

∑R
r=1 P

(
supθ∈Θ

∣∣∣Q̂(r) (θ) (θ)−Q(r) (θ)
∣∣∣ ≥ η).

Next, considering a given graph, we choose ε > 0 such that 2ε · supr E[B(Xrs)] < η
3 . Divide

Θ into subsets Θ1, ...,ΘM(ε) such that ‖θ − θ′‖ ≤ ε when θ and θ′ are in the same subset. A
second union bound gives us

∑M(ε)
j=1 P

(
supθ∈Θj

∣∣∣Q̂(r) (θ)−Q(r) (θ)
∣∣∣ ≥ η).

Let θj denote a point in Θj . Noticing that,∣∣∣Q̂(r) (θ)−Q(r) (θ)
∣∣∣ ≤ ∣∣∣Q̂(r)(θj)−Q(r)(θj)

∣∣∣+ ∣∣∣Q̂(r)(θ)− Q̂(r)(θj)−Q(r)(θ) +Q(r)(θj)
∣∣∣

≤
∣∣∣Q̂(r)(θj)−Q(r)(θj)

∣∣∣+ ε

|Ξ| |
∑
B(Xrs)− E[B(Xrs)]|+ 2εE[B(Xrs)],

and

P
(

sup
θ∈Θj

∣∣∣Q̂(r) (θ)−Q(r) (θ)
∣∣∣ ≥ η) ≤ P

(∣∣∣Q̂(r)(θj)−Q(r)(θj)
∣∣∣ ≥ η

3

)

+ P
(
|Ξ|−1

∣∣∣∑
s∈Ξ (B(Xsr)− EB(Xsr))

∣∣∣ ≥ η

3ε

)
= o(|Ξ|−k)

by Lemma E.7, the result holds as R = o(|Ξ|k).

Lemma E.7. For each r, suppose {Xsr : s ∈ Ξ} be covariates satisfying Assumption A.6. Let
R = O

(
|Ξ|h

)
, and let h, k, p, γ, with k, p, γ defined below, satisfy h + 1 ≤ k < p/2 − γpd.

Then ∀η > 0,

max
r

P
(∣∣∣|Ξ|−1∑

s∈ΞXsr

∣∣∣ > η
)

= o
(
|Ξ|−k

)
and P

(
max
r

∣∣∣|Ξ|−1∑
s∈ΞXsr

∣∣∣ > η
)

= o
(
|Ξ|−1

)
.

Proof. The argument follows Lemma 1 of Hall and Horowitz (1996) and Lemma 2 of Supple-
mentary Appendix I of Hahn and Newey (2004).

Step 1: By Chebyshev’s inequality

P
(∣∣∣|Ξ|−1∑

s∈ΞXsr

∣∣∣ > η
)
≤
C · E ‖X1r‖p+δ

(
|Ξ|p/2mdp + |Ξ|p αr2,∞ (m)

δ
p+δ

)
ηp |Ξ|p ,

for 1 ≤ m ≤ C(p) |Ξ| where the second inequality follows from Lemma E.8, which we can write
under Assumption A.6.57 We can bound the right hand side by η−pC·E ‖X1r‖p+δmdp |Ξ|−p/2+
η−pC ·E ‖X1r‖p+δ αr2,∞ (m)

δ
p+δ and for m = |Ξ|γ for some γ with 0 < γ ≤ 1, using the bound

57We write the proof for supr αr∞,2 (m) ≤ Cam, though the extension to supr αr∞,2 (m) = o
(
m−d

)
is straight-

forward and will merely result in more stringent requirements on r, k, γ, d. For Assumption A.6(ii) we have

max
r
|Λ|k P

(∣∣∣∣ 1
|Ξ|
∑

s∈Ξ
Xsr

∣∣∣∣ > η

)
= O

(
|Ξ|dγp+k−p/2 + |Ξ|k−γd−γε

)
for αr1,∞ (m) = O

(
m−d−ε

)
= o
(
m−d

)
. Then the requirement is k < (p/2 + γpd) ∨ (d+ ε).
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supr αr∞,1 (m) ≤ Cam on the mixing coefficient,

max
r
|Ξ|k P

(∣∣∣|Ξ|−1∑
s∈ΞXsr

∣∣∣ > η
)
≤ η−pC ·max

r
E ‖X1r‖p+δ

(
|Ξ|γpd+k−p/2 + |Ξ|k a

δ
p+δ |Ξ|

γ
)
.

We have shown that for Assumption A.6, maxr |Ξ|k P
(∣∣∣ 1
|Ξ|
∑

s∈ΞXsr

∣∣∣ > η
)

= O
(
|Ξ|γpd+k−p/2

)
=

o (1) if γpd+ k < p/2 which is the first result.
Step 2: By a union bound |Ξ|P

(
maxr

∣∣∣ 1
|Ξ|
∑
s∈ΞXsr

∣∣∣ > η
)
≤ |Ξ|R·maxr P

(∣∣∣ 1
|Ξ|
∑
s∈ΞXsr

∣∣∣ > η
)
.

If R = O
(
|Ξ|h

)
, it follows that |Ξ|P

(
maxr

∣∣∣ 1
|Ξ|
∑

s∈ΞXsr

∣∣∣ > η
)
≤ O

(
|Ξ|h+1

)
o
(
|Ξ|−k

)
. Since

h+1 ≤ k, O
(
|Ξ|h+1

)
o
(
|Ξ|−k

)
= o (1), P

(
maxr

∣∣∣ 1
|Ξ|
∑

s∈ΞXsr

∣∣∣ > η
)

= o
(
|Ξ|−1

)
which proves

the result.

Lemma E.8. Let
{
Xi : ti ∈ Λ ⊂ Zd

}
be a mean zero stationary random field satisfying As-

sumption A.6 and {Xij : ij ∈ Ξ} covariates. Then for any positive integer r and for 1 ≤ m <

C (k) · |Ξ|, we have E
[(∑

ij∈ΞXij

)k]
≤ C (r) E ‖X1‖k+δ

(
|Ξ|k/2mkd + |Ξ|k α2,∞(m)

δ
k+δ
)

.

Proof. The proof builds on Lahiri (1992), with two differences: the first is an extension to
mixing random fields,58 and the second is that we are interested over moments of random
variables on Ξ as opposed to Λ. The Lahiri (1992) style of argument proceeds in four parts;
we include the entire argument for completeness though the key differences are in the last
two steps. First, we can control the first k/2 terms via a standard result. This will enable
us to bound this part of the sum by a |Ξ|k/2 rate. Second, for the remaining terms, we
will divide the space into a set of all pieces with a well separated point τ on the lattice
whose random variable Xτ has power 1 and is at least of distance m from any other point
in the collection, and into its complement. Third, we will control this set using the mixing
coefficient and fourth, by a counting argument we create an upper bound on the number of
points in the complement. It is useful to note that for ij ∈ Ξ, for 1 ∈ Λ, E ‖Xij‖k . E ‖X1‖k

by the assumption and stationarity. Moreover, we defined the pseudo-metric dΞ(ij, kl) :=
dΛ(i, k) ∧ dΛ(i, l) ∧ dΛ(j, k) ∧ dΛ(j, l) where dΛ(x, y) := ‖x− y‖1.

Step 1: For k = 2h, we can expand the term into a polynomial,(∑
s∈ΞXs

)k
= ∑k

j=1

∑
α1,...,αj

c (α1, ..., αj)
∑

s1,...,sj

∏j

t=1X
αt
st

where t = 1, ..., j is an arbitrary index of a j-tuple (s1, ..., sj) ⊂ Ξ and c(·) are coefficients. We
can control the first k/2-tuples by a standard argument, e.g., Bhattacharya and Rao (1986),
making use of E ‖Xij‖k . E ‖X1‖k,∣∣∣∣∣∣

k/2∑
j=1

∑
α1,...,αj

c (α1, ..., αj)
∑

s1,...,sj

E

 j∏
t=1

Xαt
st

∣∣∣∣∣∣ ≤ C (k) |Ξ|k/2 E ‖X1‖k .

58Hahn and Kuersteiner (2004) extend the Lahiri argument to the time series setting.
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In what follows it suffices to show for fixed j > k/2 and (α1, ..., αj),∣∣∣∑
s1,...,sj

E
[∏j

t=1X
αt
st

]∣∣∣ ≤ C (k) E ‖X1‖k+δ
(
|Ξ|k/2mkd + |Ξ|k α2,∞ (m)

δ
k+δ
)
.

Step 2: Next, we create a set that counts the sites sτ where Xsτ has power ατ = 1 and sτ
is sufficiently far from the other st in the j-tuple. Let u := j−k/2. We put A := {t : αt = 1}
as the set of all points that have coefficient 1. Then let β0 = |A| . This is a set that counts
the number of indices that show up exactly one time. We want to show that this set is
non-empty. Note that 1 ≤ u ≤ k/2. Also, since k =

∑j
t=1 αt ≥ β0 + 2 (j − β0), this means

2u ≤ β0 ≤ k and therefore (j − k/2) ≤ β0 ≤ k/2.
Then we partition the set of all j-tuples into Bm and Bc

m, with In Lahiri’s notation,∑
2≡
∑

s1,...,sj
=:
∑

3 +
∑

4. To define the sets, put

Bm := {(s1, ..., sj) : inf
l 6=t

dΞ (sl, st) = dΛ(isl , kst)∧dΛ(jsl , kst)∧dΛ(isl , lst)∧dΛ(isl , lst) > m for some t ∈ A}.

Now ∑
3 sums over the terms in Bm and ∑4 over the terms in Bc

m.
Step 3: We want to controlBm. Fix τ ∈ A. Then decompose∏j

t=1X
αt
st = XaXb, withXb =

Xsτ and Xa = ∏
t6=τX

αt
st . Then Xa is a random field with respect to σ

(
Xs1 , ..., X̂sτ , ..., Xsj

)
,

where we use notation to indicate the omission of a term,
(
a, b̂, c

)
:= (a, c), and Xb with

respect to σ (Xsτ ). These are of size j − 1 and 1, respectively. By definition the distance
between these two sets is at least m, so by applying Lin et al. (1996) and using the fact that
E[XijXkl] ≤ ‖Xij‖Lp(P) · ‖Xkl‖Lq(P) α

1−q−1−p−1

2,2 (dΞ(ij, kl)), we have∣∣∣E [∏j

t=1X
αt
st

]∣∣∣ ≤ |E [XaXb]| ≤ C · ‖Xa‖Lp(P) · ‖Xb‖Lq(P) α
1−q−1−p−1

2(j−1),2 (m) .

Taking p = k + δ and 1
q = k−1

k+δ , using stationarity and repeatedly applying the Holder
inequality,∣∣∣E [∏j

t=1X
αt
st

]∣∣∣ ≤ C·‖Xa‖Lk+δ(P)·‖Xb‖L(k−1)/(k+δ)(P) α
δ/(k+δ)
2(j−1),2 (m) ≤ C·E ‖X1‖k+δ α

δ/(k+δ)
2(j−1),2 (m) .

Since αj,1 (m) ≤ αj+1,1 (m),
∣∣∣E [∑

Bm

∏j

t=1X
αt
st

]∣∣∣ ≤ C · E ‖X1‖k+δ |Ξ|k α2,∞ (m)
δ
k+δ .

Step 4: Finally, we control Bc
m. To get a (coarse) upper bound, first notice the maximum

number of powers of 1 that can be placed is 2u59. Construct a set Γ ⊂ {1, ..., j}, |Γ| = 2u
which will include all powers of one and perhaps some residual copies of terms with higher
power. Then we will simply count

B̄c
m :=

{
(s1, ..., sj) : inf

l 6=t
dΞ(st, sl) = dΛ(isl , kst) ∧ dΛ(jsl , kst) ∧ dΛ(isl , lst) ∧ dΛ(isl , lst) ≤ m ∀t ∈ Γ

}
.

It will help us to define the partners of st as ε(t) ∈ arg inf l dΞ(st, sl). Then define P(Γ) as
the set of partners of t ∈ Γ and put v = |Γ ∪ P(Γ)|. This is the number of distinct elements
of Ξ with power one or power greater than one whose copies form the residual members of

59Let x be the maximal number. Then k = x+ 2 (j − x) . Solving this yields the result.
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Γ and their partners. By definition 2u ≤ v ≤ 4u ∧ j since v ≥ |Γ| and v ≤ 2 |Γ| if each had a
distinct partner.

We define an m-unbroken set as a collection of points in Γ ∪ P(Γ) for which each member
is within an m-distance under pseudo-metric dΞ. Put q as the number of m-unbroken sets.
First, observe that there are less than |Ξ|q initial sites to place a seed for each of the unbroken
sets.60 Next, we have to place each of the v − q terms. For a given ij there are less than
2(2m+1)d elements of Ξ within an m-distance since dΛ(k, i)∧dΛ(l, i)∧dΛ(k, j)∧dΛ(l, j) ≤ m.
An upper bound is O

(
m(v−q)d

)
. Finally, we can arbitrarily place the remaining j−v elements

yielding |Ξ|j−v. This gives us
∣∣∣B̄c

m

∣∣∣ . |Ξ|q+j−vm(v−q)d. The same counting exercise as in
Lahiri (1992) gives us j + q − v ≤ h and v − q ≤ k which yields |Ξ|q+j−vm(v−q)d ≤ |Ξ|hmkd.
This concludes the proof.

Appendix F. Supplementary Data Catalogue

This appendix contains a catologue of a number of papers using network data in the
applied literature. We have included only one paper per data-set. Notice some of the publicly
available data (such as Add Health or the Karnataka villages or the Townsend Thai Data)
have been used numerous times by both the researchers who collected the data as well as
other researchers, but that is not reflected here. We do not claim that this is representative
of the entire body of work on networks, but we hope this communicates what typical applied
micro network datasets may look like, especially in development.

Paper Implied Sampling Rate ψ Note 1 Note 2
Ali and Dwyer (2009) 0.2305 Top Coding
Alatas et al. (2016) 0.683

Bandiera and Rasul (2006) 0.0753
Banerjee et al. (2013) 0.46

Cai et al. (2015) Not Enough Information Top Coding
Conley and Udry (2010) 0.25

Fafchamps and Lund (2003) 0.3 Top Coding Denominator Underestimated
Feigenberg et al. (2010) 0.003

Goeree et al. (2010) 0.77
Kinnan and Townsend (2012) 0.41

Kremer and Miguel (2007) Not Enough Information Top Coding
Leider et al. (2009a) (Dictator Game Sample) 0.71 Top Coding
Leider et al. (2009a) (Helping Game Sample) 0.46

Ligon and Schechter (2012) 0.396 Denominator Underestimated
Marmaros and Sacerdote (2006) 0.429 Denominator Underestimated

Ngatia (2011) 1

Above, “Not Enough Information” means that we were unable to determine what the likely
sampling rate was from the paper listed. “Top Coding” means that the authors limited the
number of links a node could name (typically 5, though also 8 or 10). Notice that this presents
an additional problem beyond what has been focused on in the present paper. In at least two
60We leave ourselves open to certain double-counting; the bound is coarse.
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of these papers, top coding was at 5 links and the mean number of friends in the sample was
4.8 and 4.9, indicating that the typical individual had at least 5 links and therefore sampling
in this manner generated nearly a 5-regular graph. “Denominator Underestimated” means
that we were unable to determine the number of nodes per network in the sample. Typically
in this case the authors report the size of their sample (|S|) and then, since they are using
star sampling, the number of unique additional contacts. Using this we can compute what
is likely an extreme and crude upper bound on the sampling rate: |S| / (|S| + additional
contacts). Therefore in these cases we suspect that the true implied sampling rate is below
the one we state in the table.

Appendix G. Overview of Estimation Algorithm and Standard Errors

We present a non-technical overview of the standard errors and estimation procedures used.
A theoretical discussion of standard error estimation is beyond the scope of this paper. Here,
we discuss standard errors and finite-sample simulation bias. A lengthier formal, technical
discussion and simulations results are available from the authors upon request. Several ap-
proaches can be used for inference: heteroskedasticity-robust, clustered, block bootstrapped,
first-stage bootstrapped, and importance sampled standard errors. Network-level inference
can be performed using heteroskedasticity-robust standard errors under cross-network in-
dependence, even in the presence of sampling. Individual-level inference under sampling
requires attention to within-network, cross-individual autocorrelation exacerbated by the re-
constructed regressor’s mismeasurement, what we call the reconstruction error. When an edge
is missing in the computation of one individual’s network statistic, that edge is also missing
for all other individuals’ network statistic computation. Clustered standard errors and their
nonparametric block bootstrap analog both account for heteroskedasticity and within-graph
autocorrelation. Additionally, a parametric bootstrap which simulates the autocorrelation
from the reconstruction error can estimate the contribution of the sampling-induced autocor-
relation to the reconstruction estimator’s variance. The parametric structure of this bootstrap
should allow these standard errors to be estimated on a smaller collection of networks than
necessary for clustered standard errors.

While the graphical reconstruction estimator is formally a “two-step” estimator, super-
consistency allows the researcher to ignore the first-stage estimation uncertainty. That said,
first-stage uncertainty can be understood using a first-stage parametric bootstrap and im-
portance sampling. The first-stage parametric bootstrap estimates the distribution of the
first-stage parameters and encompasses the following effects: sample from the observed col-
lection of networks with replacement, estimate each network’s first-stage parameters using
the observed data, simulate a new collection of observed graphs using the first-stage esti-
mates, and estimate the first-stage parameters using the simulated graphs. Repeat this pro-
cess to obtain the bootstrapped variance of the first stage estimators to determine whether
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super-consistency is justified. Importance sampling can reduce the computational burden of
bootstrapping the first-stage estimates by using the first-stage model’s likelihood to rebalance
a collection of reconstructed network statistics and greatly reduces the cost of accounting for
any first-stage variability.

With or without first-stage superconsistency, the reconstruction estimator still uses a finite
number of simulations, leaving another error term which we call the simulation error. A
regularization to estimate and subtract out the variance in the regressors due to this noise
can be employed.

Appendix H. Discussion of Analytical Corrections with Regularization

H.1. A Regularized Estimator. We show a simple example where our analytical correction
is consistent and does not require us to assume σ2

v → 0. In section 3, for degree and graph
clustering, we have shown that β̃ = Φβ̂ P−→ β0

σ2
〈x〉

σ2
〈x〉+Φ−2σ2

v
where Φ is a deterministic function

of sampling rate ψ. We now show we can construct estimates σ̂2
〈x〉 and σ̂2

v and therefore
develop a consistent analytical correction β?. We present a simple example to illustrate the
argument. Our example is average degree and for simplicity assume the researcher samples
every edge independently with probability ψ. It is easy to see E

[
d(G̃)|G

]
= ψd(G), where Ḡ

is the sampled graph. Putting v = d(G̃) − ψd(G), we can analytically compute var (v|G) =
2
nψ (1− ψ) d(G).

Lemma H.1. var (v|G) = 2n−1ψ (1− ψ) d(G).

Proof. Let T =
(n

2
)

and e index edges going from e = 1, ...,
(n

2
)

= T . Notice average degree is
d(G) = 2

n

∑
eAe. Then the v = 2

n

∑
e χeAe − ψ 2

n

∑
eAe. Notice

E
[ 2
n

∑
e
χeAe

]2
= E

[
4n−2

{∑
e
χeAe + 2∑

e<e′χeχe′AeAe′
}]

= 4n−2
{
ψ
∑

e
Ae + ψ22∑

e<e′AeAe′
}

= 2ψn−1d(G) + 4n−2ψ22∑
e<e′AeAe′ .

Meanwhile, average degree squared is
(

2
n

∑
e
Ae
)2

= 4n−2
{∑

Ae + 2∑
e<e′AeAe′

}
, which is

useful since (E [v|G])2 =
(
ψ 2
n

∑
eAe

)2
= ψ2d(G)2. Therefore,

E
[
v2|G

]
= 2ψn−1d(G) + ψ2

{
4n−22∑

e<e′AeAe′
}

= 2n−1ψ (1− ψ) d(G) + ψ2d(G)2.

It follows that var (v|G) = 2n−1ψ (1− ψ) d(G) + ψ2d(G)2 − ψ2d(G)2 = 2n−1ψ (1− ψ) d(G),
completing the proof.

With the analytical formula for the variance of v, we can compute β?. Let X := ψ ·
(d(G1), ..., d(GR))′ denote the scaled vector of true (unobserved) average degrees, Z :=
(d(Ḡ1), ..., d(ḠR)) the observed vector of sampled degrees, and V := (v1, ..., vR) = Z − X.
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Then it is clear that β∗ := (Z ′Z − V ′V )−1 Z ′y is consistent for β0. By estimating Σv :=
plimV ′V/R, we have β? :=

(
Z ′Z −RΣ̂v

)−1
Z ′y

P−→ β0. Under mild regularity conditions on
the growth of average degree, we may therefore estimate β?. Estimation can be improved by
performing a bootstrap bias correction.

H.2. Numerical Evidence. Table H.1 displays simulation results for network-level regres-
sion of average degree with simulated outcomes, precisely of the form presented in Figure 7.
We choose ψ to make the expected edge count comparable to that of the induced subgraph.
The results confirm the fact that the naive estimator exhibits significant biases, the analytical
correction vastly reduces the biases but may still retain some residual bias which can further
be mitigated by applying regularization.

Table H.1. Bias for Network-Level Regression for Average Degree (Simu-
lated Graphs)

Edge Sampling Rate
Estimator for Regression on Avg. Degree Property (1/4)^2 (1/3)^2 (1/2)^2 (2/3)^2 1

% Bias 1361.2% 756.8% 291.4% 123.0% 0.0%
Coverage 0% 0% 0% 0% 96%

% Bias -8.7% -4.8% -2.2% -0.9% 0.0%
Coverage 39% 61% 81% 87% 95%

% Bias 0.3% 0.3% -0.2% -0.1% 0.0%
(Using Analytic Variance of Correction) Coverage 97% 96% 96% 96% 95%

% Bias -0.4% -0.1% -0.4% -0.1% 0.0%
(Using Analytic Variance of Correction) Coverage 97% 96% 96% 96% 95%

β Naïve Estimator

β Analytic Correction

β Regularized Analytic Correction

β Reg. Analytic Correction, Bootstrap BC

Estimators: The naïve estimator uses the subgraph generated by independently sampling edges at the given sampling rates. 
The analytic correction estimator, as noted, has residual bias.  The regularized analytic correction adjusts for the dispersion 
term using an analytic formula for the variance of the remaining measurement error left after performing the analytic 
correction, which is only correct in expectation.

Notes: The sampling rates have been chosen to be comparable with the edge count in the G|S sampling simulations. Coverage 
computed using bootstrapped standard errors for all estimators. R2 was set to 0.7.  There were 200 simulations done using 
the standard setup: homophilic networks with 6 groups, graphs with 250 nodes, and 50 graphs per regression.
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