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Abstract
It is common for researchers studying infinite horizon dynamic games in a lab exper-
iment to pay participants in a variety of ways, including but not limited to outcomes
in all rounds or for a randomly chosen round. We argue that these payment schemes
typically induce different preferences over outcomes than those of the target game,
which in turn would typically implement different outcomes for a large class of solu-
tion concepts (e.g., subgame perfect equilibria,Markov equilibria, renegotiation-proof
equilibria, rationalizability, and non-equilibrium behavior). For instance, paying sub-
jects for all rounds generates strong incentives to behave differently in early periods as
these returns are locked in. Relatedly, a compensation scheme that pays subjects for a
randomly chosen round induces a time-dependent discounting function. Future periods
are discounted more heavily than the discount rate in a way that can change the theo-
retical predictions both quantitatively and qualitatively.We rigorously characterize the
mechanics of the problems induced by these paymentmethods, developingmeasures to
describe the extent and shape of the distortions. Finally, we prove a uniqueness result:
paying participants for the last (randomly occurring) round, is the unique scheme that
robustly implements the predicted outcomes for any infinite horizon dynamic game
with time separable utility, exponential discounting, and a payoff-invariant solution
concept.

Keywords Payment in experiments · Experimental economics · Dynamic game
experiments

JEL Classification C90 · C91 · C92

1 Introduction

A rapidly growing literature involves lab experiments designed to study behavior in
infinite horizon dynamic games. The experimenter’s goal, for the purposes of this
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paper, is to test a model that predicts behavior given a physical environment. A the-
oretical model for the target game is a pair of (1) a model for agents’ preferences
and (2) a solution concept that predicts agents’ behavior (e.g, subgame perfect equi-
libria, renegotiation-proof equilibria, rationalizability, Nash bargaining, though the
behavior need not even be in equilibrium). To study the game, the researcher has to
choose how to pay the subject, and the structure of the payment may influence the
effective game that the subjects are playing.1 In this paper, we consider implement-
ing a broad class of infinite horizon dynamic games: those with models exhibiting
discounting, time separability, and solution concepts that are payoff-invariant (that is,
they depend only on agents preferences over game outcomes). This includes, but is not
limited to, subgame perfect equilibria, perfect Bayesian equilibria, Nash bargaining
and rationalizability. We demonstrate that the payment schemes used in the literature
often implement different outcomes than the target game for a large class of solution
concepts, by changing the underlying preferences of agents over game outcomes. We
characterize the qualitative and quantitative differences and develop a payment scheme
that robustly implements the target game for any infinite horizon dynamic game in the
large class we consider, in the sense that it leaves preferences over outcomes identical
to those of the target game. Finally, we demonstrate that the unique payment scheme
that robustly implements the target game is paying participants for the last (randomly
occurring) round.

Dynamic game experiments include analyses of growth models Lei and Noussair
(2002), risk-sharing games (Charness and Genicot 2009; Chandrasekhar et al. 2011),
common good extraction problems (Vespa 2013), investment choice and joint liabil-
ity games (Fischer 2013), dynamic savings models (Brown et al. 2009), equilibrium
refinements in dynamic games (Cooper et al. 1993), and of course classical infinitely
repeated games (Dal Bo 2005). These studies vary not only by topic but also by the
solution concepts considered. For instance,Vespa (2013) looks atMarkov perfect equi-
libria in an experiment studying the common good extraction problem, Charness and
Genicot (2009) focus on subgame perfection, Fischer (2013) is interested in perfect
Bayesian equilibria, and Cooper et al. (1993) focus on forward induction.

Infinite horizon dynamic games are typically implemented in the lab using the
random termination method and paying for all rounds or a random round. Typically,
a participant plays a round of a game which then continues to the subsequent round
with a given probability (Roth and Murnighan 1978). To incentivize behavior, the
experimenter pays the participant as a function of the history of play. The central
problem is that in the lab payments are made after the experiment and therefore not
consumed between stages of the game (as they would be in the realm of the model).
Experiments in the literature, following Murnighan and Roth (1983), usually pay
subjects for all rounds. More recently Azrieli et al. (2018) systematically catalogue
work in a collection of top journals and show that 56% pay for all rounds and 37.5%
pay for one or several randomly chosen rounds.

Paying for all rounds is only valid when agents are assumed to be risk neutral
(Murnighan and Roth 1983). While a section of the literature is interested in worlds
respecting risk-neutrality, paying individuals for all rounds was (and often is) standard

1 This has been the subject of a literature going back to Murnighan and Roth (1983).
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even when themodels being tested explicitly deviated from risk neutrality. This lead to
a dissonance between the theoretical ambitions and experimental implementation of
such work. Indeed, Azrieli et al. (2018) document that 48% of the papers they examine
do not justify their payment scheme in the given experiment whatsoever.

There is a smaller section of the literature that implements random round payments
and often this line of work is interested in within-round risk-averse behavior (e.g.,
insurance games, savings games, growth games) moved to paying individuals for a
randomly chosen round (Davis and Holt 1993). An example of the argument offered
is reproduced here:

“As described in Charness and Genicot (2009), this [randomly chosen round]
payment structure prevents individuals from self-insuring income risk across
rounds. The utility maximization problem of the experiment corresponds to that
of the theoretical model.” (Fischer, 2013, footnote 5).

Unfortunately, as our analysis shows, this is untrue.
Explicit risk aversion over rounds in a dynamic game experiment is important for

three reasons. First, a growing literature is directly interested in risk-averse and risk-
sharing behavior (Charness and Genicot 2009; Lei and Noussair 2002; Fischer 2013;
Brown et al. 2009). Strict concavity of the utility of wealth is necessary for interior
savings decisions aswell as for any formof risk-sharing among twoormore agents (Lei
and Noussair 2002; Chandrasekhar et al. 2011; Brown et al. 2009). Second, a section
of the literature is interested in high stakes games (Gneezy and Rustichini 2000). With
high stakes comes risk aversion. This is especially true for lab-in-the-field work in the
developing world, where payments are large relative to a day’s wage (Fischer 2013;
Chandrasekhar et al. 2011). Third, recent work suggests that even in lower-stakes
game we may observe risk aversion in the lab (Holt and Laury 2002; Harrison and
Rutström 2008; Harrison et al. 2007). Given the possibility of curvature, it suggests
that paying for all rounds or random rounds may not be robust payment schemes. We
make this precise in our analysis, “ how” Showing, in an example arbitrarily small
amounts of curvature may still generate deviations from the theoretical model.

This paper rigorously studies payment schemes in infinite horizon dynamic environ-
ments with time separable utility and exponential discounting. We formally introduce
our environment in Sect. 2. We study a class of dynamic environments among a col-
lection of agents in general terms. The researcher is interested in studying features of
behavior in such a game and therefore constructs an environment in which the pre-
dictions of the game are borne out. The core concept therefore concerns whether
the experimental environment, inclusive of the payment scheme for the subjects,
implements the game of interest. We will say the scheme implements the game if
the preferences over outcomes for all agents along all histories coincide. Note that this
includes but is not limited to equilibrium behavior. It ensures that along all paths, the
behavior in the experiment exactly mimics the behavior in the target game for almost
any rational solution concept.
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In Sect. 3, we introduce and study the scheme wherein individuals are paid for the
last round in a random-termination dynamic game. It implements all such models.2

The reason why this works is due to the (standard) observation that when we have
exponential discounting, myopia with respect to the future is isomorphic to random
termination of the game with some probability.3 Further, we show that in fact last
round payment is the unique payment scheme that implements the game robustly.
What this means is that for a given environment, one can find some agent and some
history where for some preference (e.g., small amounts of curvature in some cases)
the scheme fails to implement the target game. That is, the preference ordering for the
agent in that situation is muddled and does not reflect that within the target game.

Next, in Sect. 4, we provide a rigorous analysis of two payment schemes used
in the literature – either payment for a randomly chosen round or all rounds – and
show how these may induce games different from the target game. We are able to
measure the extent and shape of the distortions. For instance, paying subjects for a
randomly chosen round induces a time-dependent discounting function. Future periods
are discounted more heavily than the discount rate in a way that can change the
theoretical predictions both quantitatively and qualitatively. We compute the exact
time-varying discount function that is induced by the payment scheme, characterize
its properties, and study the behavior in the induced game. Our results demonstrate
that distortions are sizable and can be quantitatively and qualitatively important. For
any discount rate and any dynamic game, consider the “virtual” net present value
(NPV) of a constant stream of consumption. In the first round, under payment for a
randomly chosen round, would be at the most half of the actual NPV under the true
model. In particular, if the discount rate is 0.95, the “virtual” NPV would be less than
30% of the value under the theoretical model. Moreover, paying in all rounds creates
distortions when we allow for arbitrarily small amounts of curvature in the utility for
wealth. In addition to generating distortions, these payment schemes are not robust.
Asymptotically, subjects should care less and less about their decisions in a precise
sense. The maximal difference in utility due to any two future sequences of actions
given any history should go to zero add the number of rounds placed increases. This
means that small perturbations to the system can lead to drastically different observed
outcomes.

We illustrate the pathologies in Sect. 5, presenting our results in the context of a
single-person savings and borrowing model. Whereas an individual should be con-
suming a constant or growing amount under the theoretical model, randomly chosen
round and all round payment can generate a decreasing consumption sequence. This
can lead to qualitatively misleading results which could, for instance, be interpreted

2 Concurrently and independently of us Sherstyuk et al. (2013) also introduce last round payment in infinite
horizon games in a repeated prisoner’s dilemma experiment.
3 However, to be able to implement models with hyperbolic discounting with this payment method,
a researcher should believe that this sort of behavioral bias is isomorphic with the inability to calcu-
late probabilities, which is likely to be unreasonable. This comes from the fact that if we try to map
(1 − β) u (ct )+βγW (t + 1) (whereW is the continuation value and γ ∈ (0, 1) ) to random termination it
must be the case that Pr (game ends) + Pr (game continues) = (1 − β) + βγ < 1. Equivalently, the agent
does not know how to calculate probabilities.
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as “learning to save” as the game progresses; however, no learning is occurring and
this is a product of incentives.

Our results suggest that for a broad class of dynamic games – infinite horizon with
time separability, exponential discounting, and payoff-invariant solution concepts –
experimentalists can use last round payment under random termination as a robust,
theoretically-justified implementation scheme. Irrespective of the solution or extent of
risk aversion, the scheme will implement the target game under standard assumptions.
Additionally, our results allow a researcher to correct her theoretical predictions if she
was interested in estimating a structural model from the lab experiment data utilizing
an alternative payment scheme. By explicitly characterizing the discounting induced
by the payment mechanisms as well as its impact on the induced game, we suggest that
a researcher interested in structurally estimating parameters simply use the corrected
model when performing estimation.

Our paper is contributes to a recent push in the literature to study the effect of incen-
tives in experiments. The papers closest to ours are complementary investigations by
Charness andGenicot (2009) and Sherstyuk et al. (2013). Charness andGenicot (2009)
conduct an infinite horizon risk-sharing experiment. Noting that all round payments
will not work for their purposes, they pay for a randomly chosen round. They look
at the discount factor induced by random round payment and show that the incentive
compatibility constraints of the induced game under random round payment converges
to the target games in later rounds. Below we show that this is insufficient to argue that
later rounds of the experiment should represent equilibriumbehavior in the target game
(and generally will fail to do so). Sherstyuk et al. (2013), concurrently and indepen-
dently of us, look at last round payment in addition to all round and randomly chosen
round payment in the context of infinitely repeated games in risk neutral settings. In an
experiment implementing infinitely repeated Prisoner’s Dilemma, they confirm that
in risk-neutral settings paying for a randomly chosen round will not implement the
target game whereas both all round and last round payment will. They also confirm
Charness and Genicot (2009)’s characterization of the limiting discount factor, though
they argue this induces time inconsistency. As a byproduct of our general analysis, it is
easy to see that the problem is in fact time consistent, with a time varying discounting
function that we exactly characterize. Most recently, Azrieli et al. (2018) both survey
the techniques used in the literature and also look at when specific schemes such as
all round or random round payment can be justified.

The work in this paper also fits in with a broader experimental methods literature
on payment techniques For instance, many experiments conduct multiple sessions.
In our context, this means each subject plays multiple, independent, dynamic games.
Azrieli et al. (2012) look at how payments should be structured to decouple interlink-
ages across several dynamic games, though does not investigate how to implement the
dynamic game itself. In their setup, their concept of implementability is akin to our
definition of robust implementation, and they obtain that in fact, a mechanism paying
the agent for a randomly chosen task. This is compatible with our results, since we
focus on the implementability conditions for a single game (a dynamic one). There-
fore, if we were testing a number of dynamic games in the lab, we would pay for a
randomly chosen game, but the payment for that game should implement the same
preferences, which is achieved by paying for the last round of the randomly chosen
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game. Fréchette and Yuksel (2013) investigate how subjects treat random termination,
since the Murnighan and Roth (1983) procedure links the expected number of rounds
with the discount factor. They study three alternatives, including Cabral et al. (2011)’s
approach of fixing a set number of rounds and then employing random termination.
Our paper takes the standard Roth and Murnighan (1978) random termination as the
benchmark; studying what payment schemes are optimal under specific behavioral
departures from the classical model requires adding these assumptions to the model.

Importantly, our analysis highlights a robustness of last round payment, even in
risk neutral environments. Recall that it works under any solution concept that is
payoff-invariant, meaning it depends only on the conditional expected utility of agents,
nesting SPE, Nash bargaining, rationalizability, etc. Thus, from a theoretical perspec-
tive we view it as weakly dominant to use as a payment scheme, particularly in light
of the uniqueness result. Finally, if researchers are reluctant to implement this pay-
ment scheme for behavioral reasons (outside the current model), we note that any such
behavioral frictions ought to be modeled in so that the researcher can understand both
the likely distortions and the optimal implementing payment mechanism under the
augmented model. While this is beyond the scope of our paper, the approach would
be straightforward using our techniques.

2 Framework

As noted before our treatment applies to multi-stage games with payoff-invariant solu-
tion concepts; i.e, solution concepts that are only a function of the preferences of the
environment and preferences of the agents. This covers a wide array of experimental
environments with dynamic games: repeated games, bargaining games, etc. Addi-
tionally, this covers a large class of solution concepts for these games: SPE, Markov
equilibria, renegotiation proof equilibria, PBE, sequential rationality, forward induc-
tion refinements (intuitive criterion, stability), etc. We do so by focusing on choosing a
payment scheme that implements the same preferences, so any payoff-invariant solu-
tion concept would coincide with that of the target game. We consider the general
analysis in Appendix A where we extend our results to a general class of multi-stage
games with time separable utility and (possibly) history dependent discounting.

2.1 Setup and notation

The researcher is interested in conducting an experiment to test behavior in a dynamic
game �. The game form (i.e, the physical environment) is specified as

E :=
{{

Ai , ri : X×
n∏

i=1

Ai → R≥0

}n

i=1

, {X ,G : A×X → X} , x0 ∈ X , β ∈ (0, 1)

}

where Ai is the stage action space for agent i , A = ∏n
i=1 Ai the set of action profiles,

and ri (·) are the monetary reward functions for each agent. The set X of states evolves
according to xt+1 = G (at , xt ), and x0 is the first (given) realization of the state. The
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special case where G (a, x) = {x0} would correspond to a standard repeated game.
For simplicity, we will assume that A and X are compact topological spaces.

Let H ⊆ ∪∞
t=0 (A × X)t be the set of all possible histories; i.e, those that satisfy

that xs = G (as−1, xs−1) for all s ≤ t . A round t outcome is written as ht = (at , xt ).A
round t history is composedby the outcomes up to t−1; i.eht = (as, xs)s≤t−1 such that
xs = G(as−1, xs−1). and define a pure strategy for agent i as a function σi : H → Ai

which specifies, after each possible history of play ht = (h0, h1, ..., ht−1) where
hk = (ak, xk), an action ai,t = σi

(
ht
)
.

We will also denote σi |ht to be the continuation strategy induced by history ht .
Given a strategy profile σ = (σ1, ..., σn), the outcome of σ is a sequence o (σ ) ∈
(A × X)∞ of actions and states prescribed by σ . Let � be the set of strategy profiles
for environment E .

To define a game � based on environment E , we need to specify continuation
preferences of agents over feasible outcome sequences o = {

âs, x̂s
}∞
s=0 ∈ (A × X)∞

such that x̂s+1 = G
(
âs, x̂s

)
for all s. Given two histories ht = (hk)k≤t−1 and hs =

(ĥ j ) j≤s−1 where ĥ0 = ht , we write the concatenation of them as a new history
ht+s := (ht ĥs). We say that a feasible outcome o = (

âs, x̂s
)∞
s=0 is consistent with

ht = (ak, xk)k≤t−1 if
(
â0, x̂0

) = (at , xt ); i.e, it starts with the last state in ht , and
is a feasible sequence given the law of motion for the state x . Moreover, we write
hto = (

âk, x̂s
)
k≤t−1 as the t−history consistent with outcome o.

See that E does not specify preferences for agents, and is therefore not a
complete description of a game. Let u := (ui : R → R)i=n

i=1 denote a particu-
lar profile of monetary utility functions, and define the dynamic game �u :={
Ai , X ,G : A × X → X , ûi : R+ → R, β

}
where ûi (a, x) := (ui ◦ ri ) (a, x).

Given utility functions ui : R+ → R, the continuation utility of an outcome o consis-
tent with ht ∈ H is given by the time separable utility function:

Ui
(
o | ht) = (1 − β)

∞∑
s=0

β t ui
[
ri (at+s, xt+s)

]
(1)

where o | ht is the tail (from period t on) of the sequence ô = (
hto

)
(i.e, o is

the continuation outcome). The results we obtain for these environments are easily
generalizable for the case where xt includes a random markov process. Formally,
when xt = (zt , yt ) , where zt = Z(at−1, xt−1) is a deterministic state, and yt is
a markov process with conditional distribution yt ∼ F(y | xt ). In this case, we
write ui

[
ri (at+s, xt+s)

] = ∫
ûi

[
ri (at+s, zt+s, yt+s)

]
dF(y | xt ) for the underlying

monetary utility function ûi (·) 4

2.2 Payment schemes and implementation

The researcher wants to test � = �u for a particular class of utility functions u, which
has an infinite horizon and in which agents have exponential discounting. As such,

4 This corresponds to the case with public random variables. However, is also easy to provide an extension
where agents also have sequential private information.
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she has to design an alternative repeated game �̂ with finite (but random) horizon
with the same strategy space, to test the predictions of game �. It is a well-known
fact (following Roth and Murnighan (1978)) that the infinite horizon and exponential
discounting nature of � can be replicated by a game that ends in T periods, where T
is a geometric random variable with probability of termination β, whose realization
is not known to the players; Pr (T = t) = (1 − β) β t . We write T ∼ Geom(β).

To test the predictions of game �, the researcher chooses a payment scheme R ={
R(ht )

}
ht∈H that specifies, for each history ht , the payments r = (ri )i∈[n] in terms of a

distribution R(ht ) ∈ �(Rn) of monetary rewards at the end of the game; i.e, if the last
period agents play is T = t . For example, she might pay choose an all rounds payment
scheme: i.e, R(ht ) = ∏n

i=1 Ri (ht ) with Ri
(
ht
) := {∑

s≤t−1 ri (as, xs) with prob. 1
}

which we denote Rall . Another salient example is to choose the following payment
scheme:

Ri (h
t ) = ri (as, xs) with prob.

1

t + 1
for all s ≤ t − 1.

We will call this the randomly chosen round payment scheme (where the choice is
uniform at random) and we will denote it Rrcr . For a given history hs , we write
Ri (ht | hs) as the distribution for the history the payment scheme induces a new
dynamic game, which we will call �̂(R). At any history ht , the individual evaluates
future sequences according to:

ÛR
i

(
o | ht) := ET

{
ER
r

[
ui (ri ) | hT hto

]}
(2)

where T ∼ Geom(β) and ER
r

(· | ht) is the expectation (over r ) using the probability
distribution R(ht ). That is, the outcome ô = (hto) generates partial finite histories
ht+T = hT hto. If the researcher wants to test the predictions of game �, the payment
schemeusedmust not change the preferences of the original game�. This is formalized
in the following definition.

Definition 1 (Implementation) We say a payment scheme R = {
R(ht )

}
ht∈H imple-

ments � = �u if the preferences over action sequences coincide; i.e, for all feasible
o, o′ ∈ (A × X)∞ and all ht ∈ H we have that

Ui
(
o | ht) ≥ Ui

(
o′ | ht) if and only if ÛR

i

(
o | ht) ≥ ÛR

i

(
o′ | ht)

for all i = 1, . . . , n.

Definition 2 (Strong Implementation) We say a payment scheme R = {
R(ht )

}
ht∈H

strongly implements an environment E if it implements the game � = �u for all
utility function profiles u = (ui (·))ni=1 .

We refer to such schemes as implementing and strong implementing schemes respec-
tively. This definition of implementation is useful in that it does not make any
assumptions about equilibrium selection, or common knowledge assumptions. It also
implies that any solution concept that is based on the agents preferences will be the
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same in both games. We refer to this solution concepts as payoff invariant solutions,
which we study in Appendix A. Strong implementation is useful for studies that also
aim to identify (or to test) the preferences of agents in the stage game.

Given a payment scheme R, we are interested in studying whether it implements
�. From Definition 1 we see that the time separability assumption implies that any
implementing schememust be “memoryless” in the sense that continuationpreferences
after history ht , should be the independent of past histories hs ≺ ht . If the the payment
scheme has history dependence, we might suspect that it is not an implementing
scheme.

We will show that both paying individuals for a randomly chosen round and paying
individuals for all rounds (with any amount of curvature of the utility function) will
typically violate this property. This is because when we pay for a randomly chosen
round, the incentives faced by the agent will depend explicitly on the round number
t and when we pay for all rounds, the payment scheme explicitly depends on the
entire history. However, in the next section we show the existence of an implementing
payment scheme that essentially works for any game.

2.3 Payoff-invariant solution concepts.

By focusing onmaintaining preferences of agentsmaintained (nomatter the per-period
utility functions) we can also respect, in the induced lab game, the same solution
concept that the experimenter aims to test. In general, a solution concept S (�) is a
function that, for each game� = �u based on environment E , it predicts that observed
outcomes will be a subset S (�) ⊆ H. We say that S is payoff-invariant if, whenever
we have games �,�′ based on E with the same preferences over outcomes (i.e, they
are payoff-equivalent)5, then we should also have S (�) = S (

�′). Typical examples
include Nash and Subgame Perfect equilibria, Markov equilibria and renegotiation-
proof refinements, Pareto optimal outcomes, cooperative bargaining solutions, and so
on.

Our implementation definition guarantees that if R implements �, then �̂ (R) is
payoff equivalent to �, and hence any payoff-invariant solution concept S would give

the same prediction S
(
�̂ (R)

)
= S (�).

3 Last round payment

3.1 Implementation

Define the scheme Rlast = (πn
i=1Ri (ht )ht∈H where

Rlast
i (ht ) := {ri (at−1, xt−1) with prob. 1}

5 For game �u, defineUu
i (o | h) as the continuation utility of outcome o after history h (as in equation 1).

We say that � = �u and �′ = �u′ are payoff equivalent if, for all i, h ∈ H and outcomes o, o′, we have
Uu
i (o | h) ≥ Uu

i

(
o′ | h) ⇐⇒ Uu′

i (o | h) ≥ Uu′
i

(
o′ | h)
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and T ∼ Geom(β). Here we pay agents for only the last period of the game. Having
arrived at a history ht , the payment scheme prescribes that with probability 1 − β

the game ends and agents get as final reward ri (at , xt ). With probability β the game
continues at least for one more period, and whatever was played at time t does not
enter into the final payment. As this payment scheme does not depend on the history
ht , the implementability test is satisfied.

Proposition 1 Payment scheme Rlast strongly implements environment E

Proof Fix a profile of utility functions (ui )i∈I . For any history ht and any outcome
o | ht we have that

ÛRlast

i

(
o | ht) = ET

{
ERlast

r

[
ui (ri ) | hT hto

]}
= ET

{
ui

[
ri (at+T , xt+T )

]}
and using the fact that T ∼ Geom(β) we then have that

ÛRlast

i

(
o | ht) =

∞∑
s=0

(1 − β) β t ui
[
ri (at+s, xt+s)

] = Ui
(
o | ht)

Since this property holds for any profile of utility functions,we show thatRlast strongly
implements E . ��
This argument is easily generalizable for anymultistage gamewith observable actions,
time separable utility and common discount factors, which we do in Appendix A.

An important extension is for environments with non-exponential discounting; e.g.
Ui (o) = ∑∞

t=0 btui
(
ri,t

)
where bt ≥ 0 and

∑
t bt = 1. In this case, last round

payments also implement this environment, but with a different random process for
the number of rounds chosen. Namely, a random length is drawn from the distribution
Pr (T = t) = bt , but is only revealed, at every stage, whether the game ends or at least
goes for another round. Namely, if we have reached round t, the probability that the
game ends in this round is 1 − βt := Pr (T = t | T ≥ t) which is here calculated as
bt/

(
1 − ∑

s<t bs
)
, and it continues at least one period with probability βt .6

When agents are risk neutral, we can implement the game (but obviously not
strongly) more easily: write the discount factor as bt = β t Qt for some chosen
β ∈ (0, 1), where the term Qt would be interpreted as a “reward discount”. Then,
instead of paying ri,t on the last round, we pay r̂i,t = Qtri,t . It is trivial to check that
this payment scheme implements the game with risk neutral agents.

3.2 Uniqueness

While we know that the payment scheme Rlast is an implementing scheme, we show
below that it is not the unique implementing scheme for all possible models. In partic-
ular, wewill show that paying agents for all rounds, if agents had linear utility, it would

6 Again, we note that the utility functions, strategy spaces, and common discount factors can all be history
dependent. For instance, this payment scheme is implementing for dynamic games with capital accumula-
tion, savings, etc., which are often of interest.
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also replicate the same preference ordering over continuation outcomes. However, we
then will note that this is not robust; any deviation from linearity can generate very
different preferences from the theoretical ones. So, when one wants their payment
scheme to be robust to misspecification (or small deviations) of the utility functions
over monetary rewards, the relevant implementation concept should be that of strong
implementation. We now show a uniqueness result: in fact, Rlast is the only strongly
implementing scheme: for any other payment schemeR, we can find a pair of outcome
sequences, an agent i with a strictly increasing and smooth (i.e, infinitely derivable)
utility function ui (·) such that the induced preferences under R do not coincide with
those of the theoretical model.

We will only consider schemes R where all lotteries over monetary rewards have
finite support (which is reasonable in practical applications), A payment scheme R
disagrees with Rlast if we can find a pair of histories ht = (ht−1ht−1) and ĥt =
(ĥt−1ĥt ) with ht−1 �= ĥt−1 and ht−1 = ĥt−1 (i.e, they have the same length, and
coincide in the last period) such that Ri (ht ) �= Ri (ĥt ) for some player i .

We say that a payment schemeR satisfies quasi-separability if, for a pair of histories
ht , ĥt , with ht−1 = ĥt−1 = (at−1, xt−1), and a strictly increasing utility function

u : R → R, ER
r

{
u(r) | ht} > ER

r

{
u(r) | ĥt

}
implies that ER

r

{
u(r) | hths} ≥

ER
r

{
u(r) | ĥt hs

}
for any hs = (âk, x̂k)k≤s−1 with (â0, x̂0) = (at−1, xt−1). Note that

Rrar ,Rall and Rlast satisfy this property, as does the theoretical environment E .
We show that any quasi-separable payment scheme R that disagrees with Rlast

cannot strongly implement E . For this, we use a key property of time separable pref-
erences, that states that if two histories ht , ĥt have the same final period outcome, then

we must have that Ui
(
o | ht) = Ui

(
o | ĥt

)
for any outcome o = {as, xs}∞s=0 con-

sistent with ht , and therefore also consistent with ĥt (since ht−1 = ĥt−1). However,
if R disagrees with Rlast , we can then find a utility function for which the expected
utility at ht is strictly greater (or smaller) that the expected utility at ĥt . Then, if R is
also quasi-separable, any continuation outcome will be better appended to ht than to
ĥt (or vice versa).

Proposition 2 Let R be a finite support payment scheme that disagrees with Rlast

for agent i at histories ht , ĥt . Then, we can find a smooth, strictly increasing, and
eventually concave7 utility function ui : R+ → R such that ER

{
ui (r) | ht} �=

ER
{
ui (r) | ĥt

}
. If R is quasi-separable and ER

{
ui (r) | ht} > ER

{
ui (r) | ĥt

}
,

then UR
i (o | ht ) > UR

i (o | ĥt ) for any consistent outcome o = (âs, x̂s)∞s=0 with
(â0, x̂0) = (at−1, xt−1).

Proof See Appendix B. ��
We obtain from Proposition 2 the following Corollary

Corollary 3 Take a finite support payment scheme R that is quasi-separable and dis-
agrees with Rlast . Then, there exist a strictly increasing, smooth, and eventually
concave utility function ui : R → R such that R does not implement � = �u.

7 That is, there exists r̂ such that u′′(r) < 0 for any r > r̂ , and u′′(r) > 0 For any r < r̂ .
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Proof See Appendix B. ��

This corollary implies thatRlast is the only payment scheme that strongly implements
E . Of course, one might not be really interested in the payment scheme being robust
for all possible utility functions, but for a strict subset of feasible utility functions
U ⊆ R

R+ (e.g. concave functions, linear functions). Our proof finds a utility function
ui (c) that is strictly increasing and smooth, exploiting the richness of the set of such
functions to find an example that exactly makes the comparison strict (e.g. ui is not
everywhere concave). It would be interesting to study whether other payment schemes
also strongly implement the environment, when the set of possible utility functions is
further restricted.

4 Payment schemes in the literature

We now rigorously study the two payment schemes used in the vast majority of exper-
iments catalogued in Azrieli et al. (2018).8 First, in Sect. 4.1 we examine payment for
a randomly chosen round and in Sect. 4.2 we look at the all round payment scheme.

4.1 Payment for a randomly chosen round

We argue that paying for a randomly chosen round does not generally implement �.
Moreover, we characterize the behavior induced by this payment scheme. Individuals
discount the future too much in any period and become asymptotically indifferent
between their choices. We develop a formal measure of the distortion to be able to
quantify these biases.

We begin by defining the functions

η (β, t) :=
∞∑
k=0

βk

t + k
and ηβ (β, t) := ∂η (β, t)

∂β
. (3)

We catalog their properties in Appendix C. These are modified discount factors and,
as we will show in Lemma 12, allow us to write down exactly how randomly chosen
round payment can be represented as discounting with η (β, t). Specifically, utility of
outcome a from time t = 0 onward can be written as

ÛRrcr

i (o) = (1 − β)

∞∑
t=0

η (β, t) β t ui
(
ri,t

)
(4)

where ri,t = ri (at , xt ). At any history ht

8 Related payment schemes such as in Cabral et al. (2011) can be analyzed using this approach.
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ÛRrcr

i

(
o | ht) = (1 − β) η (β, t)

t∑
k=0

ui (ri,k)

+β

{
(1 − β)

∞∑
s=0

βsη (β, t + 1 + s) ui (ri,t+s+1)

}
. (5)

From (4) we see that the implied discount factor is β tη (β, t) instead of just β t .
This means that individuals in game �̂ (Rrcr ) discount future flows of utility too
rapidly in the induced game relative to �. Moreover, we can see this from the fact that
limt→∞ η (β, t) = 0 (see, Lemma 10) that

lim
t→∞

η (β, t) β t

β t
= 0.

As a practical matter, we should expect agents to behave much more impatiently than
in the target model. This comes from the fact that, when choosing a1 at t = 1, the
agent should internalize not only the fact that she should receive (1 − β) ui,1 utils at
t = 1, but that this also affects the expected utility at time t = 2 by (1 − β) β 1

2ui,2,
at time t = 3 by (1 − β) β2 1

3ui,3, and so on. Ultimately, this increases the weight
of time t = 1’s decision on lifetime utility as it shows up in every subsequent utility
computation. More explicitly, given a history ht and two outcomes o and ô, the agent
compares utilities in the target theoretical game as

Ui
(
ô | ht) ≥ Ui

(
o | ht)

⇐⇒ (1 − β) ui (r̂i ) + β

[
(1 − β)

∞∑
s=0

βsui (r̂i,t+s)

]

≥ (1 − β) ui (ri ) + β

[
(1 − β)

∞∑
s=0

βsui (ri,t+s)

]
(6)

where r̂t = ri
(
ât , x̂t

)
and x̂t+1 = G

(
ât , x̂t

)
However, when we try to implement it with the random chosen round payment

method, the agent compares utilities according to a different utility function:

ÛRrcr

i

(
ô | ht) ≥ ÛRrcr

i

(
o | ht)

⇐⇒ (1 − β) ui (r̂i,t ) + β

[
(1 − β)

∞∑
s=0

η (β, t + 1 + s)

η (β, t)
βsui (r̂i,t+s)

]

≥ (1 − β) ui (ri,t ) + β

[
(1 − β)

∞∑
s=0

η (β, t + 1 + s)

η (β, t)
βsui (ri,t+s)

]
. (7)

Condition (7) is nearly identical to the incentive condition (6) of the theoretical
game �. The crucial distinction is that future rewards are further discounted by the
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term η (β, t)−1 · η (β, t + s + 1). As η is decreasing in t , we have that η (β, t)−1 ·
η (β, t + s + 1) < 1. This immediately implies that for all s,

η (β, t + s + 1)

η (β, t)
βs < βs .

Consequently a participant is more impatient in �̂ (Rrcr ) than in �. In addition, pun-
ishments after deviations (i.e, the worst equilibrium payoffs for each agent) are also at
least as small as the optimal punishment in game � because of the greater discounting
which also affects the set of implementable outcomes at time t .

It turns out that in the long run (for t large enough), the incentive condition in
sequences in � and �̂ (Rrcr ) are arbitrarily close. Charness and Genicot (2009) doc-
ument this phenomenon in a model of risk sharing with limited commitment. We
confirm this generally in Lemma 11, showing that for any s ∈ N

lim
t→∞

η (β, t + s + 1)

η (β, t)
βs = βs and lim

t→∞ (1 − β)

∞∑
s=0

η (β, t + s + 1)

η (β, t)
βs = 1.

This means as players keep on playing, the incentive compatibility (IC) constraints of
the actual game and the induced game are not very different.

Charness and Genicot (2009) use this to argue thatRrcr almost implements� in the
sense that later rounds are likely to match the theoretical predictions. We caution that
this argument does not follow, for several reasons. First, the speed of convergence of
the incentive compatibility constraints is slow, as discussed below. Second, Charness
and Genicot (2009) assess convergence in terms of the implicit discount rate.We argue
that the correct measure of convergence ought to use the present value of fixed income
streams, which we show below converges at a much slower rate. Third, we prove that
the participants will exhibit asymptotic indifference: even though the IC constraints
of the target and induced games are asymptotically similar, agents simply will not
care about what happens in any continuation game if t is high enough. The reason is
simple: if a participant has been playing for a long enough time, whatever she does
today only negligibly affects the expected value the lottery that she faces. Moreover,
as she is discounting, the effect of future payoffs on the expected value of payments
is also negligible. We formalize this idea below.

4.1.1 Asymptotic indifference

To study the asymptotic indifference, we begin by defining the contribution of an
action to a payoff.

Definition 3 (Contribution) Let K : (A × X)∞ → R be some function that can be
written as

K (o) =
∞∑
s=0

F (s, as, xs)
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for some function F : N × A → R. We define the contribution of (as, xs) to H ,

C (H | s) (o) := F (s, as, xs)

i.e, it is the increment in K caused by what happens at period t . Likewise, let I ⊂ N

index set. We define the contribution of {ak, xk}k∈I as

C (H | I ) (o) :=
∑
k∈I

F (k, ak, xk) .

Example 1 Take Ui,t = (1 − β)
∑∞

s=t β
s−t ui (ri,t ) as the time t utility for agent i in

game � at all subgames that start at date t . Then

C (
Ui,t | t) (o) = (1 − β) ui (ri,t )

and the contribution of all future utility flows is

C (
Ui,t | s > t

)
(a) = (1 − β)

∞∑
s=t+1

βs−t ui (ri,s).

For the particular case of a stationary path (i.e, ui (ri ) = ûi for all s) then we can
simplify the above as

C (
Ui,t | s > t

)
(a) = βûi .

Note that both are time independent and non-negligible. We also define the relative
contribution RCt as the contribution of present and future utilities, relative to the
contribution of both past and present actions:

RCt (o) = C (
Ui
t | s ≥ t

)
(o)

C (
Ui
t | s < t

)
(o) + C (

Ui
t | s ≥ t

)
(o)

.

Since C (
Ui
t | s < t

) = 0 in the theoretical game, RCt should be equal to 1 for any
outcome o. The smaller it is, the less important present and future actions are in
determining the expected continuation payoff that agents may get.

Proposition 4 (Asymptotic Indifference) Let ūi = max(a,x)∈A×X ui [ri (a, xt )]. For all
histories h∞ and all a ∈ A,

C
(
ÛRrcr

i,t | t
)

(o) ≤ ūi (1 − β) η (β, t) = ūi
1

t + 1
+ o

(
1

t

)
,

C
(
ÛRrcr

i,t | s > t
)

(o) ≤ ūi (1 − β) βηβ (β, t) = ūi
β2

t (1 − β)
+ o

(
1

t

)
,
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which implies that

sup
o,o′∈(A×X)∞

∣∣∣ÛRrcr

i,t

(
o | ht) − ÛRrcr

i,t

(
o′ | ht)∣∣∣ ≤ o

(
1

t

)
. (8)

Moreover,

RCt (o) ∝ 1

1 + (1 − β) t
+ o (1)

so all expressions converge to 0 as t → ∞.

Proposition 4 illustrates how the contribution of present and future payoffs decreases
in time until becoming negligible, so any decision taken at a late round will not greatly
affect the expected utility the agent is going to get, as illustrated by condition (8). This
is true both in absolute and relative terms: the contribution of present and future payoffs
relative to already realized payoffs is almost inversely proportional to the round the
agent is at.

4.1.2 Measuring distortions in implementability and payoffs

Equation (7) allows us to compare the incentive constraints quite easily. In each of
the expressions, the present is evaluated in the same manner, (1 − β) ui (ri,t ), and the
only differences come from discounting future payoffs, which is time dependent.

We now develop a measure of the distortion. Suppose we consider a constant out-
come (as, xs) = (a, x) for all s ≥ t at time t , which generates a constant stream
utility. The theoretical expected present value from any history ht onwards, which we
will denote by Wt , is

Wt = (1 − β)

∞∑
s=0

βsu = u.

On the other hand, the when we do this computation in the game �̂ (Rrcr ), we have
from (7) that,

Ŵt = (1 − β)

∞∑
s=0

[
η (β, t + s + 1)

η (β, t)

]
βsu = (1 − β)

ηβ (β, t)

η (β, t)
u.

Then, for any utility level u, we can define the ratio of present values ρt as

ρt := Ŵt

Wt
= (1 − β)

ηβ (β, t)

η (β, t)
. (9)

We show that ρt → 1 and ρt < 1 for all t , since agents behave as if they discounted
the future more than they actually do. With (9) we are equipped with an explicit
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Fig. 1 Ratio of present values ρt versus round t

measure of how bad the problem is.9 This is a measure of the distortion in the incentive
condition.

Figure 1 explores the behavior of this ratio for different values of β, as t grows.
For β = 0.9, at round 1 the ratio about 0.3, which implies that agents evaluate future
relative utility streams at 30% the value in the target game, which gives a sizable
measure of the distortion of incentives in (7). Even by round 10 this distortion is about
65%. In addition the figure displays a uniform bound across all discount factors.

To demonstrate how the slow convergence relates to the asymptotic indifference,
we plot RCt as well in Fig. 2. In the target game notice that the relative contribution
is identically 1 at all periods. By studying the behavior of the ratio of present values
ρt and the relative contribution together against time, we can see that as ρt slowly
converges to 1 (and the distortion becomes arbitrarily smaller), meanwhile the relative
contribution rapidly converges to zero. By period 10, the relative contribution has
dropped to 0.44 and ρt is merely 0.67. This figure suggests that by the time that the
valuation of relative future utility streams are close to the target game, agents are
“almost indifferent” about the potential continuation histories they could face.

9 We can calculate the functions η and ηβ accurately using the finite integral formulation in Lemma 10.1
and 1.

123



A. G. Chandrasekhar, J. P. Xandri

Fig. 2 ρt andRCt versus round t

4.2 Payment for all rounds

In this Section we study the “all rounds: payment scheme and study under what
conditions it may also fail to implement � given a utility function profile u.10 We
establish that the payment schemes may significantly weaken the incentives of the
participants as the number of rounds played increases and present a new result on
uniform asymptotic indifference. It is well-known in the literature that the standard
payment mechanism was generated with risk neutrality in mind (Murnighan and Roth
1983), though it is not uncommon to find examples that still use all round payment
despite studying a model with curvature.

The payment scheme Rall is given by

Ri,t (h
t ) =

s=t−1∑
s=0

ri (as, xs) with prob.1

where T ∼ Geom(β). There may be a distortion due to Rall . Since agents receive the
payment for the experiment only when the experiment ends, the amount earned up to

10 This concern has been raised by researchers interested in experiments studying behavior under risk-
aversion: e.g., Charness and Genicot (2009) and Fischer (2013).
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time t generates a stock of earnings not yet consumed. If there is some curvature in
the utility function ui , then the stock of unconsumed earnings may affect incentives
of agent i in all subsequent rounds. In particular, if utility over monetary rewards
were concave, we should expect to see a diminishing marginal utility of wealth as
t increases, which would weaken incentives in the long run. Note that if utility was
linear in earnings, this payment scheme would not cause problems, as noted in the
literature.

We formalize these intuitions in Proposition 5. Let

r i = max
(a,x)∈A×X

ri (a, x) and r i = min
(a,x)∈A×X

ri (a, x)

be the best and worst possible stage rewards for agent i , and suppose that r i ≥ 0.

Proposition 5 Suppose that ui (·) is an increasing, concave anddifferentiable function.
1. The range of values for contemporaneous and continuation utilities is decreasing

over time. Specifically, for any feasible ht and any pair of feasible continuation
sequences o, o′ ∈ (A × X)∞ we have that

∣∣∣ÛRall

i,t

(
o | ht) − ÛRall

i,t

(
o′ | ht)∣∣∣ ≤ β

1 − β
u′
i (r i t)(r i − r i )

If, in addition, ui satisfies the Inada condition u′
i (∞) = 0 and ri > 0, then as

t → ∞

sup
o,o′∈(A×X)∞

∣∣∣ÛRall

i,t

(
o | ht) − ÛRall

i,t

(
o′ | ht)∣∣∣ → 0. (10)

2. If u is linear (so agents are risk-neutral) then Rall implements �u

Proposition 5 illustrates the nature of the distortion caused byRall . As time passes the
amount by which an agent’s utility changes must be decreasing; we note the parallel
between (8) and (10). Note that the payment scheme is only implementing if the
participants are modeled as risk-neutral, which of course is well-understood.

5 Amodel of borrowing and savings

In this section, we consider a simple environment: one agent who faces stochastic
income and has access to savings and borrowing. This environment is a basic building
block of numerous economicmodels and presents a simple one-person dynamic game.

Additionally, this example addresses the following issue. Observe that in a repeated
game if agents can renegotiate in the future, since late rounds may have IC conditions
that converge to the target IC conditions as t → ∞, late round outcomes in the induced
game may resemble those of the target game. This, however, is not at all robust: it will
not hold in even the simplest dynamic game with a Markovian variable affected by
past period interaction. This simplest setting is where one agent faces deterministic
income and has a savings and borrowing vehicle.
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The setup is entirely standard.An agentwith preferencesU=(1 − β)
∑∞

t=0 β t u (ct )
where u′ > 0 and u′′ < 0, has an initial endowment of assets, a0 = 0. At each t, the
agent receives a deterministic endowment of yt ≥ 0 units and can save any amount at
a constant gross interest rate Q > 0. The budget constraint and no-Ponzi conditions
are

ct + at+1 = yt + Qat for all t ∈ N and lim
t→∞ Q−t at = 0.

Arrow’s time-zero constraint is

∞∑
t=0

Q1−t ct =
∞∑
t=0

Q1−t yt . (11)

The usual Euler equation is u′ (ct ) = βQu′ (ct+1). In particular βQ = 1 yields
ct = ct+1 = c∗. The consequence of this, of course, is Friedman’s permanent income
hypothesis which follows by (11), with

∑∞
t=1 β t−1c∗ = ∑∞

t=1 β t−1yt ⇐⇒ c∗ =
(1 − β)

∑∞
t=1 β t−1yt . This is independent of the specific preferences we considered.

We show that even though in the limit both random round and all round payment
generate the same inter-temporal tradeoff in late rounds, the actual consumption paths
will be exceedingly different relative to the target game. Instead of exhibiting constant
cross-period consumption, they will exhibit decaying consumption paths.

5.1 Payment for a randomly chosen round

Suppose that we pay the agent for a randomly chosen round in the above environment
with βQ = 1. It can be shown, using the recursive method shown in Appendix 1, that
the modified Euler equation is

u′(crart ) = η (β, t + 1)

η (β, t)︸ ︷︷ ︸
<1

βQu′(crart+1) < βQu′(crart+1)

which clearly distorts the natural Euler equation from the original model. Instead of
consuming a constant amount, the agent would choose a forever decreasing consump-
tion bundle. To further our intuition, define Q̂t = η (β, t)−1 · η (β, t + 1) Q as the
effective gross interest rate, as the Euler equation is u′ (ct ) = β Q̂t u (ct+1). Observe
Q̂t < Q for all periods; agents will save less under round at random payment than
under the theoretical model.

Proposition 6 Let u (·) be a strictly concave and differentiable utility function. Then

u′(c∗
t )

u′(crart )
∝ η (β, t) → 0 as t → ∞. (12)
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To illustrate the proposition, assume we have a CES utility function: u (c) = c1−σ

1−σ
. We

can show that

crart

c∗
t

∝ [η (β, t)]
1
σ = O

(
t−

1
σ

)
.

This implies that consumption under the randomly chosen round payment scheme is
infinitely smaller than the theoretical predicted consumption decision when t → ∞.
Suppose now that βQ = 1, so c∗

t = c∗ for all t and suppose σ = 1. Then,

ct = η (β, t)

η (β, 1)
c1 ∝ η (β, t)

so ct → 0. Even if the Euler equation does converge to that of the theoretical model
(since η (β, t)−1 · η (β, t + 1) → 1 as t → ∞) the behavior of the solution does not
approximate the one in the theoretical model. In particular, the solution at very large t
does resemble a constant consumption, but the wrong constant. Instead of ct = c∗, it
will become arbitrarily close to zero. Figure 3 presents this result for various values of
β. We have utilized log utility and set Q such that Qβ = 1 in each case. Observe that
instead of maintaining constant consumption over time, consumption steeply declines.
This exhibits a substantive quantitative and qualitative differences in induced behavior.

5.2 Payments for all rounds

We consider the case where agents are paid for all rounds. In Appendix 1 we show
that the modified Euler equation is now

u′(callt ) = β (Q − 1) u′(callt ) < βQu′(callt+1) (13)

Again this has the effect of reducing incentives for saving, since the effective net
interest rate for the agent is q := Q − 1. The extent of the distortion is illustrated by
the following proposition.

Proposition 7 Let u (·) be a strictly concave and differentiable utility function. Then

u′(c∗
t )

u′(callt )
∝

(
1 + 1

q

)−t

. (14)

To illustrate this proposition, we return to the CES example. Notice

callt

c∗
t

∝
(

q

1 + q

) t−1
σ → 0 as t → ∞

so nomatter how small σ is, the ratio between consumptions goes to zero. In particular,
consider the casewhere 1 < Q < 1+ 1

β
. This implies thatβQ > 1 andβ (Q − 1) < 1.
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Fig. 3 Consumption sequences with log utility for payment for a randomly chosen round. Q set such that
βQ = 1 and yt = 1

The above equations imply that for any σ > 0 we have that

callt ∝ [β (Q − 1)]
t−1
σ → 0 since β (Q − 1) < 1

but

c∗
t ∝ (βQ)

t−1
σ → ∞ since βQ > 1.

Therefore, we have shown not only that the ratio of consumption goes to zero but also
that the behavior of the optimal solution path is extremely different. Furthermore, this
is true no matter how much curvature (i.e, σ > 0) we assume. We highlight this point
because we know that when utility is linear (i.e, σ = 0) payment in all rounds does
implement the actual game. However, this result is largely non-generic: allowing for
arbitrarily small amounts of curvature (in the CES family) implementable outcomes
are starkly different. Moreover, if the researcher is interested in larger-stakes games
(see, e.g., Gneezy and Rustichini, 2000), it may very well be that curvature enters
decisions thereby invalidating all round payment as an alternative to random round
payment.

Figure 4 illustrates this, with β = 0.97, Q = 1.3 and log utility. Under the model,
the agent should exhibit a growing consumption sequence. However, under all round
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Fig. 4 Induced equilibrium consumption sequences under the theory and all round payment

payment, since all future streams of consumption until the end of the game is kept by
the agent, the she wants to maximize the amount of consumption early on. Again we
see large quantitative and qualitative disparities between the theoretical model and the
induced game under incorrect payment.

6 Conclusion

We rigorously study payment schemes in multi-stage games and are interested in
which schemes robustly implement the game in the sense that along all histories the
preference orderings of all agents among all actions available coincide. This includes
both settings where agents play or do not play equilibrium behavior. We begin by
studying last round payments and show not only does it always implement the game
of interest but, also, it is the only scheme to uniquely do so in a robust fashion.
That is, last round payment is the only scheme that implements a given game for
all preferences—which of course cannot be determined by the experimenter and is
a fundamental feature of the human subject. We then study two schemes used in
the literature: randomly chosen round and all round payment. We show that both
schemes often will fail at implementing the target game that the experimentalist is
interested in. The distortions can be quantitatively large and, moreover, can change
the qualitative dynamics of behavior in a substantive way. In addition to generating
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distortions, these payment schemes are not robust in two ways. First, asymptotically,
subjects should care less and less about their decisions, which makes the realized
behavior not perturbation robust. Second, even arbitrarily small amounts of curvature
can make all round payments fail. Last round payment never exhibits either of these
issues. Ultimately, we argue that researchers should use last round payment schemes
to implement infinite horizon dynamic games that satisfy our rather general class of
assumptions.
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Appendix A General analysis

A.1 Setup

We extend our results to multi-stage games. As we did in the dynamic game setting
above, it is convenient to express such a game in two parts: a physical environment
(which will be replicated in the experiment) and preferences over outcomes (that
will be assumed in the theoretical model the economist chooses). We will do it for
complete information games, although the extension to incomplete information games
is straightforward.

A.1.1 Environment

Amulti-stage environment E is described by a set of players I and an infinite number
of stages τ ∈ N. For every history up to stage hτ−1, at stage τ agents play a finite
extensive-form game

E
(
hτ−1

)
:=

{
Ĥ, Ẑ,

{
Ai

(
ĥ
)

, Ii
(
ĥ
)}

i∈[n],ĥ∈H ,
{
r̂i (z)

}
z∈Ẑ

}

where:

• Ĥ := Ĥ | hτ−1 is the set of partial stage histories; i.e, partial histories of E (hτ ).
• Ẑ := Z | hτ−1 is the set of partial stage terminal nodes

• Ai

(
ĥ
)

:= Ai

(
ĥ | hτ−1

)
is a set of stage actions that agent i can make at history

ĥ of environment E , or likewise, the actions that agent i can take at history
(
hτ , ĥ

)
.

When Ai = {ai } (singleton) then we say agent i is inactive at stage ĥ.

• Ii
(
ĥ
)

:= Ii
(
ĥ | hτ−1

)
⊆ Ĥ is the stage information set of agent i at stage

history ĥ.
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• r̂i (z) := r̂i
(
z | hτ−1

)
is the monetary reward function for stage τ , at terminal

node z.

Also, denote by �
(
hτ−1

)
the set of mixed contingent strategies for environment

E
(
hτ−1

)
. We can incorporate any sort of random shocks simply by taking a player

named “nature”, who plays a known mixed strategy over her actions, which is mea-
surable with respect to the observed public history. A history (unlike a stage history)
is the description of the outcomes at all previous stages:

h = (z1, z2, . . . , zτ )

where zk ∈ Z | hk for all k ∈ [τ ]. Let l (h) = τ be the length of history h. The set
of all histories is written as H (unlike stage partial histories, written as Ĥ). For two
given histories h′, h ∈ H we write “h′ is a successor of h” as h′ � h. We also write
�i for the set of (mixed) contingent strategies σi (hτ ) ∈ �i (hτ ) for all hτ ∈ H, and
� := ∏

i∈[n] �i .
We can then define rewards as functions of histories: if h′ is the direct successor of

history h; i.e, h′ = (h, z) for some z ∈ Z | h , we define ri
(
h′) := r̂i (z | h)

A.1.2 Preferences

Given the physical environment �, the experimenter needs to choose a preferences for
agents, under which they rank which outcomes they prefer. A preference model u
is determined by a set of conditional payoff functions u = {

Ui
(
h′ | h)}i∈[n],h,h′∈H

where h′ � h. We say that a preference model U has common discounting if and
only if there exist functions ui : R → R and a process b = {b (h)}h∈H ≥ 0 such that∑

h∈H b (h) = 1 for all h ∈ H and for all h′ � h :

Ui
(
h′ | h) =

∑
ĥ:h�ĥ�h′

b
(
ĥ
)
ui

[
ri

(
z
l
(
ĥ
) | ĥ

)]
. (A1)

In particular, we say that a model U has common exponential discounting when
∃β ∈ (0, 1) such that

Ui
(
h′ | h) = (1 − β)

∑
h′′:h′�h′′�h

β
l
(
ĥ
)
ui

[
ri

(
z
l
(
ĥ
) | ĥ

)]
. (A2)

where l (h) = { length of history}. From now on, we will only consider common
discountingmodels: letU (�,b) be the set of common exponential discountingmodels
given an environment �.

Finally, given a profile of monetary utility functions u = (ui )i∈I we define the
multi-stage game �u of environment E and preferences over outcomes for all agents
given by (A2).
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A.2 Implementation

Given an exponential discounting process (parametrized by β ∈ (0, 1)) and given a
profile of utility functions u, define the associated game �̂u (R) as the associated finite
game that satisfies the following:

• Game �
(
h0

)
is played,

• With probability β the game continues and agents play game �u
(
h1

)
, and with

probability 1 − β the game ends.
• After k stages, game ends with probability 1−β or the game continues for at least
one more stage, playing now the extensive form game �u

(
hk−1

)
.

• When game ends, agents receive a random payment, according to distribu-
tion R

(
hT

)
(where T is the last stage game) and agents then get Ûi

(
hT

) =
ET

{
Er

[
ui (ri ) | hT ]} where the expectation Er (· | hT ) is calculated using the

probability measure R
(
hT

)
In particular, we generalize the last round payment asRlast

i

(
hT

) = ri
(
zT , hT−1

)
with

probability 1. For general discounting processes b (h)wemodify the abovemethod, by
changing the probability of the game ending in each particular history. The associated
game �̂u (R) is played as follows:

• Game �
(
h0

)
is played.

• With probability 1 − β̂ = b
(
h0

)
the game ends after the first round, and with

probability β̂ = 1 − b
(
h0

)
the game continues for another round.

• At history h = ht the game ends with probability

1 − β̂ := b (h)

1 − ∑
h′≺h b (h′)

i.e, given the fact that in all previous periods the game did not end.

See that this process implies that Pr (game ends at h) = b (h), in which case the agent
would obtain ui (ri (h)) utils, which then trivially extends the result of exponential
discounting models.

Proposition 8 (Strong Implementation) The payment scheme Rlast strongly imple-
ments environment E.

A.3 Payoff invariant solutions

We now discuss a different approach, in which the researcher only wants to check
whether a particular solution to the game will be played, which is expressed as a
restriction over the set of feasible strategies that agents may play. We formalize this
below

Definition 4 (Solution) A solution is a correspondence S (�) ⊆ � for all � based
on E
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Natural solution concepts may be the set of Subgame Perfect Equilibria, Nash Equi-
libria, Sequential Equilibria, and so on. We will focus on a particular class of solution
concepts: payoff invariant solutions. These are solution concepts that are basically
defined by the agents preferences alone, and where particular labels to strategies are
not relevant. This class that encompass most solution concepts used in the literature.

We say that games �u, and �u, are payoff-equivalent if for all h ∈ H and all
h′, h′′ � h ∈ H we have

Ui
(
h′ | h) ≥ Ui

(
h′′ | h) ⇐⇒ Ui

(
h′ | h)≥Ui

(
h′′ | h) ⇐⇒ for all i ∈ [n].

(A3)

That is, both games have same histories, strategy spaces, and same preferences. With
some abuse of notation, we write �u ∼ �u for payoff-equivalent games.

Definition 5 (Payoff invariance) A solution S (�) is payoff-invariant if �u ∼ �u
implies S (�u) = S (�u).

Most of the solution concepts we use are payoff-invariant. For example, the set of
subgame perfect equilibria of a game is payoff invariant, since its definition depends
solely on the conditional payoffs: let h′ (σ ) | h ∈ H be the continuation history
according to strategy profile σ , conditional on reaching history h.

SPE (�u) = {
σ ∈ � : Ui

[
h′ (σi ) | h] ≥ Ui

[
h′ (σ̂i , σ−i

) | h] for all h ∈ H, σ̂i ∈ �i
}

Other examples of such solutions are include Nash equilibrium, Markov equilibria,
best and/or worst NE, the core, Nash bargaining, and so on.

Proposition 9 Let S be a payoff invariant solution. Then S (�u) = S
(
�̂u

(
Rlast

))
for all u

Appendix B Proofs

Proof of Proposition 2 For any feasible outcome o = (as, xs)∞s=1 define the outcomes
õ = (hto) and ô = (ĥto).Take the histories ht , ĥt and the agent i that are implied
by the fact that R disagrees with Rlast , so that ht �= ĥt but ht−1 = (at−1, xt−1) =
ĥt−1. Let R = Ri

(
ht
)
be the distribution of payments according to history ht , and

R̂ = Ri

(
ĥt
)
the corresponding distribution for history ĥt . Let S = Supp (R) =

{r1, r2, . . . , rm} and Ŝ = Supp
(
R̂
)

= {
r̂1, r̂2, . . . , r̂n

}
and p ∈ �(S) and p̂ ∈ �

(
Ŝ
)

the corresponding probabilities for each monetary reward. Suppose first that S �= Ŝ,
so that ∃r j ∈ S ∩ Ŝc. Given a utility function ui , we can then define the expected
utilities VR

i

(
ht
) := Er

[
ui (r) | ht ] = ∑

r∈S p (r) ui (r) and the equivalent for ĥt .
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Define r∗
1 = max

{
S ∪ Ŝ

}
to be the maximum return. We will first construct utility

functions of the form

û(c) = fk(c) =
{
0 if c < k

1 if c ≥ k

to show that VR
i (ht ) �= VR

i (ĥt ).

Case1: r∗
1 /∈ S∩Ŝ: this is the casewhere themaximumreward is only achieved (with

positive probability) only in one of the histories. Then, if we define ûi (c) = f r
∗
1 (c)

we will have that VR
i (ht ) > VR

i (ĥt ) when r∗
1 ∈ S or VR

i (ht ) < VR
i (ĥt ) if r∗

1 ∈ Ŝ.

Case 2: r∗
1 ∈ S∩Ŝ. Hereweneed to consider several sub-cases: (2.a) p(r∗

1 ) �= p̂(r∗
1 )

and (2.b) p(r∗
1 ) = p̂(r∗

1 ). For (2.a), the function ûi (c) = f r
∗
1 (c) will still make

VR
i (ht ) > VR

i (ĥt ) if and only if p(r∗
1 ) > p̂(r∗

1 ).

If we are in Case (2.b), then we need to define r∗
2 = max

{
r ∈ S ∪ Ŝ : r �= r∗

1

}
as

the second best reward. Then, we replicate the analysis of Case 1 for r = r∗
2 and Case

(2.a). If we get that r∗
2 ∈ S ∩ Ŝ and p(r∗

2 ) = p̂(r∗
2 ) we then go to the third best r∗

3 and
proceed iteratively. Eventually, we either stop at r = r∗

m for m < #(S ∪ Ŝ) or run out
of rewards in both supports. However, this only happens if S = Ŝ and p(r) = p̂(r)∀r ,
which would violate the assumption that R(ht ) �= R(ĥt ).

Once we find r∗ we also find a candidate utility function ûi (c) = fr∗(c),
which is non-decreasing (but not strictly increasing) and satisfies

∑
s∈S ui (r)p(r) >∑

s∈Ŝ ui (r)q(r) (or vice versa) given that this inequality holds if and only if∑
r≥k∗ p(r) ≥ ∑

r≥k∗ q(r). Consider the function gr ,η(c) = 
((c − r + ε)/η)where

(·) is the cdf of the normal distributionN (0, 1) and η > 0. It is easy to see that, for
all c �= r we have that limη→0 gr ,η(c) = 1 when c > r and limη→0 gr ,η(c) = 0 when
c < r , so gr ,η(c) converges point-wise to fr (c). Let ε = αminr∈S∪Ŝ |r∗ − r | with
α < 1 and define r = r∗ − ε (so there is no reward in the support of either distribution
such that c = r∗). We then have that

∑
r∈S gη(r)p(r) → ∑

r∈S:r≥r∗ p(r) = VR
i (ht )

as η → 0, and the same holds for VR
i (ĥt ). Therefore, by choosing a small enough

η, we construct the utility function ui (c) := gr∗−ε,η̂(c) that satisfies that either

VR
i (ht ) > VR

i (ĥt ) or VR
i (ht ) < VR

i (ĥt ), showing the first result.

For the second result, we take the case where VR
i (ht ) > VR

i (ĥt ). Since gr ,η(c) is
strictly increasing and R satisfies quasi-separability, we then have that VR

i (hths) >

VR
i (ĥt hs) for any partial continuation history hs . For any outcome o = (âs, x̂s)∞s=0

where (â0, x̂0) = (at−1, xt−1) (i.e, it is consistent with both ht and ĥt ) define hso :=
(ak, xk)

k=s−1
k=0 as the partial history of its first s rounds. Then, for any such outcome,

we have that:

ÛR
i (o | ht ) − ÛR

i (o | ĥt ) = (1 − β)
[
VR
i (ht ) − VR

i (ĥt )
]

+β(1 − β)

∞∑
s=0

βs
[
VR
i (hthso) − VR(ĥt hso)

]
> 0
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using the fact that VR
i (hthso) > VR

i (ĥt hso) for all s ≥ 0, implying then that ÛR
i (o |

ht ) > ÛR
i (o | ĥt ), as we wanted to show. ��

Proof of Corollary 3 If R disagrees with Rlast at ht , ĥt , we can choose t to be the first
round when R disagrees with Rlast (so, before that, they have the same expected
values). Let for s ≤ t let hs and ĥs be the partial histories up to s of each history. Take
any outcome õ consistent with (at−1, xt−1) and define the outcomes o = (ht ˜̃o) and
ô = (ĥt õ). From the time t = 0 perspective, we have that

Ui (o | x0) = (1 − β)

s=t−1∑
s=0

βsui [ri (as, xs)] + (1 − β)β t
∞∑
k=0

βkui (ãk, x̃k)

Ui (ô | x0) = (1 − β)

s=t−1∑
s=0

βsui
[
ri (âs, x̂s)

] + (1 − β)β t
∞∑
k=0

βkui (ãk, x̃k)

and therefore

Ui (o | x0) −Ui (ô | x0) = (1 − β)

s=t−1∑
s=0

βs {ui [ri (as, xs)] − ui
[
ri (âs, x̂s)

]}

i.e. only the first t periods should matter. However, under R we have that for all s ≤ t
we have ER(ui (r) | hs) = ui [ri (as, xs)] and ER(ui (r) | ĥs) = ui

[
ri (âs, x̂s)

]
.

Therefore

UR
i (o | x0) −UR

i (ô | x0) = Ui (o | x0) −Ui (ô | x0)

+(1 − β)β t

[ ∞∑
k=0

βk
(
UR
i (õ | hths) −UR

i (õ | ĥt hs)
)]

> Ui (o | x0) −Ui (ô | x0)

This implies that if Ui (o | x0) ≥ Ui (ô | x0) we must also have UR
i (o | x0) ≥

UR
i (ô | x0), but it is not implied in the other direction. See that this result holds for

any continuation outcome õ, so the difference UR
i (o | x0) − UR

i (ô | x0) depends
crucially on õ while the theoretical comparison does not. ��

Proof of Proposition 5 Observe that

ÛRall
i

(
a | ht) − ÛRall

i

(
a′ | ht) = (1 − β)

∞∑
s=0

βs

[
ui

(
Ri,t−1 +

k=s∑
k=0

rt+k

)

−ui

(
Ri,t−1 +

k=s∑
k=0

r ′
t+k

)]
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where ri,t+k = ri (at+k) and likewise for r ′
i,t+k . By concavity and differentiability of

ui (.), we know that for all x, y ∈ R we have that

u′ (x) (x − y) ≤ u (x) − u (y) ≤ u′ (y) (x − y) .

Using x = Ri,t−1 + ∑s
k=0 rt+k and y = Ri,t−1 + ∑s

k=0 r
′
t+k ,

(1 − β)

∞∑
s=0

βsu′
i

⎛
⎝Ri,t−1+

s∑
k=0

ri,t+k

⎞
⎠ ×

⎛
⎝ s∑
k=0

(
ri,t+k − r ′

i,t+k

)⎞⎠≤Û
Rall
i

(
a | ht ) − Û

Rall
i

(
a′ | ht )

≤ (1 − β)

∞∑
s=0

βsu′
i

⎛
⎝Ri,t−1 +

s∑
k=0

r ′
i,t+k

⎞
⎠ ×

⎛
⎝ s∑
k=0

(
ri,t+k − r ′

i,t+k

)⎞⎠

As ui is concave, u′
i

(
Ri,t−1 + ∑s

k=0 ri,t+k
) ≤ u′ (Ri,t−1

)
and the same for r ′

i,t+k , so

∣∣∣ÛRall
i

(
a | ht) − ÛRall

i

(
a′ | ht)∣∣∣ ≤ u′ (Ri,t−1

)
(1 − β)

∞∑
s=0

βs
s∑

k=0

∣∣ri,t+k − r ′
i,t+k

∣∣

If r i > 0, then Ri,t ≥ r i (t + 1), implying that

∣∣∣ÛRall
i

(
a | ht ) − Û

Rall
i

(
a′ | ht )∣∣∣ < u′

i (r i (t + 1))
[
(1 − β)

∑∞
s=0 sβ

s
∣∣r i − r i

∣∣]
≤ β

1−β
u′
i (r i (t + 1))

(
r i − r i

)

as we wanted to show, using the fact that
∑∞

s=0 sβ
s = β/(1 − β)2. To show the

contemporary utility result, without loss of generality take r , r̂ ∈ ri (A), such that
r > r̂ . Then,

u′
i

(
Ri,t−1 + r i

)
(r − r̂) ≤ u′

i

(
Ri,t−1 + r

)
(r − r̂) ≤ (1 − β) ui

(
Ri,t−1 + r

)
− (1 − β) ui

(
Ri,t−1 + r̂

)
≤ u′

i

(
Ri,t−1 + r̂

)
(r − r̂) ≤ u′

i

(
Ri,t−1 + r i

) (
r i − r i

)
which implies that

∣∣ui (Ri,t−1 + r
) − ui

(
Ri,t−1 + r̂

)∣∣ ≤ u′
i

(
Ri,t−1 + r i

) (
r i − r i

) ≤ u′
i

(
r i t

) (
r i − r i

)
.

as we wanted to show. ��

Proof of Proposition 4 From Lemma 12, equation C7, we have that for any (at , xt ) the
contribution of t period strategies is C (

Ui
t | t) (at , xt )=(1 − β) η (β, t) ui [ri (at , xt )]

and the result follows from there. Also, Property (1) in Lemma 10 gives the approx-
imation result (and convergence to zero). For any history at+s , using again equation
(C7), we have
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C
(
Ui
t | {s≥ t+1}

) ({at+s , xt+s}∞s=1

)=β (1−β)

∞∑
s=0

η (β, t+1+s) ui
[
ri (at+1+s , xt+1+s)

]

≤ βūi (1 − β)

∞∑
s=0

∞∑
k=s

βk

t + 1 + k
= βūi (1 − β)

∞∑
k=0

k∑
s=0

βk

t + 1 + k

= βūi (1 − β)

∞∑
k=0

(k + 1) βk

t + (k + 1)
= βūi (1 − β)

⎛
⎝ ∞∑

j=1

jβ j−1

t + j

⎞
⎠

= βūi (1 − β)

⎛
⎝ ∞∑

j=0

jβ j−1

t + j
− 0

⎞
⎠ = βūi (1 − β) ηβ (β, t)

and the approximation result comes from property (1) in Lemma 10. ��
Proof of Proposition 6 Using the Euler equation for both the theoretical and the RCR
sequence of optimal consumption, we get

u′ (c∗
t

) = 1

β t−1Qt−1 u
′ (c∗

1

)
and

u′(crcrt ) = 1

β t−1Qt−1 u
′(crcr1 )

η (β, 1)

η (β, t)

then

u′(c∗
t )

u′(crcrt )
= u′(c∗

1)

u′(crcr1 )

η (β, t)

η (β, 1)
∝ η (β, t) .

��
Proof of Proposition 7 From before we knew that

u′ (c∗
t

) = 1

β t−1Qt−1 u
′ (c∗

1

)
and likewise, we show that

u′(callt ) = 1

β t−1(Q − 1)t−1 u
′(call1 )

Therefore

u′(c∗
t )

u′(callt )
=

(
Q − 1

Q

)t−1 u′(c∗
1)

u′(call1 )
∝

(
1 + 1

q

)−t

.

��
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Appendix C Auxiliary results

C.1 Technical results

Lemma 10 Let η and φ be defined as in 3 and let ηβ (β, t) := ∂η(β,t)
∂β

. Then

1. For all β ∈ (0, 1) and all t ≥ 1 we have η (β, t + 1) = 1
β

(
η (β, t) − 1

t

)
.

2. For t ≥ 1 we can write η (β, t) as η (β, t) = 1
β t ln

(
1

1−β

)
− ∑t−1

i=1
1

(t−i)βi .

3. For all β, t we can write η (β, t) = 1
β t

∫ β

0
zt

z(1−z)dz.

4. For all β, t we can write ηβ as ηβ (β, t) = ∑∞
k=0

kβk−1

t+k = 1
β t+1

∫ β

0
zt

(1−z)2
dz.

5. For given β: η (β, t) = 1
t(1−β)

+ o
( 1
t

)
and therefore limt→∞ η (β, t) = 0.

6. For all β, ηβ (β, t) = β

t(1−β)2
+ o

( 1
t

)
, and therefore limt→∞ ηβ (β, t) = 0.

7. For all β, t, s we have that
∑∞

k=s
βk

t+k = βsη (β, t + s).

Proof We first prove (1). This proof is by induction. For t = 1 we have that

η (β, 1) =
∞∑
k=0

βk

1 + k
.

It can be shown, using integration and Abel’s Theorem, that

η (β, 1) = 1

β
log

(
1

1 − β

)
.

To prove it, we need to prove the following recursion

η (β, t + 1) = 1

β

[
η (β, t) − 1

t

]
(C4)

and is easy to see that η as defined in 3 satisfies this recursion. To show that this
recursion is true, we do some algebra:

η (β, t + 1) =
∞∑
s=0

βs

t + (1 + s)
=

∞∑
j=1

β j−1

t + j
= 1

β

⎡
⎣ ∞∑

j=0

β j

t + j
− β0

t + 0

⎤
⎦

= 1

β

[
η (β, t) − 1

t

]

For 1, see that
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∞∑
k=0

βk = 1

1 − β
�⇒

∞∑
k=0

β t+k−1 = β t−1

1 − β
�⇒

∞∑
k=0

β t+k

t + k
=

∫ β

0

zt−1

(1 − z)
dz ⇐⇒

η (β, t) = 1

β

∫ β

0

(
z

β

)t−1 1

1 − z
dz

which is valid since η is a power series. For (1) we can also use this to differentiate η:

βηβ (β, t) =
∞∑
k=0

kβk−1

t + k

also

∞∑
k=0

kβk−1 =
d
(

1
1−β

)
dβ

= 1

(1 − β)2
�⇒

∞∑
k=0

kβ t+k−1 = β t

(1 − β)2
⇐⇒

ηβ (β, t) =
∞∑
k=0

kβk−1

t + k
=

∫ β

0

(
z

β

)t 1

(1 − z)2
dz.

For (1), we must show that tη (β, t) → 1
1−β

as t → ∞. We can write tη (β, t) =∑∞
k=0

t
t+kβ

k . Defining the sequence of sequences ft (k) := t
t+kβ

k is easy to see that
ft ↗ βk point-wise. Therefore, we can use the Dominated convergence theorem to

show that limt→∞ tη (β, t) = ∑∞
k=0

(
limt→∞ t

t+kβ
k
)

= 1
1−β

. The convergence to 0

of η is straightforward and omitted.
For (1) we follow the same strategy, and note that tηβ (β, t) = ∑∞

k=0
tk
t+kβ

k .

We have that tk
t+kβ

k ↗ kβk point-wise, which implies that limt→∞ tηβ (β, t) =∑∞
k=0 kβ

k = β

(1−β)2
.

Finally, for (1) see that φ (β, t, s) = ∑∞
k=s

βk

t+k = ∑∞
j=0

βs+ j

t+s+ j = βsη (β, t + s).
��

Lemma 11 Define the function B(β, t, s), as

B (β, t, s) = βs η (β, t + 1 + s)

η (β, t)
. (C5)

Then, the following hold:

1. B (β, t, s) < βs for all t, s ∈ N.
2. B(β, t, s) is increasing in t and decreasing in s.

3. (1 − β)
∑∞

s=0 B (β, t, s) = (1 − β)
ηβ(β,t)
η(β,t) → 1 as t → ∞.

4. lims→∞ B (β, t, s) = 0 for all t ∈ N.
5. limt→∞ B (β, t, s) = βs , so

B (β, t, s) ↗ βs for all s, as t → ∞. (C6)

123



A. G. Chandrasekhar, J. P. Xandri

Proof (1) is obvious, since η (β, t) is decreasing in t . We first show (5). We can write

B (β, t, s) =
∑∞

k=s
βk

t+1+k∑∞
k=0

βk

t+k

=
∑∞

k=s

(
t

t+1+k

)
βk

∑∞
k=0

(
t

t+k

)
βk

so

lim
t→∞ B (β, t, s) =

(i)

∑∞
k=s

(
limt→∞ t

t+1+kβ
k
)

∑∞
k=0

(
limt→∞ t

t+kβ
k
) =

∑∞
k=s βk∑∞
k=0 βk

=
(

βs

1−β

)
(

1
1−β

) = βs .

In (i) we used the Uniform Convergence theorem (the summand sequences are
monotone decreasing in k). Moreover, is easy to show (with some tedious algebra)
that B is decreasing in t and increasing in s (proving (2)). Facts (2) with (5) implies (1).
That B (β, t, s) → 0 as s → ∞ follows directly from the fact that

∑∞
k=s

1
t+kβ

k → 0
as s → ∞. Finally,

∞∑
s=0

B (β, t, s) =
∞∑
s=0

∑∞
k=s

(
1

t+1+k

)
βk

η (β, t)
= 1

η (β, t)

∞∑
s=0

∞∑
k=s

(
1

t + 1 + k

)
βk

= 1

η (β, t)

∞∑
k=0

k∑
s=0

(
1

t + 1 + k

)
βk

= 1

η (β, t)

∞∑
k=0

(k + 1) βk

t + 1 + k
= ηβ (β, t)

η (β, t)
.

��
Lemma 12 After history ht , the utility of agent i of stream of rewards ri,t := ri (at , xt )
from outcome o = {at , xt }∞t=0 in �̂ (Rrcr ) can be written as

Ûi
(
o | ht )=(1 − β) η (β, t)

t∑
k=0

ui (ri,t )+β

{
(1−β)

∞∑
s=0

βsη (β, t+1+s) ui (ri,t+s+1)
}

(C7)

Proof We can decompose the utility as

Ui
t = (1 − β)

1

t + 1

k=t∑
k=0

ui
(
ri,k

) + βWi , (C8)
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where Wi is the discounted present value of future periods payoffs. We can calculate
it as

Wi = (1 − β)

∞∑
j=0

β j 1

t + 1 + j

⎡
⎣k=t∑
k=0

ui
(
ri,k

) +
j∑

k=0

ui
(
ri,t+k+1

)⎤⎦

= (1−β)

∞∑
j=0

β j 1

t+1+ j

k=t∑
k=0

ui
(
ri,k

)+(1−β)

∞∑
j=0

β j 1

t+1+ j

j∑
k=0

ui
(
ri,t+k+1

)

= (1 − β) η (β, t + 1)
k=t∑
k=0

ui
(
ri,k

) + (1 − β)

∞∑
j=1

j∑
k=0

β j

t + 1 + j

= (1 − β) η (β, t + 1)
k=t∑
k=0

ui
(
ri,k

) + (1 − β)

∞∑
k=0

ui
(
ri,t+k+1

)⎛⎝ ∞∑
j=k

β j

t + 1 + j

⎞
⎠

⇐⇒ Wi =(1 − β) η (β, t + 1)
k=t∑
k=0

ui
(
ri,k

)

+ (1 − β)

∞∑
s=0

βsη (β, t + s + 1) ui
(
ri,t+k+1

)
. (C9)

Therefore, putting together equations (C8) and (C9) we get

Ui
t =(1−β)

[
1

t
+βη (β, t+1)

] k=t∑
k=0

ui
(
ri,k

)+β (1−β)

∞∑
s=0

βsη (β, t+s+1) ui
(
ri,t+k+1

)
.

Using the fact that η (β, t + 1) = 1
β

[
η (β, t) − 1

t

] ⇐⇒ 1
t +βη (β, t + 1) = η (β, t),

we then get that

Ui
t = (1 − β) η (β, t)

k=t∑
k=0

ui
(
ri,t

) + β (1 − β)

∞∑
s=0

βsη (β, t + s + 1) ui
(
ri,t+s+1

)

as we wanted to show. ��

C.2 Recursive method for RCR payment

The typical dynamic programming program involves solving

V (x0) = sup
{xt+1}∞t=0

(1 − β)

∞∑
t=0

β t F (xt , xt+1)
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such that {
xt+1 ∈ G (xt ) ∀t ∈ N

x0 given.

The usual Bellman equation is

V (x) = sup
x ′∈G(x)

(1 − β) F
(
x, x ′) + βV

(
x ′) .

If we allow for some random variable z and x ′ to be a function of z,

V (x, z) = sup
x ′∈G(x,z)

(1 − β) F
(
x, x ′, z

) + βE
{
V

(
x ′, z′

) | z} .

Observe that, in contrast, when paying for a round at random, the problem is

V (x0) = sup
{xt+1}∞t=0

(1 − β)

∞∑
t=0

β tη (β, t + 1) F (xt , xt+1)

such that {
xt+1 ∈ G (xt ) ∀t ∈ N

x0 given.

We will define H (xt , xt+1, ηt ) = ηt F (xt , xt+1). In addition, given β, η (β, t) is a
strictly decreasing function of t . Therefore, let T (η, β) be the inverse.11 Using (C4)
and augmenting the state space with η, which has a known law of motion, yields

V (x0, η0) = sup
{xt ,ηt }∞t=0

(1 − β)

∞∑
t=0

β t H (xt , xt+1, ηt )

such that ⎧⎪⎪⎨
⎪⎪⎩
xt+1 ∈ G (xt ) ∀t ∈ N

ηt+1 = 1
β

(
ηt − 1

T (ηt ,β)

)
∀t ∈ N

η0 = 1
β
ln

(
1

1−β

)
andx0 given.

The Bellman equation for this problem is simply

V (x, η) = sup
x ′∈G(x)

(1 − β) ηF
(
x, x ′) + βV

(
x ′, η′)

11 T (η, β) satisfies η (β, T (η, β)) = η.
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such that

η′ = 1

β

(
η − 1

T (η, β)

)
.

C.3 Recursive method for all round payment

We want to get the Euler equation in (13). We can characterize the optimal allocation
by means of the following Bellman equation:

V (a, S, y) = max
a′ (1 − β) u

(
S + y + Ra − a′) + βV

(
a′, S + y + Ra − a′, y′)

where S = ∑t
s=0 cs is the sum of consumptions the agent would be paid if the game

ended today. Assuming that the optimum is in the interior, we have

(1 − β) u′ (S + y + Ra − a′) = β
{
Va

(
a′, S + y + Ra − a′, y′)

−VS
(
a′, S + y + Ra − a′, y′)} (C10)

and by the envelope conditions we have

Va (a, S, y) = R (1 − β) u′ (S + y + Ra − a′) (C11)

VS (a, S, y) = (1 − β) u′ (S + y + Ra − a′) . (C12)

Using (C10) and substituting for ct and ct+1, we then get that

u′ (ct ) = β (R − 1) u′ (ct+1)

as we wanted to show.
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