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Abstract
A common approach to modelling networks assigns each node to a position on a low-dimensional manifold 
where distance is inversely proportional to connection likelihood. More positive manifold curvature 
encourages more and tighter communities; negative curvature induces repulsion. We consistently estimate 
manifold type, dimension, and curvature from simply connected, complete Riemannian manifolds of 
constant curvature. We represent the graph as a noisy distance matrix based on the ties between cliques, 
then develop hypothesis tests to determine whether the observed distances could plausibly be embedded 
isometrically in each of the candidate geometries. We apply our approach to datasets from economics and 
neuroscience.
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1 Introduction
Social, economic, biological, and technological networks play a crucial role in a myriad of environ
ments. Job referrals (Beaman, 2012; Calvo-Armengol, 2004; Granovetter, 1973; Heath, 2018), neuro
logical function (Leung et al., 2008), epidemics (Bansal et al., 2010; Hoff et al., 2002; Sewell & Chen, 
2015), social media (Cho et al., 2016; Myers & Leskovec, 2014; Romero et al., 2011), informal in
surance (Ambrus et al., 2014; Cai & Szeidl, 2017), education decisions (Calvó-Armengol et al., 
2009), sexual health (Handcock & Jones, 2004), financial contagion (Acemoglu et al., 2015; Elliott 
et al., 2014; Gai & Kapadia, 2010), international trade (Chaney, 2014), and politics (DiPrete et al., 
2011) are among the many settings in which networks play a major role. Modelling network forma
tion is, therefore, essential for both descriptive and counterfactual analyses.

Constructing such models is challenging from a statistical perspective since networks typically 
feature higher-order dependence between the connections. Phenomena such as transitivity are 
common and mean that standard regression approaches, which assume independence across con
nections, are not appropriate. A common approach for modelling this dependence structure is the 
latent space model, introduced by Hoff et al. (2002). One estimates a probability distribution over 
graphs that is consistent with the single, observed graph. The model assigns each node in the net
work to a position on a low-dimensional manifold. Likelihood of a connection is inversely propor
tional to the distance between actors on a manifold with a pre-specified dimension and geometry. 
Connections are assumed independent conditional on the latent positions. Standard practice in 
this area assumes a manifold class beforehand.
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The choice of the latent manifold is extremely consequential for both the interpretation and its 
theoretical properties. In enumerating these properties, it is first critical to distinguish between in
trinsic and extrinsic geometries. Our focus is on the former, which embodies the fundamental 
properties of the geometric space. Modelling in a geometry manifold and inheriting the distance 
measure of that geometry (e.g., using a two-dimensional sphere means points exist on the surface 
of the sphere and distances are measured by arc length).

Moving now to the connection between geometry and networks, we first note that, holding con
stant the distribution of points in the latent space, the choice of the geometry in particular deter
mines the nature of network structure captured by the latent space. For a simple example, consider 
a two-dimensional Euclidean space (a plane). Here it is not possible to place four nodes in such a 
way that they are equidistant from one another, meaning that it is not possible to represent groups 
of four such that, holding constant node effects, each node has the same likelihood of interacting 
with any other. Another way to see the impact of geometry is through triangles. Since a sphere has 
a bounded area, there is an upper bound to how far apart nodes can be from one another before 
they start getting closer together. Positive curvature also encourages the formation of triangles and 
communities. Additionally, certain networks, such as a network of neurons or a network exchange 
built along a supply chain, may have a tree-like structure. Trees are difficult to embed in spherical 
or Euclidean space but fit more naturally in hyperbolic space. Recent work on statistical modelling 
has also shown the importance of modelling networks using non-Euclidean latent representations. 
For instance, McCormick and Zheng (2015) model latent space as a sphere and Krioukov et al. 
(2010) and Asta and Shalizi (2015) use hyperbolic space. Yu and Rodriguez (2019) explore 
both spherical and Euclidean representations in a Bayesian model for spatial voting patterns. 
Weber and Nickel (2018) examine the relationship between the latent space curvature and graph 
motifs. Wilkins-Reeves and McCormick (2022) propose a test of the assumption that the latent 
space has constant curvature which uses the clique structure in the graph. Finally, Smith et al. 
(2019) provide a comprehensive review of the implications and consequences of the choice of 
geometry.

A second consequence of the choice of geometry arises in the theoretical properties of latent 
space model estimates. Consistency of the estimates of the individual locations on the unobserved 
manifold is the subject of recent work by Shalizi and Asta (2017). Since the distribution of the net
work formation process depends on the manifold itself, the key open question is whether a re
searcher can consistently estimate the latent space. After all, the network formation process is 
sensitive to the geometry inclusive of its curvature and dimension.

It is currently common practice to assume the latent dimension and manifold type. Our ap
proach provides a data-driven alternative. It also contrasts with cross-validation-based selection 
procedures that are sometimes used, in particular, to estimate the dimension. These approaches 
subsample connections and then use either model fit diagnostics or out-of-sample prediction met
rics. Our approach avoids a critical issue with these approaches, namely, subsampling can funda
mentally alter graph properties in unpredictable ways (Chandrasekhar & Lewis, 2016), calling 
into question the relevance of the subsampled distribution. We approach the question from a fun
damentally different perspective than currently available alternatives that use the likelihood or pe
nalized likelihood to estimate model fit. First, rather than characterizing fit or predictive accuracy 
with a particular dataset, our approach takes a more classical hypothesis testing perspective. 
Comparing (for example) an information metric across a model fit with a spherical or hyperbolic 
latent space is fundamentally characterizing the congruence between the embedding for a given 
dataset and the spaces under consideration. Uncertainty in this framework arises from sampling, 
but also from potential model mis-specification. A likelihood-based metric for a spherical space 
with small curvature will likely perform quite well for a graph generated from Euclidean embed
dings, for example. We isolate uncertainty to only sampling error by using a test for isometric em
beddings of distances into the space under consideration. We conceptualize variability in the 
observed distance matrix as representing expected noise due to sampling realizations of a graph 
of a given size. Second, we isolate the test to uniquely distance rather than to the model as a whole, 
as would be the case with a likelihood-based measure. A likelihood ratio test for whether or not the 
curvature of the space is zero, for example, may seem to be an appealing alternative to our ap
proach. Such a test would, however, confound changes in the latent geometry with changes in 
the fixed effects. To see this, recall that the surface area of the sphere changes as a function of 
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the curvature. To preserve the overall density of the graph, therefore, the individual effects must 
change when the curvature changes. We sidestep this issue by leveraging the structure of the net
work formation model to isolate the test as specific to the latent geometry. Constructing an appro
priate likelihood-based test, in contrast, would require marginalizing over the individual effects, 
which would be computationally intensive and require specifying distributions for the individual 
effects (which we do not require).

We address the question of how to choose the manifold Mp⋆
(κ⋆), meaning the manifold class 

(M⋆), curvature (κ⋆), and dimension (p⋆) of the latent space. We present a hypothesis testing 
framework that connects distances in the latent space to feasible embeddings on simply connected, 
complete Riemannian manifolds with constant curvature. Rather than relying on likelihood or 
cross-validation techniques, we directly leverage geometric results that provide necessary and suf
ficient conditions to embed points into particular manifolds, given pairwise distances between the 
points.

Our main insight is as follows. The manifolds we consider in this work all come equipped with a 
metric—an inner product which is used in the calculation of distances between points. The metric 
uniquely identifies the manifold. Given a distance matrix D between K points, even without know
ing where the points are located, we can check if the points can be isometrically embedded in the 
manifold. It can be embedded if and only if the distance matrix is compatible with the candidate 
manifold’s metric. Specifically, given D, we can construct a test matrix Wκ⋆ (D) and check that the 
eigenvalue spectrum has the same signature as the manifold’s metric. The manifold detection prob
lem is, therefore, reduced to testing the spectrum of Wκ⋆ (D).

We make two contributions. Our first contribution is to statistical geometry (Theorem 1.1). We 
show how to estimate the manifold consistently when observing a noisy estimate D̂ of the true dis
tances. For this, we must estimate the signature of the spectrum of Ŵκ̂(D̂), the empirical test ma
trix. The logic relies on Weyl’s inequality, which places bounds on the change in eigenvalues due to 
perturbations of a matrix. This provides an avenue for consistent estimation of Mp⋆

(κ⋆).
Our second contribution is to then extend the argument to the latent space network model. 

The main idea is that we take the observed graph G on n nodes and construct some distance 
matrix D̂(G) among K << n points and then apply our statistical geometry result. We define 
distance based on interaction rates between K groups of nodes. Using the observed graph, we 
define the distance between two cliques based on the probability of an edge between a node in 
clique C1 and a node in clique C2, which we can calculate using the definition of the latent 
space model plus the fraction of realized links between cliques. We estimate the matrix of 
cross-clique edge probabilities and then use the latent space model to estimate the pairwise 
distances between cliques. We then leverage our statistical geometric result to estimate the 
manifold.

In the remainder of this section, we formally define the two problems we address and provide an 
overview of our approach. Specifically, we address (i) the general problem of estimating geometry 
from a noisy distance matrix and (ii) estimating network geometry from latent space models using 
cliques. Using cliques represents the most challenging case for our method since we expect that in 
many settings cliques may be relatively small. Next, in Section 2, we review key geometric concepts 
crucial for our testing procedure. Section 3 covers the general geometry problem in detail and de
velops our general method of estimating geometry from a noisy distance matrix. We turn to study 
the estimation of the latent space in general using cliques in Section 4. In Section 5, we present 
simulation experiments that explore the efficacy of our approach. We apply our results to two em
pirical examples in Section 6. The first empirical example considers data from 75 Indian village 
social networks, comprised of informal finance, information, and social links. We study the finan
cial flows by geometry and also how the introduction of microfinance impacts geometry. The se
cond example focuses on the neural network of the C. Elegans worm. Section 7 concludes. All 
proofs are in Appendix A unless otherwise noted.

1.1 Statistical geometry problem
The estimation methods we propose are quite general. They apply broadly to a large set of prob
lems (Section 3.1 provides examples) in which the researcher observes a noisy distance matrix D̂ 
and wishes to estimate the properties of the underlying space. We make the following assumption 
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about the latent space Mp(κ). After that, we provide a broadly applicable classification theorem of 
Mp(κ) from an estimator D̂ of distances computed between points in Mp(κ).

Assumption 1.1 Mp⋆
(κ⋆) is a simply connected, complete Riemannian manifold of con

stant sectional curvature κ⋆, with p⋆ ∈ Z with known upper bound and 
κ⋆ ∈ [−b, −a] ∪ {0} ∪ [a, b] with a > 0, b > 0.

The technical geometric definition of simply connected, complete Riemannian manifolds is pro
vided in a self-contained manner in Appendix H. By Killing (1891), Assumption 1.1 means that the 
manifold must be Euclidean, spherical, or hyperbolic with a bounded dimension and curvature 
value in some compact set. We emphasize that a > 0 means that in the curved cases, the geometry 
is not arbitrarily close to a Euclidean space (κ = 0). All such Riemannian manifolds are locally 
Euclidean, by definition, so this is required to be meaningful. We also emphasize that by dimension 
p⋆ we mean the minimum such dimension, as one can clearly embed Mp⋆ 

in Mp⋆+h for h > 0.
Algorithm 1 takes in D̂ and returns consistent estimates of the manifold type, curvature, and di

mension. We use ◦ to denote the Hadamard product and 1K denotes a vector of ones of length K.

Algorithm 1: Consistent estimation with a noisy distance matrix

Input: noisy K × K distance matrix D̂.

1. Estimate the curvature of the manifold for each of the curved cases (κ̂S, κ̂H), from (7).
2. For each of the three candidate geometries, calculate the test matrix Wκ using the corresponding curvature 

estimate from step (1), with projection J = IK − 1K1T
K/K:

Wκ D̂
( 􏼁

:=
1
κ cos

��
κ
√

D̂
( 􏼁

for κ ≠ 0

− 1
2 JD̂ ◦ D̂J for κ = 0.

􏼨

3. Construct M̂, the estimate the manifold class, using Proposition 3.4.
4. Given M̂, select p̂, the estimate of its dimension using Proposition 3.5.

Theorem 1.1 (Consistent estimation with a noisy distance matrix). Let Mp⋆
(κ⋆) be a la

tent space of unknown manifold class, dimension, and curvature that satis
fies Assumption 1.1. Fix a set of K > p⋆ locations on Mp⋆

(κ⋆) and suppose 
they uniquely identify the latent space. Suppose there is a sequence of K × K 
matrices D̂T , indexed by T ∈ N, such that D̂T→

p
D as T→∞. Under these 

assumptions, the estimators produced by Algorithm 1 are consistent as 
T→∞. That is, P(M̂p̂ ≠Mp⋆

) = o(1) and κ̂ − κ⋆ = oP(1).

1.2 Latent space model
Having proposed a consistent classification method of the manifold class, dimension, and curva
ture from noisy distances (see Theorem 1.1), we now turn to the latent space model. Consider a 
graph G = (V, E) where V are nodes and E are edges (also called links or connections), 
with |V| = n. For simplicity, we assume throughout that the graph is un-directed, all connections 
are symmetric, and unweighted, all connections are either present or absent. Our methods 
readily extend to the weighted and directed case, though it increases the complexity in terms 
of both notation and exposition. We assume that edges in G are drawn independently according 
to

P Gij = 1 ∣ ν⋆, z⋆, X⋆
ij ,M

p⋆
(κ⋆)

􏽮 􏽯
= Λ ν⋆

i + ν⋆
j − d

M p⋆
(κ⋆)(z

⋆
i , z⋆

j )
􏼐 􏼑

, (1) 

for some increasing, invertible link function Λ. We represent ν = (ν1, . . . , νn) as the vector of indi
vidual effects, restricted to lie in some set to ensure (1) is a probability value in [0, 1].1 These are 

1 One way to model a directed graph is to allow each node to have two different fixed effects, νi and χi, one playing a 
role when i is the sender of the link (Gij) and the other when i is the receiver (G ji).
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independent effects that encode individual gregariousness and are related to the total number of 
connections (Chatterjee et al., 2011; Graham, 2017). The dMp(κ)(zi, zj) terms represent the distance 
on the manifold Mp(κ), with dimension p and curvature κ, between locations zi and zj. Most of our 
analysis is done on the model above in (1) using an exponential link function, so Λ(x) = exp (x), 
but this is mostly out of convenience. In Appendix J, we show how to handle other common 
link functions (e.g., logistic link, (Hoff et al., 2002)) or how to handle node- and pair-level cova
riates effects (Graham, 2017).

We now discuss how Assumption 1.1 applies to our network problem. Simple connectedness and 
completeness are innocuous and constant curvature provides a place to start and nests all manifolds 
used in the literature, but rules out inhomogeneous latent spaces entirely such as those with ‘struc
tural holes’ in the manifold, like the torus. Nevertheless, these three types of manifolds span a large 
and usable set of empirically relevant networks. With zero curvature, we model networks that al
low for many paths where following them along nodes takes one increasingly far from nodes in oth
er directions, while preserving local clustering. So while there is clustering, a flat space models a sort 
of vastness. Meanwhile, a sphere that has constant positive curvature does force such behaviour. 
Following friends of friends of friends and so forth typically leads to encountering some distant 
friends in common at a much higher rate. Therefore, there is a sort of cloistering in addition to clus
tering. Finally, hyperbolic spaces in contrast naturally embed trees or hierarchical networks or any 
context where expansiveness is a key feature. Intuitively this is because any set of initially parallel 
lines spread apart. Figure 1 presents intuitions. Smith et al. (2019) provide a comprehensive discus
sion on the relationship between network properties and the latent space.

Assumption 1.2 is a mild assumption that ensures that (1) produces probabilities.2

Assumption 1.2 Every node i has a fixed-effect ν⋆
i i.i.d. from a distribution Fν. The support 

of Fν is required to be such that (1) always returns values in [0, 1].

If the link function is exponential, Assumption 1.2 requires that support(Fν) ⊆ (−∞, 0], but for 
the logistic link function Assumption 1.2 is satisfied for any distribution. Recall that our goal is to 
apply Theorem 1.1 to identify the manifold properties from just one network. We need to identify 
a set of K locations on the manifold and a sequence of estimators D̂T that satisfy the assumptions in 
Theorem 1.1.

Our approach, which we study in detail in Section 4, exploits the clique structure in the network. 
Because of (1), nodes in even modest-sized cliques (e.g., 5 nodes) are very likely to be close in the 
latent space. In other words, we can imagine that nodes in a clique are at the same location on the 
manifold. Finding K disjoint cliques in the network, therefore, gives us K distinct points in the la
tent space. By counting the number of edges between pairs of these K cliques, we can, therefore, 
estimate the probability that nodes on the latent space connect. Since (1) relates distances in the 
latent space and edge probabilities, we can, therefore, use the estimated probability of connections 
to estimate distances between these K points.3 We use the notation C(ℓ) to denote a clique of size ℓ
in a graph, and C1(ℓ), . . . , CK(ℓ) refers to a collection of K cliques each of size ℓ.

(a) (b) (c)

Figure 1. How curved geometries affect network embeddings where each displayed graph has 36 nodes. (a) Flat 
κ⋆ = 0. (b) Positive κ⋆ > 0. (c) Negative κ⋆ < 0.

2 Equivalently if one defined θi = exp (νi), then these fixed effects are simply multiplicative factors on the linking prob
ability due to distances.
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Algorithm 2: Estimating geometry of latent space network model using cliques

Input: graph G. 

1. Construct D̂ = D̂(G). 
(a) Identify K disjoint ℓ-cliques C1(ℓ), . . . , CK(ℓ).
(b) Estimate the cross-clique linking probability P̂kk′ = (1/ℓ2)

􏽐
i∈Ck(ℓ)

􏽐
j∈Ck′ (ℓ)

Gij.

(c) Calculate D̂kk′ = − log (P̂kk′ ) + log (γ̂), where γ̂ is an estimate of E{ exp (ν)}2.

2. Apply Algorithm 1 to D̂ to construct estimator M̂p̂(κ̂).

We require an assumption to ensure that observed cliques are likely to be comprised of nodes 
that are near each other in the latent space. Assumption 1.3 sets out a general requirement for 
Fz which makes explicit the condition that is required for our proofs: proportionally most of 
the cliques in the graph are comprised of nodes that are proximate in latent space. This assumption 
captures a typical feature of latent space models and empirical data.

Let G be a graph drawn from (1). For an arbitrary set of nodes V0 ⊆ V, let GV0 denote the sub- 
graph induced by these nodes. If |V0| = ℓ, we use {GV0 ∈ C(ℓ)} to denote the event that GV0 is an 
ℓ-clique; that is, GV0 is a complete graph on ℓ nodes.

Assumption 1.3 Every node i resides at a location z⋆
i that is drawn independently and are 

identically distributed from a distribution Fz on manifold Mp⋆
(κ⋆). The 

latent location distribution must satisfy two properties: 

(a) Identifiability: The support of Fz must consist of at least K > p⋆ dis
tinct points that uniquely identify the manifold.

(b) Local cliques: For any collection V0 of ℓ nodes with locations drawn 
i.i.d. from Fz we have for all δ > 0, P{ maxij∈V0 d(zi, zj) ≤ 
δ|GV0 ∈ C(ℓ)}→ 1, as n, ℓ→∞.

Part (a) states that we need K to be larger than the true dimension and that we need there to be 
only one latent space in which we can embed these points isometrically (Section 2.1 contains def
initions of these terms). Part (b) states that given a clique of size ℓ, the probability that nodes in this 
clique are close to each other goes to 1 as the clique size and graph size grow. Aside from this con
dition, we impose no restrictions on the distribution of Fz. This allows for continuous, discrete, or 
mixed distributions as well as dependence on n. In Section 4.4, we provide a discussion on these 
two conditions in the context of the network model and provide high-level conditions which imply 
Assumption 1.3. We prove that these high-level conditions hold in common cases, such as when 
the node locations are drawn from a lattice model, Gaussian mixture model, or uniformly over 
a bounded but expanding region.

Before continuing, we emphasize a few key points. First, Assumption 1.3(b) is written with 
n, ℓ→∞. Let ℓ = ℓ(n) depend on the graph size. In order for there to be cliques of size ℓ as 
n→∞, we need ℓ(n) to grow slowly, usually ℓ(n) ∝ log (n). Appendix K shows that cliques of 
size log (n) exist with high probability as n grows for many common location distributions. 
Second, the existence of cliques is guaranteed by the latent space model under our assumptions 
as the number of nodes increases. The conditional independence relation that is key to the latent 
space model requires an assumption of exchangeability.4 The Aldous-Hoover Theorem implies 
that exchangeable sequences of nodes correspond to dense graphs in the limit (Aldous, 1981; 
Orbanz & Roy, 2015), which implies that cliques are present in the limit. We also examine the 
existence of cliques using our empirical and simulated examples. We find that the number and 
size of cliques in our empirical examples is sufficient to match settings in simulations where the 
method controls Type 1 error and has high power.

3 This makes clear that if the researcher observed weighted graph data, since Gij is now a smooth function of distance 
and fixed effects, they can dispense with the clique approach altogether, since they directly observe a transformation of 
distances between specific points. The problem is easier.

4 Large graphs with exchangeable nodes are only dense if the graph is a subgraph of an infinitely exchangeable graph. 
If the distribution of the graph changes with n, the limiting graph need not be dense.
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Theorem 1.2 (Estimating geometry via cliques). Let Mp⋆
(κ⋆) be a latent space of un

known type, dimension, and curvature that satisfies Assumption 1.1. 
Consider a sequence of graphs on n nodes drawn from the distribution in 
(1), satisfying Assumptions 1.2–1.3. Under these assumptions, the estima
tors produced by Algorithm 2 are consistent as n, ℓ→∞. That is, 
P(M̂p̂ ≠Mp⋆

) = o(1) and κ̂ − κ⋆ = oP(1).

2 Overview of geometry and embedding conditions
In this section, we provide a brief overview of the three manifold types we consider in this work: 
Euclidean, spherical, and hyperbolic space. As noted above, these spaces span a class of empirically 
relevant manifolds on which much of the latent space network literature focuses (Killing, 1891). 
We then provide necessary and sufficient conditions on an arbitrary distance matrix that ensures 
the points from which the distances are computed can be embedded isometrically into one of these 
three geometries.

2.1 Candidate geometries
To study the candidate manifold Mp(κ), we embed them in R p+1. The Euclidean case is straight
forward. In the spherical case, we embed it in Euclidean space (R p+1 with the usual metric) and in 
the hyperbolic case we use Minkowski space (R1,p). Note that the only difference is that the bilin
ear form of the space, denoted by Q below, varies in signature described below.

The model for each is constructed by looking at a locus of points in the ambient space in which it 
is embedded:5

Mp(κ) := x ∈ R p+1 : Q(x, x) = κ−1􏼈 􏼉
.

This implies a way of calculating distances between points on the manifold. Specifically,

dM p x, y
( 􏼁

=
arccos κQ x, y

( 􏼁􏼈 􏼉

��
κ
√ .

Let us turn to our candidate cases. The Euclidean space Rp is the p-dimensional Euclidean space 
with the usual Euclidean metric. In the case of the sphere Sp, we have the usual Euclidean inner 
product QR p+1 (x, y) :=

􏽐p+1
i=1 xiyi. The locus of points and distances between two points x, y ∈ 

R p+1 for the embedding is

S p κ( ) := x ∈ R p+1 : QR p+1 x, x
( 􏼁

= κ−1, κ > 0
􏼈 􏼉

and dS p x, y
( 􏼁

=
arccos κQR p+1 x, y

( 􏼁􏼈 􏼉

��
κ
√ .

Hyperbolic space Hp is embedded in Minkowski space, R1,p which is R p+1 equipped with the 
Minkowski bilinear form: QR1,p (x, y) := −x0y0 +

􏽐 p
i=1 xiyi. The important point is that the signa

ture is distinguished from the Euclidean space, which will play a key role in distinguishing the 
geometries. The locus of points and distances are given by

H p κ( ) := x = (x0, x1:p) ∈ R1,p : QR1,p x, x
( 􏼁

= κ−1, x0 > 0, κ < 0
􏼈 􏼉

and

dH p x, y
( 􏼁

=
arccos κQR1,p x, y

( 􏼁􏼈 􏼉

��
κ
√ .

5 For the hyperboloid x0 > 0 is an additional restriction.
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2.2 Isometric embedding conditions
Equipped with a notion of how distances are calculated between points in our candidate mani
folds, we briefly review the conditions to check if a collection of K points can be isometrically em
bedded in each of the manifolds.

Let D be a known distance matrix from K points given by Z = {z1, . . . , zK}. We say that Z can be 

isometrically embedded in manifold Mp(κ), written as Z −→
isom
M, if there exists an isometry ϕ such 

that for all l, l′ ∈ {1, . . . , K}, dM(ϕ(zl), ϕ(zl′ )) = dll′ .
Given D, we define the K × K matrix Wκ(D), which will allow us to determine whether an iso

metric embedding is possible in one of the three candidate geometries. To do this, we choose the 
matrix to correspond to the bilinear form Q(· , ·) above. For the Euclidean case we need a matrix 
J := IK − (1/K)1K1′K. Our test matrix is given by

Wκ D( ) :=
1
κ cos

��
κ
√

D
( 􏼁

for κ ≠ 0

− 1
2 JD ◦DJ for κ = 0,

􏼨

(2) 

where we apply the cosine operation element-wise, as before. We write Wκ = Wκ(D), suppressing 
the dependency on D unless otherwise noted. By using a Taylor series of Wκ(D) around κ = 0, one 
can see the relationship between the expression of Wκ(D) for κ > 0 and W0(D).6

The following lemma characterizes the conditions for isometric embedding and is a concise re
statement of classical results: Schoenberg (1935) Theorem 1 (which we include as part (1) of our 
Lemma 2.1) and Begelfor and Werman (2005) Theorem 1 (which we include as parts (2-3) of our 
Lemma 2.1). See Belton et al. (2019) for an overview of related topics in distance geometry. The 
signature of a square matrix A is a triple sig(A) = (a, b, c), where a, b, and c are, respectively, the 
number of positive, zero, and negative eigenvalues of A. A positive semi-definite matrix has c = 0. 
Throughout the paper, we use the convention that λmax(A) := λ1(A) ≥ λ2(A) ≥ · · · ≥ λK(A) 
=: λmin(A) are the eigenvalues of the K × K matrix A sorted in decreasing order.

Lemma 2.1 Let pmin be the minimum dimension for which Z −→
isom
Mp(κ) and assume a > 0. 

1. Z −→
isom

Rp for some p if and only if sig(W0) = (a, K − a, 0). Further, 
pmin = a.

2. Z −→
isom

Sp(κ) if and only if sig(Wκ) = (a, K − a, 0). Further, pmin = a − 1.

3. Z −→
isom

Hp(κ) if and only if sig(Wκ) = (1, K − a − 1, a). Further, 
pmin = (K − a) − 1.

The result above tells us, for example, that λmin(W0) ≥ 0 when D is computed from points in Rp. 
This allows us to then phrase the problem of geometry identification, where we do not observe the 
manifold, into a problem about eigenvalues of W, which we do observe. This re-framing of the 
statistical geometry problem is the main insight behind our geometry classification procedure in 
Theorem 1.1. The lemma also allows us to estimate the dimension of the latent space through 
the rank of Wκ, which provides the basis of our dimension estimation procedure in Section 3.6.

3 Testing geometry from an arbitrary distance matrix estimate D̂
This section addresses how to test whether a set of K points can be isometrically embedded into a 
candidate manifold out of the set we consider, given only a consistent estimator D̂ of the 
pairwise distance matrix D between them. We develop the constituent pieces for our main result, 
Theorem 1.1.

This section, therefore, is not about networks exclusively but rather about a general statistical 
geometry problem that we outlined in Theorem 1.1. We show below that the general statistical 
geometry problem outlined in Section 1.1 is applicable in a wide range of relational data examples, 
extending the scope of our work beyond the binary adjacency matrix case we consider in Section 4. 
Each of the following examples will produce an estimator D̂ which approximates some unknown 
matrix D, which contains pair-wise distances between K objects (people, nodes, firms, etc.). For 

6 We would like to thank Gabriel Caroll for pointing this out to us.
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the asymptotic results presented below, index D̂ by some T such that D̂ = D̂T→
p

D as T→∞. 
Informally, T maybe be thought of as the sample size. In our main application to networks, T 
is a function of network size n. However, the general statistical geometry problem may generate 
an estimator of distances in other ways. For example, longitudinal data where T indexes time 
in an international trade example or number of samples in a neuroscience example. For conveni
ence, we often drop the notation D̂T and instead simply write D̂.

Because the results of this section are more general than the network model studied in Equation 
(1), our main application, we provide a few examples to develop an intuition for other potential 
applications. These examples deal with a general set of problems where we observe weighted re
lationships between pairs of nodes, and these relationships are formed based on distances or dis
similarities between nodes. The latent space model is a special case where the relationship is 
binary. The geometric results in this section are not confined to even these applications—in 
fact, our estimation procedure in Theorem 1.1 only requires a consistent estimate of distances 
along the latent space.

3.1 Examples of relational data with distances, D̂
We provide four motivating examples for D̂.

Example 1 (A Single Large Network). The researcher only observes a single large net
work, G, drawn from the distribution specified in Equation (1). We study it 
in detail in Section 4.

Example 2 (Relational data, Abdelnour et al., 2018; Ginestet et al., 2017; Petersen & 
Sporns, 2015; Salter-Townshend & McCormick, 2017; Yanchenko & 
Hoff, 2020). There are K units, such as individuals, neurons, sensors, or firms. 
The researcher observes an outcome of an interaction between two units i and 
j, given by fij,t at time t = 1, . . . , T with some disturbance ϵij,t. For instance, 
fij,t = Λ{d

Mp⋆
(κ⋆}(z

⋆
i , z⋆

j ) + ϵij,t) where Λ is a bijective function. This may be 

binary or continuous, such as an instance of a signal being transmitted be
tween neurons or sensors, some financial flows between individuals, or 
some transactions between firms. We can then compute D̂ with entries d̂ij = 
(1/T)

􏽐
t Λ−1(fij,t) and under regularity conditions (such as differentiability 

of Λ−1) our results will follow.
A particularly relevant case is the following. The researcher observes T net

works G1, . . . , GT, where T could represent the number of observations of 
one network with a fixed set of nodes, or it could represent the number of ob
served networks, each with a potentially distinct set of nodes. Here we write 
pij := P(gij = 1 | z⋆

i , z⋆
j ) is the probability that nodes i and j connect, given their 

latent space locations. This term depends on dM(z⋆
i , z⋆

j ). We write this as pij = 
Hij{dM(z⋆

i , z⋆
j )} for some invertible function Hij. Here we suppose that the 

generative model for the networks is constant across all T networks. We 
can then estimate D̂ij = H−1(P̂ij), where P̂ij = T−1􏽐T

i=1 Gijt is the number of 
observed edges between nodes i and j, normalized by the number of observa
tions T.

Example 3 (Trait Groups, Killworth et al., 1990; McCarty et al., 2001). The n nodes each 
have one of K traits and the number with a trait k is given by nk. Locations in 
the latent space are determined uniquely by a node’s trait, and nodes with the 
same trait share the same location on the latent space, with z⋆

ki 
denoting the 

common location of nodes with trait ki. An interaction between nodes follows 
fij = Λ{d

Mp⋆
(κ⋆)(z

⋆
ki

, z⋆
k j

) + ϵij} where again Λ(·) is bijective. In this example, the 

researcher can construct D̂ with entries
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D̂kk′ =
1

nknk′

􏽘

i,j

Λ−1 fij · 1 ki = k, k j = k′
􏼈 􏼉( 􏼁

, 

where nk is the number of nodes with trait k, which can be obtained from cen
sus or surveys.

3.2 Perturbation
In Section 2.2, we saw that the isometric embedding conditions related to the manifold class, 
curvature, and dimension to the spectrum of a test matrix Wκ(D). In practice, since we observe 
D̂, we must construct Ŵκ̂(D̂) and study its spectrum. The main idea of our approach to esti
mating the manifold class, curvature, and dimension comes from Weyl’s inequality, which says 
that the eigenvalues of the estimated test matrix, Ŵκ̂(D̂) are very close to those of the target 
Wκ(D) if the estimators of the distance matrix and curvature are consistent. Under our as
sumptions, we are able to bound how the estimated spectrum may deviate from the true 
spectrum.

Proposition 3.1 Suppose that D is a K × K distance matrix from K points on Mp⋆
(κ⋆) sat

isfying Assumption 1.1, with K chosen such that the Mp⋆
(κ⋆) is uniquely 

identified. Assume further that there are estimators D̂ and κ̂ such that 
D̂T − D→

p
0 and κ̂→

p
κ⋆ as T→∞. Let θα be defined as the αth quantile 

of the distribution of ‖Ŵκ̂ − Wκ‖F. Then, for every k ∈ {1, . . . , K},

P |λk(Ŵκ̂) − λk Wκ( )| < θα
􏼈 􏼉

≤ α. (3) 

Owing to this result, we can study the estimated spectrum in order to look at the metric signa
ture and therefore estimate the manifold class, curvature, and dimension.

3.3 Hypothesis tests of geometry
We now frame the problem of classifying the geometry of D into three hypothesis tests. We will 
then combine the results of these three tests into a classifier of the geometry. To determine the 
geometry of M, we use Lemma 2.1 and develop testable statements about the spectrum of the 
test matrix Wκ.

For the Euclidean case, we can test positive semi-definiteness of the test matrix as

H0,e : λK(W0) ≥ 0, Ha,e : λK(W0) < 0. (4) 

Using the same reasoning, for the spherical case, we can test the hypothesis that the embedding 
space is spherical for some κ > 0 as

H0,s : λK(Wκ) ≥ 0, Ha,s : λK(Wκ) < 0. (5) 

since the test matrix must be positive semi-definite.
Finally, to determine if the embedding space is hyperbolic for some κ < 0, we want to test

H0,h : λ2(Wκ) = 0, Ha,h : λ2(Wκ) ≠ 0 (6) 

since the signature switches sign and that the matrix does not have full rank under the assumption 
on dimension implies that there are zeros in the spectrum.7

7 By Lemma 2.1, failing to reject in the hyperbolic case λ2(Wκ) = 0 is not enough to conclude that D is hyperbolic, 
since we must test the first is positive and smallest eigenvalue is negative as well. In practice, however, we found that test
ing only one eigenvalue was sufficient and, thus, use this simpler test. Clearly, it would also be possible to test all three 
eigenvalues using an intersection test, which we leave to future work.
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A natural first step in deriving a geometry classifier would be to use Proposition 3.1. While this 
method produces a type-1 error that is below α, the power of the method may be low. So as a clas
sifier, that procedure can be improved upon. In Section 3.5, we derive more powerful tests by ap
proximating the distribution of the eigenvalues under the assumption that the distances are 
computed along one of the three geometries (recall from Lemma 2.1 that the eigenvalues of Wκ 
tell us the underlying geometry type).

To derive tests of the three geometry hypotheses, we first need to estimate the curvature of M, 
which is computed assuming the geometry of M is curved (i.e., not Euclidean). We use these esti
mated curvature values to then identify the geometry type. For this reason, we start our discussion 
by studying curvature.

3.4 Estimating curvature κ⋆

We begin assuming that the researcher has a consistent estimator D̂T→
p

D (which we will develop 
below). Equipped with D̂T , we construct a consistent estimate of κ⋆. The core observation comes 
from Lemma 2.1. Namely, by looking at sig(Wκ), we can use the fact that certain eigenvalues must 
exactly be zero under the various geometries. For instance, both λK(W0(D)) = 0 and λK(Wκ⋆ (D)) = 
0 for the Euclidean and spherical cases, respectively, as both are positive semi-definite, provided 
p⋆ < K. A similar phenomenon is true for λ2(Wκ⋆ (D)) = 0 for the hyperbolic case.

This observation leads to the following estimators of the curvature:

κ̂S := arg min
κ∈[a, b]

λ1 κWκ(D̂T)
􏼈 􏼉􏼌

􏼌
􏼌

􏼌
􏼌
􏼌, κ̂H := arg min

κ∈[−b, −a]
λ2 κWκ(D̂T)
􏼈 􏼉􏼌

􏼌
􏼌

􏼌
􏼌
􏼌 (7) 

for some 0 < a < b. In Appendix C, we discuss how to pick a and b in practice. The subscript S 
indicates that this estimate is used when testing if the manifold is spherical. Similarly, the subscript 
H indicates that this estimate is used when testing if the manifold is hyperbolic. As T→∞, the 
estimates approach the true curvature under the correct geometry.

Proposition 3.2 (Consistency of curvature estimates). Suppose that D is a K × K matrix 
containing pairwise distances between points in either Sp(κ⋆) or 
Hp(κ⋆), where |κ⋆| > 0. Let Z denote the collection of these K points. 
Suppose there is an estimate D̂T such that D̂T→

p
D as T→∞. Finally, 

suppose that there is either 

1. a unique κ⋆ ∈ [a, b] such that Z −→
isom

Sp(κ) for some p. Set κ̂T = κ̂S.

2. or a unique κ⋆ ∈ [−b, −a] such that Z −→
isom

Hp(κ) for some p. Set 
κ̂T = κ̂H.

In cases (1) and (2), κ̂T→
p

κ⋆ as T→∞.

The estimators we propose for curvature are similar to those proposed in Wilson et al. (2014), 
though Wilson et al. (2014) do not prove that these estimators are consistent.

Before continuing, we want to discuss the requirements in Proposition 3.2. First, Proposition 3.2
requires that κ⋆ is bounded away from zero (meaning that the space is not flat and hence has non- 
zero curvature). In other words, the manifold is either spherical or hyperbolic, and a and b must be 
chosen to include the true curvature value κ⋆. We also require that there is a unique curvature in 
which we can find an isometric embedding to ensure that the statement that κ̂T→

p
κ⋆ makes sense. 

We also want to emphasize that κ⋆ is fixed and again is assumed to be non-zero. The case where κ⋆ 

changes with T is an interesting and challenging problem that we leave to future work.

3.5 Estimating geometric class M⋆

Again, we suppose the researcher has access to a noisy distance matrix D̂T that approximates an 
unknown distance matrix D of interest. The matrix D consists of pair-wise distances between K 
objects along the surface of M.
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3.5.1 Consistent tests for latent geometry
We begin by showing a consistent testing framework and then give a bootstrap method for imple
mentation in Algorithm 3.

To test H0,e, first, define a rejection region RT = (−∞, δT] for some real-valued sequence δT ∈ 
(−∞, 0] and we define our test ϕT(Ŵ0) ∈ {0, 1} as

ϕT(Ŵ0) = 0, λK(Ŵ0) ∈ RT

1, λK(Ŵ0) ∉ RT.

􏼚

(8) 

If the test is 0, this indicates that we fail to reject the null hypothesis H0,e, while if the test is 1, we 
reject the null hypothesis H0,e. We use this notation throughout the paper when discussing the out
put of a hypothesis test.

When testing if D is spherical, let κ̂ denote an estimate of κ, defined in Proposition 3.2. We define 
our rejection region of H0,s as RT = (−∞, δT] and our test as

ϕT(Ŵκ̂) = 0, λK(Ŵκ̂) ∈ RT,
1, λK(Ŵκ̂) ∉ RT,

􏼚

(9) 

which is a similar test of positive semi-definiteness.
Finally, when testing if D is hyperbolic, let κ̂ denote an estimate of κ < 0, defined in Proposition 

3.2. We define our rejection region of H0,h as RT = [δT , ∞) and define our test as

ϕT(Wκ̂) = 0, λ2(Ŵκ̂) ∈ RT ,
1, λ2(Ŵκ̂) ∉ RT ,

􏼚

(10) 

which looks to reject positivity of the second eigenvalue as per the metric signature.
We now study what conditions must hold on this sequence δT in order for the three tests to be 

consistent, by which we mean that the probability the test rejects the null goes to 1 under the al
ternative hypothesis and that the probability it fails to reject the null goes to 1 under the null.

Proposition 3.3 Let δT = oP(1) be a random or deterministic sequence and let Assumption 
1.1 hold. Let D̂T→

p
D as T→∞. Then, 

1. If δT ∈ (−∞, 0], δT = oP(1) and P{λK(Ŵ0) ≤ δT} = 1 − o(1), then the 
test for H0,e in (4) with rejection region RT := (−∞, δT] is consistent.

2. If δT ∈ (−∞, 0], δT = oP(1) and P{λK(Ŵκ̂) ≤ δT} = 1 − o(1) with κ̂ ∈ 
[a, b], then the test for H0,s in (5) with rejection region RT := (−∞, 
δT] is consistent.

3. If δT ∈ [0, ∞), δT = oP(1) and P{λ2(Ŵκ̂) ≥ δT} = 1 − o(1) with 
κ̂ ∈ [−b, −a], then the test for H0,h in (6) with rejection region RT := 
[δT, ∞) is consistent.

In order to combine these tests into a single estimate of the latent space geometry, we suggest 
using an ordered test. There are six possible orderings of such a test (e.g, Euclidean, then spherical, 
then hyperbolic). The proof is simple and uses the fact that each of the three geometry tests is con
sistent, under suitable assumptions on the threshold sequence δT .

Proposition 3.4 (Consistent estimation of geometry type). Under the assumptions on the 
sequence δ in Proposition 3.3, any of the 6 ordered tests return a consist
ent estimate of the latent space geometry.

We omit the proof of Proposition 3.4 which follows immediately from Proposition 3.3. We have 
shown that we can use the observed distance matrix D̂T to test the hypotheses that the latent space 
is Euclidean, spherical, or hyperbolic. From these tests, we define M̂p̂(κ̂) as the intersection of the 

three tests. That is, the estimated latent geometry based on D̂T is defined by the result of three 
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hypothesis tests in equations (8), (9), and (10). More specifically, we can select any estimator that 
preserves consistency. As noted, for example, we can use an ordered test to estimate the geometry 
type. Thanks to Proposition 3.3, with sufficiently large T the probability that more than one of 
these tests will fail to reject the null goes to zero, leading to a consistent test.

3.6 Estimating dimension p⋆

Given D̂, κ̂, and M̂, we develop a consistent estimate of p⋆, the minimal dimension of the manifold 
class in which the points can be embedded. We focus on the minimum dimension since, trivially, if 
one can embed in p one can embed in p′ > p for all p′. As we noted in Lemma 2.1, we see that p⋆ 

relates to the rank. So we proceed by estimating the rank of Wκ(D).
We present two approaches. The first continues our use of the logic of Weyl’s inequality to pro

pose a consistent estimate as T→∞. The second uses the laddle plot method of Luo and Li 
(2016). We did not verify the required assumptions in Luo and Li (2016), so we do not claim their 
estimator is consistent in our problem, but we find in practice (as do they) that the estimator per
forms well, so we suggest practitioners actually use this.

3.6.1 Spectral estimate of dimension
We are interested in finding the rank of Wκ using Ŵκ̂. To do this, we let ϵT be a (potentially ran
dom) sequence such that ϵT goes to zero slower than any λj(Ŵκ̂) for which λj(Wκ) = 0. In other 
words, we select ϵT to go zero slower than the slowest zero eigenvalue of the test matrix Wκ.

Since the rank of a matrix is the number of non-zero eigenvalues, we will estimate the number of 
non-zero eigenvalues of Wκ. To do this, we define a rejection region RT = (−ϵT, ϵT). For any index 
T, define the estimated rank to be

􏽤rank(Wκ) = #{j = 1, . . . , K : λj(Ŵκ̂) ∉ RT}. (11) 

Our estimate of the rank is then the number of observed eigenvalues that are sufficiently far away 
from zero, as measured by the threshold sequence ϵT.

Clearly, the performance of this estimator depends on the choice of the threshold sequence ϵT. If 
ϵT does not converge to zero (in probability), then this estimate cannot be consistent, since it will 
eventually start to count zero eigenvalues of Wκ as being non-zero. Hence convergence to zero is a 
necessary condition. It must also converge fast enough to zero. For example, if λj(Wκ) = 0 and we 
have access to λj(Ŵκ̂) = 1/T2 (i.e., a deterministic sequence), and we use ϵT = 1/T, then we will 
under-count the rank of Wκ because we will classify the eigenvalue λj(Wκ) as non-zero at every T.

We, therefore, must pick an ϵT that goes to zero slower than all estimates of eigenvalues for 
which their true counterpart is zero. From Weyl’s inequality, we know what such sequences 
look like. For any index k for which λk(Wκ) = 0,

|λw(Ŵκ̂)| = |λk(Ŵκ̂) − λk(Ŵκ̂)| ≤ ‖Ŵκ̂ − Wκ‖F, 

where the inequality is due to Weyl’s. By defining rT := ‖Ŵκ̂ − Wκ‖F, from the conditions in 
Theorem 1.1, we know that rT = oP(1). We need to select ϵT → 0 with rT/ϵT → 0, which means 
that ϵT goes to zero slower than rT does.

Proposition 3.5 (Consistency of minimum dimension estimate). Choose ϵT → 0 such that 
rT/ϵT → 0. If the assumptions in Theorem 1.1 hold, then 
􏽤rank(Wκ)→

p
rank(Wκ) as T→∞. Using Lemma 2.1, we can, therefore, 

consistently estimate p⋆ as T→∞.

While the rank estimator above leads to a consistent estimate for suitable chosen ϵT , choosing a 
sequence that satisfies these conditions in practice is challenging. We, therefore, recommend in 
practice to estimate the rank with a different estimator.
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3.6.2 Luo and Li (2016): Laddle Plot
Recent work, by Luo and Li (2016), however, has been shown to have more appealing finite sam
ple performance and in Appendix E, we provide the algorithm to estimate the rank with this meth
od. The intuition for their approach is as follows. Looking at the scree plot (related to our above 
approach) is consistent. And a bootstrap procedure, leveraging the fact that the eigenvectors cor
responding to indices beyond the rank will be uncorrelated in a bootstrap) also performs well. 
They note that under certain regularity conditions (a sufficiently fast estimate of the matrix Wκ, 
a self-similar bootstrap estimator), the combination of these two—a scree plot together with a 
bootstrap evaluation of eigenvector uncorrelatedness—performs better than either.

Luo and Li (2016) prove that in a number of problems, their rank estimate is consistent. We are 
not able to verify these conditions in practice, since they assume that their data consists of i.i.d. 
data. However, in our case, our data is independent but not identically distributed. Therefore, 
we do not make a claim about the consistency of this approach when applied to our problem. 
We do, however, note that in simulations this approach has better finite sample properties.

To summarize, through Propositions 3.2, 3.4, and 3.5, we have established that the procedure in 
Algorithm 1 is consistent for its estimands, as claimed in Theorem 1.1.

Returning to our four examples, it is easy to see that Examples 2 and 3 immediately satisfy the 
assumptions in Theorem 1.1, and as a consequence in each of those cases, we can consistently re
cover the geometry. The situation is more subtle for Example 1, where rather than directly observ
ing K units and noisy distances among them, the researcher observes some graph G is more subtle. 
From the graph, distances must be constructed and then geometry estimated. This is the subject of 
Section 4.

4 Identifying the latent space using only graph data
Having developed statistical tests to estimate the geometry behind a collection of points when we 
observe and arbitrary noisy distance matrix (the statistical geometry problem from Section 1.1), 
we now turn the original network problem. Specifically, our goal is to use a graph drawn from 
the latent space model in (1) and estimate the type, curvature, and dimension of the latent space. 
Theorem 1.2 presents the answer to this problem and demonstrates how the manifold can be con
sistently estimated. The proof of the theorem is provided in Appendix A. In this section, we lay out 
the ingredients: how one constructs the noisy distance matrix and adjusts for fixed effects. With 
these we are able to prove Theorem 1.2, which states that Algorithm 2 returns a consistent esti
mate of Mp⋆

(κ⋆).
Importantly, we also provide a number of examples of node location distributions, motivated by 

empirically-relevant models, to demonstrate that our core Assumption 1.3 for the clique-based 
method holds (Section 4.4). We conclude by discussing some practical choices for implementation.

4.1 Estimating distances using graph data
In order to apply the geometric test, we use the graph G to estimate a set of distances on Mp⋆

(κ⋆).
Since the probabilities defined by the latent space model in (1), our approach is to use estimated 
linking frequencies in order to identify a system of implied distances between K points in the 
manifold.

To motivate our approach to constructing a distance matrix, we consider a simplification of the 
main model in (1). We make two assumptions for illustration, which are subsequently relaxed in 
the main analysis. First, suppose there are no individual effects (so ν⋆

i = 0 ∀i). Second, suppose that 
nodes are assigned to one of K distinct points in the latent space, which we denote by ζ⋆

1 , . . . , ζ⋆
K. 

Define Vk = {j ∈ {1, . . . , n} : z⋆
j = ζ⋆

k } to be the set of nodes at location z⋆
k . Under this simplifica

tion, we can write the distance between points z⋆
k and z⋆

k′ using the definition of the latent space 
model in (1) as

dk,k′ = − log (pk,k′ ) (12) 

where pk,k′ := P(Gk,k′ = 1|z⋆) is the probability that nodes at locations z⋆
k and z⋆

k′ connect for any 
k, k′ ∈ {1, . . . , K}.8 Then, we can estimate the probability pk,k′ by
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p̂k,k′ :=
1

|Vk||Vk′ |

􏽘

(i,j)∈Vk×Vk′

Gij. (13) 

In words, this estimator counts the number of observed edges between z⋆
k and z⋆

k′ and divides by the 
number of possible edges, given by |Vk‖Vk′ |. Since Gij i.i.d.

􏽥
Bernoulli(pk,k′ ) for (i, j) ∈ Vk × Vk′ , this 

estimator is unbiased for pk,k′ . In addition, supposing that |Vi| →∞ as n→∞, the weak law of 

large numbers implies that p̂k,k′ − pk,k′ →
p

0.
By (12), we can estimate a K × K distance matrix D̂ = {d̂kk′ } comprised of entries with distances 

between ζk and ζk′ by

d̂kk′ = − log (p̂k,k′ )
􏼂 􏼃

k,k′ .

We can then apply the continuous mapping theorem to show that d̂k,k′ − dk,k′ →
p

0. That is, the as
sumption in Theorem 1.1 that we have access to a consistent estimate of distances along the latent 
space holds. Here, the sample size T is the number of edges between the K points on the latent 
space, given by |Vk||Vk′ | for every pair of points ζ⋆

k and ζ⋆
k′ .

To summarize, in this example, we have used the edges in G to estimate a distance matrix D̂ 
between K points in the unobserved latent space Mp⋆

(κ⋆). From this, we can apply Theorem 
1.1 to consistently estimate the geometry. However, this example made two simplifying assump
tions: no fixed effects and every node is located on exactly one of K finite points on the manifold. 
Our more general result, which we now describe, relaxes these assumptions considerably.

In (1), nodes have individual fixed effects ν⋆
i as well as latent positions z⋆

i . The individual effects 
describe heterogeneity in the propensity for an individual to form connections and are not directly 
related to which connections will form, which is what the latent space captures. We would prefer 
to estimate the distances used to test hypotheses about latent geometry without potential con
founding by individual effects not specifically related to the geometry. We accomplish this by mar
ginalizing over the individual effects in (1). Recalling that the support of ν⋆

i is (−∞, 0], we integrate 
out the node effects to find that

P Gij = 1|z⋆,Mp⋆
(κ⋆)

􏽮 􏽯
= E{ exp (νi)}

2 exp {−d(zi, zj)}.

Solving for the distance d(z⋆
i , z⋆

j ), we have

d(z⋆
i , z⋆

j ) = − log (pi,j) + 2 log [E exp (νi)
􏼈 􏼉

]. (14) 

Note that if νi = 0 with probability 1, which we assumed in the simplified model above, then 
E{exp (ν)} = 1, so that (14) becomes (12). Here we use properties of the exponential function to 
isolate the node effect term E{exp (ν)2}. See Appendix J for a discussion on how to marginalize 
out the node effects when other link functions are used. We must now estimate (i) the term pk,k 

and then (ii) the term log [E{exp (ν)}].
Our strategy, therefore, has two components. The first is to identify some K × K distance matrix 

D among K points on the manifold that could be used to test the geometry and then develop a con
sistent estimator of the pair-wise distances between these K points. By showing that the regularity 
conditions for the geometric result (Theorem 1.1) are met under the network formation model 
(Assumptions 1.1–1.3), we can identify the geometry. The second (lesser) component is to recog
nize and adjust for the fact that in going from linking probabilities to distance matrix estimation, 
we need to adjust for the nuisance of the fixed effects parameters.

8 Clearly in this simplified model, this corresponds to a stochastic block model with K communities with a linking 
probability law pkk′ that satisfies a geometric restriction.
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4.2 Estimating probability of edges
We begin by estimating the term pkk′ . The approach exploits the clique structure in the network. 
Cliques are useful because under regularity conditions that are useful in applications, a clique of 
size ℓ tells us that all nodes in that clique are extremely likely to be very close in the latent space. 
Therefore, we can treat them as if they are all located at the same point in the manifold. Of course, 
this is not exactly true, but for sufficiently large clique size ℓ, this approximation strategy becomes 
more and more accurate. If we find K disjoint cliques in the graph, then we have identified K dis
tinct points on the latent space. Then, by counting the number of edges between cliques, we can 
approximate all pairwise distances between these cliques, as we did above in (13). So by looking 
at the clique structure, we can compute an estimate D̂ which approximates distances along the sur
face of the latent space. We now describe this approach more formally.

Let C1, . . . , CK denote K disjoint cliques of size ℓ. We can take ℓ to grow like log (n), and such 
cliques will exist with probability tending to 1 in the graph (see Appendix K for a discussion). Let 
ζk be the Fréchet mean of the locations of the nodes in clique k:

ζ⋆
k (ℓ) = argmin

ζ∈Mp⋆ κ⋆( )

􏽘ℓ

i∈Ck

d2
Mp⋆ κ⋆( )

z⋆
i , ζ

( 􏼁
.

Informally, this point represents the average of all node locations in the latent space. We then de
fine a K × K distance matrix D = {dkk′ } with entries

dkk′ := d
Mp⋆ κ⋆( )

ζ⋆
k (ℓ), ζ⋆

k′ (ℓ)
( 􏼁

.

Note that ζ⋆ and D are indexed by the clique size ℓ and, therefore, n. Conditioned on seeing cliques 
of size ℓ, we show that the terms ζ⋆

k (ℓ) each converge to some fixed point ζ⋆
k on the latent space 

under general and relevant conditions (see Assumption 1.3 and Section 4.4) . Thus, the matrix con
taining the pairwise distances is the distance matrix we wish to estimate. Recall that this is the dis
tance term on the left hand side of (14).

To estimate the probability on the right hand side of (14), we compute

p̂kk′ =
1
ℓ2

􏽘n

i=1

􏽘n

j=1

Gij1 i ∈ Ck, j ∈ Ck′
􏼈 􏼉

. (15) 

4.3 Adjusting for the expected fixed effect
For notational convenience let us denote τ := E{exp (ν⋆

i )}. The main observation here is that if we 
focus on nodes that are close together in the latent space, since the distance term in such cases will 
be (nearly) zero in (1), it we will be able to estimate and account for the individual effects.

Naively, since we use cliques to estimate pk,k′ , we may consider using these nodes to also esti
mate τ. We could, for example, compute the number of edges in the cliques out of the number 
of possible edges. However, this estimate will be 1, since by definition all edges exist between nodes 
in the same clique. Therefore, we define a closely related idea, which we call the ‘almost-clique’.

Fix an ℓ-clique Ck and a number t < ℓ. We define an ‘almost-clique’ Ik(t) by

Ik(t) := j : j ∉ Ck, |Ck| >
􏽘

i∈Ck

Gi,j ≥ t

􏼨 􏼩

to be the set of nodes not in Ck that connect to at least t nodes in Ck. The intuition behind this 
definition is that if t ≈ ℓ, then the distance between nodes in Ik(t) should be close to zero, but since 
they are not in the clique not all connections will be realized.

We can estimate the probability that nodes in the sub-graph induced by Ik(t) connect,

Ê(t, k) =
|Ik(t)|

2

􏼒 􏼓−1 􏽘

(i,j)∈Ik(t)×Ik(t)

Gi,j.
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To estimate E(exp (ν)), we average the above term over all cliques, leading to an estimate

Ê(exp (ν)2) :=
1
K

􏽘K

k=1

Êν(t, k).

This approach suffers from selection bias when the clique size is large. That is, by Assumption 1.2 all 
individuals have independent and identically distributed ν⋆

i terms. Conditional on being part of a 
large clique, however, an individual is likely to be on the right tail of the vi distribution. We could 
adjust for this bias by, for example, assuming a parametric model for νi. If we made such an assump
tion we could compute a correction for the selection bias based on the tail of the assumed distribu
tion. In practice, we found our non-parametric estimator worked sufficiently well without such a 
correction. We suggest taking t to be large, for example, t = ℓ − 1 because our simulations suggest 
that large values of t reduce the selection bias and, therefore, increases the accuracy of our method.

4.4 Examples satisfying Assumption 1.3
Part (a) of Assumption 1.3 is innocuous. It simply requires that K points identify the manifold. 
Note that the existence of K points out of n→∞ random points with continuous distribution 
over any ball on the manifold will identify it outside a measure zero event in the usual measure. 
To see this, it is easy to observe that with continuous mass on any patch of a sphere, K points 
will exist that are not simply forming an arc or are arbitrarily local with probability tending to one.

Part (b) of Assumption 1.3 requires that for sufficiently large ℓ, nodes in a clique are at approxi
mately the same location on the latent surface, which allows us to conclude consistency and 
asymptotic normality of our distance estimates. We provide a general set of assumptions that 
are sufficient and show several models used in applied work are covered.

Assumption 4.1 Let Ωn = [0, A1/p⋆

n ] p⋆
⊂Mp⋆

(κ⋆) be such that An = o(n) is growing. 
Assume either 

1. Bounded Support: Ωn is the support of the distribution Fn(z) of loca
tions, or

2. Thin Tails: Fn(z) satisfies, for some constant b > 0,

P max
i,j

d
Mp⋆ κ⋆( )

zi, z j
( 􏼁

> A1/p⋆

n

􏼒 􏼓

≤ exp −bA1/p⋆

n + log n
􏼐 􏼑

→ 0.

Obviously (1) implies (2), but (2) allows for sub-Gaussian tails with unbounded support. The 
next assumption is natural and general, holding as long as distributions are not taking mass 
only on some sub-manifolds. It says that the odds that all ℓ independent draws are within 
δ-distance of each other is inversely related to the volume of that ball. We verify this for examples 
below.

For any set of ℓ points in the latent space, define the event

Eδ := max
1≤i<j≤ℓ

d
Mp⋆ κ⋆( )

zi, z j
( 􏼁

< δ
􏼚 􏼛

.

In words, Eδ is the event that the largest distance between these ℓ points is less than δ. We omit the 
dependence on ℓ when writing Eδ for convenience.

Assumption 4.2 The location distribution sequence satisfies, for any δ and ℓ,

P Eδ( ) =
a(δ)
Aℓ

n
1 + o 1( )( ).

for a positive constant a(δ), which can depend on δ.
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Let μd,n := E{d
M p⋆

(κ⋆)(zi, z j)}, where zi is independent of zj, be the expected distance between 
two location draws.

Assumption 4.3 For any δ > 0, assume a sequence of clique sizes ℓn →∞ satisfying

ℓn ≥ 2
log An

a(δ)(μd,n − δ)
+ 1 

for all n sufficiently large.

The above assumption is written for any δ > 0, but in fact we are only concerned with δ < μd,n, 
the average distance between two arbitrary points drawn on the latent surface. For δ > μd,n, it is 
unlikely that two nodes that are at least μd,n apart would form an edge. Therefore, we are only in
terested in checking the condition for sufficiently small δ.

We show that Assumptions 1.3 hold under the above assumptions.

Proposition 4.1 Let Assumptions 1.1, 1.2, 4.1, 4.2, and 4.3 hold. Then Assumptions 1.3
holds.

We now consider three common ways of modelling node locations in latent space. For each 
model, we show that Assumptions 1.1, 1.2, 4.1, and 4.2 hold.

These three examples cover a wide span of location distribution models. The first, a lattice, is a 
stylized example that simply corresponds to a community block model with a geometric structure, 
since all nodes exactly live at one of several locations. The second, a uniform distribution, is the 
other extreme where nodes have no bias towards any specific locations that help organize cliques. 
This is the most adversarial case. The Gaussian Mixture Model lives in-between and interpolates 
between these models and is frequently used in practical statistical modelling. It functions much 
like the uniform if the dispersion of nodes about their type-centres tends to infinity and is similar 
to the lattice if the dispersion tends to zero.

Example 4 (Lattice). Every node is a member of some community ti ∈ {1, . . . , Tn}. Node 
locations on the manifold are determined as follows. Let a lattice Λn = 
{0, . . . , T1/p⋆

n }
p⋆

⊂ Ωn be a list of coordinates which serve as the support for 
node placements with a spacing of 1 between points along any axis. Node lo
cations zi are placed i.i.d. across these Tn points on the manifold, i.e., on the 
lattice Λn, so Assumption 4.1 holds and ti corresponds to the location drawn. 
Assumption 4.2 holds for any δ < 1, with An = Tn, since every location t ∈ 
{0, . . . , Tn} is equally likely: P Eδ( ) = 1/Tn

( 􏼁ℓ.

To understand the growth-rate restrictions on ℓ(n), recall that ℓ(n) has to grow slowly enough so 
that there are cliques of size ℓ with probability 1. Consider the lattice above. Let us assume An is 
fixed at A > 0. Then, at each location in the lattice, the nodes connect independently with some 
fixed probability determined by the fixed effects, so these nodes are in an Erdos-Renyi model. 
So we need ℓ(n) < log (n) in order for there to be an ℓ-clique in the graph with probability ap
proaching one (recall Appendix K). And according to Assumption 4.3, we need 
ℓ > log (An) = log (A), a constant. So taking ℓ(n)→∞ to be growing slower than log (n) satisfies 
Assumption 4.3 for sufficiently large n.

The next example is in some sense the most adversarial model for our method. By placing nodes 
uniformly over the support, the odds of accumulation, and, therefore, clique formation, at any giv
en point are minimized. Still, the result holds.

Example 5 (Uniform Distribution). Node locations zi ∼ U(Ωn) are assumed to be drawn 
independently, uniformly over Ωn such that Assumption 4.1 holds. It immedi
ately follows by a calculation that P Eδ( ) = (δ p⋆

/volume(Ωn))ℓ, so Assumption 
4.2 holds as well.

The final example interpolates between the extremes of the lattice and uniform models.
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Example 6 (Gaussian Mixture Model). As in the lattice example, every node is a member 
of some community ti ∈ {1, . . . , Tn}. Node locations on the manifold are de
termined as follows. Let Λn ⊂ Ωn be a lattice of Tn points, which designate 
community centres, randomly drawn as follows. There is a support 
Ω′n ⊂ Ωn, with Ω′n = [0, B1/p⋆

n ] p⋆ 
and the community centres ζ t ∼ U(Ω′n) are 

drawn independently, uniformly over this support.
Given the community centres, every node conditional on the community it 

is assigned to has a location that is dispersed about the centre

zi|ti = t ∼ Fn z; ζ t, σ2
t

( 􏼁

independently. Examples include Gaussian in Euclidean space, the von 
Mises-Fisher on the sphere, and the wrapped-normal distribution on hyper
bolic space. Note that community centres reside within Ω′n ⊂ Ωn but given 
the distribution Fn, the random variable zi may have full support over 
Mp⋆

(κ⋆).
The distance between the outer boundary of Ω′n and Ω, denoted by Δn := 

A1/p⋆

n − B1/p⋆

n is assumed to be growing at a sufficiently fast, possibly sub- 
logarithmic rate Δn = ω(

������
log n

􏽰
). Then one can calculate that Condition 2 of 

Assumption 4.1. The function of this is to ensure that even if the zi have full 
support, they are going to essentially all live within Ωn.

In this setup, we can calculate that

P Eδ( ) =
δ p⋆

An

􏼠 􏼡ℓ

× 1 + o 1( )( ).

so that Assumption 4.2 holds too. Complete calculations are in Appendix A.

4.5 Consistent estimates of location and fixed effects
Suppose that the researcher has access to estimates of the node locations fixed effects (ẑi, ν̂i). Our 
result is agnostic to how these estimators are constructed and allows any consistent ones from the 
literature.

Corollary 1 Let M̂p̂(κ̂) denote the estimate of the geometry from Algorithm 2. Let 
ẑi(Mp⋆

(κ⋆)) and νi(Mp⋆
(κ⋆)) be any set of consistent estimators, computed 

using the assumed geometry Mp⋆
(κ⋆). Then, ẑi(M̂p̂(κ̂)) and ν̂i(M̂p̂(κ̂)) are 

consistent.

The proof is straightforward consequence of Theorem 1.2, so we omit it. The mode of conver
gence in Corollary 1 depends on how the estimates of node locations and effects converge. For ex
ample, if conditioned on the right geometry, max1≤i≤n |ν̂i − ν⋆

i |→
p

0, then this same convergence 
holds in Corollary 1.

4.6 Practical implementation of manifold hypothesis tests via bootstrap
Following Proposition 3.4, any arbitrary implementation of hypothesis testing for (8), (9), and 
(10) would suffice. For instance, following the logic of Weyl’s inequality and Proposition 3.1, since 
our estimate of W is asymptotically normally distributed, one can readily develop an analytic con
servative test. Since Weyl’s inequality is often a loose upper bound, we suggest take a different ap
proach and provide a specific method which is extremely fast, easy-to-implement, and effective in 
simulations and data work via a sub-sample bootstrap.

There are two non-standard features of our problem that make classical bootstrapping challen
ging. First, W0 does not have full rank, meaning that λK(W0) ≤ 0; under the null λK(W0) = 0 mean
ing the parameter is on the boundary of the parameter space. Classical bootstrap is not valid in 
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such a case (Andrews, 2000). Second, Wκ has repeated eigenvalues at zero under the null for both 
curved spaces, which again excludes the classical bootstrap (Eaton & Taylor, 1991).

We adapt the sub-sampling method from Politis and Romano (1994) which is valid both with 
parameters on the boundary and with repeated eigenvalues. Algorithm 3 in the appendix presents 
the method. It uses sub-sampling to generate a distribution {D⋆

b }B
b=1 of B bootstraps of the K × K 

distance matrices. Then given this distribution, the method constructs the corresponding distribu
tion of the eigenvalue of interest, λk̃{Wκ(D⋆

b )}, which is then used to test the null hypothesis for the 
original data. In Appendix K, we investigate another way of testing geometry via the Cayley– 
Menger determinant. We show numerically that this procedure has lower power than the boot
strap procedure discussed above, so in the following simulations, we use the bootstrap procedure.

5 Simulation evaluation
In this section, we examine the performance of our proposed method on simulated data from each 
of the three candidate geometries. The goal is to understand how well the methods perform in a 
setting where we know the (simulated) true geometry. We first examine the Type 1 error and 
power of the tests to select manifold class and then show the performance of our algorithm for 
estimating the latent dimension. We provide additional simulation results, including results for es
timating curvature, in Appendix G.

We discuss the Type 1 error and power of our proposed tests under various values for the clique 
size (ℓ) and the number of cliques we select for our estimation (K). In all cases, we simulate graphs 
in the following way. First, we generate a set of groups centres randomly in the latent geometry and 
dimension to be tested. For the Type 1 error, we generate graphs on n = 200 nodes and use K = 5 
and clique sizes that are realistic in the data: ℓ ∈ {4, 5, 6}. When generating the type 1 error figures, 
the graph statistics are as follows. For the Euclidean graphs, the average degree is 41 and the aver
age clustering coefficient is 0.26. For the spherical graphs, the average degree is 56 and the average 
clustering coefficient is 0.35. For the hyperbolic graphs, the average degree is 40 and the average 
clustering coefficient is 0.26.

For the power simulations, we generated 25 sets of latent positions and then, for each set of la
tent positions, constructed 100 graphs. When comparing across values of K and ℓ, we use the same 
graphs for all comparisons (e.g., when comparing K = 10 vs K = 5, the cliques in the K = 5 set are 
randomly selected from among those in K = 10). We provide specific values we used for simula
tions and additional results in Appendix B.

Figures 3 and 4 show results for Type 1 error and power of the tests we propose using the simulation 
procedure described above. Each point in the boxplot is the fraction of rejections out of 250 graphs for 
a given set of latent space positions. The variation in the boxplot, therefore, represents heterogeneity 
across latent space locations that are consistent with the true underlying geometry and the simulation 
procedure we use. Figure 3 shows boxplots of the Type 1 error for each of the three null hypotheses for 
three values of ℓ. We focus on variation in the Type 1 error across values of ℓ to see whether the 

(a) (b)

Figure 2. Plot of the objective function from (7) when D corresponds to 15 points in S2(1) (left) and H2(−1) (right). 
We plot the curvature κ against the value of the function κ 7! |λ1( cos (

��
κ
√

D))| (left) and of the function κ 7!
|λ2( cos (

��
κ
√

D))| (right). We see that at the true κ, the objective function is minimized. (a) Spherical. (b) Hyperbolic.
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properties of the Politis and Romano (1994) bootstrap procedure are preserved empirically. We see 
that, in all three cases, the Type 1 error decreases as the clique size increases. Further, for the 
Euclidean and hyperbolic cases, the Type 1 error tends to be below the nominal level of five percent, 
but the spherical type 1 error is higher than five percent. In Figure 4, we see that the power increases as 
we increase K for all three geometries. In these simulations, we use ℓ = 5. Recall that all of our mani
folds are locally Euclidean—indeed that is part of their definition. So, it is unsurprising, if not expected, 
that power against Euclidean alternatives rises more slowly than power against alternatives of the op
posite curvature. Appendix I contains more simulations.

Moving now to the estimates of the minimal dimension, we consider p ≥ 2 and take max (2, p̂) 
as our estimate of the dimension of Mp⋆

(κ⋆). In Table 1, we give our estimates of the dimension for 
the three geometries.

6 Examples from economics and biology
In this section, we demonstrate the performance of our method settings with the complexity of ob
served data. We demonstrate that, in vastly distinct contexts, our approach captures features of the 

(a) (b) (c)

Figure 3. Estimated Type 1 error. For each set of LS positions, we perform the test 100 times and plot the average 
rejection probability.

(a) (b) (c)

Figure 4. Estimated power using simulated LS positions. For each set of LS positions, we perform the test 100 
times and plot the average rejection probability. (a) Euclidean null. (b) Spherical null. (c) Hyperbolic null.

Table 1. Average probability of correctly predicting the dimension of the latent space, averaged across 25 different 
sets of n = 200 latent space positions.

True Geometry

R4 S3(1) H3(−1)

P(p̂ < p⋆) 0.02 0.03 0.06

P(p̂ ≥ p⋆) 0.98 0.97 0.94

Note. We use K = 7 and ℓ = 4. For each set of latent space positions, we generate 50 networks and predict the dimension.
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underlying geometry that provide contextually salient insights. We begin by offering guidance on 
choices a practitioner would make when implementing the method, then provide examples from 
three contexts. Access to data from Banerjee et al. (2019) is restricted, however, a similar dataset is 
freely available here: https://doi.org/10.7910/DVN/U3BIHX. Data from our neural network ex
ample is available here: https://www.dynamic-connectome.org/?page˙id=25. Replication code is 
available here: https://zenodo.org/record/7474776.Y6TryS-B2fU.

6.1 Choices for implementation of Algorithm 2
A key decision for implementation is how to identify and then select cliques for a given graph. 
Overall, there are several considerations.

6.1.1 Choosing clique size
Algorithm 2 requires identifying K cliques of size ℓ (again recalling that we only assume for sim
plicity that they are of the same size ℓ), with ℓ growing slowly. K is assumed not to grow with n, 
although more points will raise the power of our tests. This means that the researcher does not 
need to identify all ℓ-cliques in the graph, only K of them which will typically be a small number 
(e.g., 8–12) and are easily able to be found in our empirical applications, which our simulations 
show leads to high power. In Appendix K we show that taking ℓ < log (n) is often sufficiently 
slow to guarantee that cliques of size ℓ exist in the network. Of course, one can take ℓ to grow 
slower than that, but a higher ℓ results in a lower Type 1 error, since larger cliques gives better 
estimates of the distances in the latent space. First, we would like to take the number of cliques 
K and the size of the cliques ℓ of cliques to both be as large as possible. In practice, we use the 
networkX command enumerate_all_cliques in Python, which uses a clique finding algo
rithm from Langston et al. (2005). While identifying numerous cliques can be challenging, given 
the modest size of the cliques and that we only need a small, fixed number of cliques, applied re
searchers can easily implement our technique.

6.1.2 Choosing cliques
As ℓ increases, the variance of estimates of D̂ decreases, and the power of the test increases as K 
increases, since we have more distances between points on the manifold. Figure 4 from our sim
ulations shows that as K increases, the power of our tests increase. Second, we need cliques that 
are well-separated on the manifold, but connected in the graph. Since we use cliques as ‘points’ 
on the manifold to measure distance, the cliques should ideally not have nodes in common, since 
if two cliques do overlap, its possible these two ‘points’ on the manifold are close together or even 
the same point. Third, if two cliques have no edges between them, then our estimate of the distance 
between the two points is +∞, which contains no information about the geometry.

Motivated by these three considerations, our goal is to solve

Ĉ1, . . . , ĈK ∈ argmin
C1, ..., CK

􏽘K

i,j

|Ci ∩ Cj|

such that |Ci| = ℓ for each i and P̂(C1, . . . , CK) does not contains a 0.

(16) 

In practice, we set K and ℓ by first looking at the number of cliques of various sizes in the graph and 
choosing and ℓ that is close to the size of the largest cliques in the graph, but where there are still 
enough cliques of that size to find K and are well-separated. We then take random draws from the 
(very large) set of possible cliques and evaluate the objective function in (16). Searching over the set 
of possible cliques is a well-studied (NP-hard) problem in computer science and graph theory, 
however, we found that our relatively simple approach yielded high-quality cliques after around 
106 draws from the clique distribution. We evaluate the quality of the cliques we select by running 
the optimization independently several times. A stable objective function value across the runs in
dicates high-quality cliques. In the data from Banerjee et al. (2019), we take K as either 7 or 10. The 
value we choose is based on how easy it is to find appropriate cliques in a given network using the 
problem formulation in (16). In the Indian village sample, the average number of cliques of size 
ci − 1 is 80, where ci is the size of the largest clique in network i, known as the clique number. 
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It takes on average 0.005 s to find all cliques of size ci − 1 over the 75 networks. It takes 0.004 s in 
the C. elegans sample to find the 29 cliques of size 5 in the network.

To select ℓ, we use the size of the largest clique found in the graph minus one. In most of the 
villages, choosing ℓ in this way resulted in dozens of possible cliques to choose from. We present 
more details about cliques in the Banerjee et al. (2019) data in Appendix F. For the C. elegans data, 
we select K = 12 and set ℓ = 5, which is the size of the largest clique in the graph. We reiterate that 
for our approach we need only K cliques and do not need to enumerate all ℓ cliques in the graph.

6.2 Village risk-sharing networks and the introduction of microfinance
We begin by studying the underlying geometries of Indian village networks. We use the Wave II 
village network data of Banerjee et al. (2019), in part collected by one of the authors of the present 
paper. This consists of a collection of graphs for each of 75 villages in Karnataka, India con
structed by surveying 89% of all households in each village, thereby generating a 99% edge sample 
for the resulting undirected graph. There are a total of 16,451 households in the sample. In every 
village, we have relationship data between households on each of 12 dimensions: 5 social dimen
sions, 4 financial dimensions, and 3 information sharing dimensions. See Banerjee et al. (2019) for 
more details including descriptive statistics. The links across these dimensions line up for the most 
part, consistent with a theory of multiplexed incentives to form links, so we study the undirected, 
unweighted graph following the prior literature using this data (Banerjee et al., 2013, 2019; Breza 
& Chandrasekhar, 2019; Jackson & Lopez-Pintado, 2013).

The social networks literature has long been interested in excess closure Coleman (1988). 
Friends of friends tend to be friends more than one might expect and this is particularly true if net
work relationships substitute for formal institutions. Literature focusing on equilibrium informal 
financial networks, which facilities the sharing of risk between households in a village, describes 
why the equilibrium network shapes exhibit excess closure (e.g., Ambrus et al., 2014; Jackson, 
2013). The idea is that in order to maintain cooperation, when individuals can renege on their 
promises to aid each other in times of need, it is useful to have friends in common to amplify pun
ishment, thereby maintaining a good equilibrium.

From the perspective of a latent space model, this means that we might expect excess closure in 
the village. There are incentives by households to ‘curve’ the space, so friends of friends and so on 
are much more likely to themselves link, discussed in greater depth below. A natural hypothesis, 
therefore, is that village networks for the most part not be hyperbolic. Rather, they may be more 
likely to be spherical or, perhaps, Euclidean.9

Our proposed method gives hypothesis tests (and corresponding p-values) for each of the three 
candidate geometries. As a descriptive summary, we ‘classify’ each of the villages into one of the 
geometry types using the following procedure. For villages where at least one village has a p-value 
over .05, we consider, for the purposes of summarizing our results, the manifold type that has the 
largest p-value. If all three geometries reject the null at the .05 level, then we say that the village 
cannot be classified. This outcome could mean a number of things, ranging from a false-rejection 
by chance to a village whose underlying geometry is not captured by one of the three candidates 
(e.g., curvature may be nonconstant). Figure 5, Panel A, presents classification results for the 75 
villages using this descriptive approach. We see that we are able to classify 75% of the villages, 
despite the fact that N/A was a possibility. Classification was not forced. Further, the results are 
consistent with the socio-economic hypothesis on villages needing closure. 48% of the classified 
networks are spherical, 35% are Euclidean, and only 16% are hyperbolic.

9 We briefly note that common modelling assumptions in the socio-economic literature imply constant curvature 
from the perspective of our model (1), though certainly there are perspectives that would violate constant curvature which 
would require future work. To see this, consider two examples. First, imagine a model in which nodes have some random 
locations. They can choose their efforts to link and the value of their links depends on the number of their friends who are 
themselves friends in expectation. There is a parameter that governs the value of closure among one’s friends which can be 
positive, zero, or negative, which may depend on the socio-economic context. In such a model, this parameter exactly 
maps to curvature. Second, one can imagine a model in which agents can take an action to influence the extent to which 
their neighbours know each other. For instance, the action could be imagined as throwing parties (selecting positive 
curvature) or the opposite and ensuring ‘worlds do not collide’ (selecting negative curvature) (David & Seinfeld, 
1995). In such a model, if we study the symmetric equilibrium, then the equilibrium choice of the extent of forced social
ization or barred socialization among one’s friend exactly maps to constant curvature. Both of these examples also illus
trate the limitations of such models. While these examples demonstrate how conventional assumptions map to constant 
curvature, certainly more complex models with heterogeneity would require modelling manifolds with non-constant 
curvature, which we leave to future work.
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We also examine the estimated dimension of the latent space. Figure 5 presents the estimated 
dimensions, which irrespective of curvature is important to know the minimal dimension of the 
space required to model location decisions by agents.

We now explore the relationship between latent geometry and socio-economic phenomena. 
This is an observational, not causal, analysis. First, we look at how the volume of informal finan
cial transactions varies with network geometry. Specifically, we are interested in how the volume 
of informal loans that a household has with network neighbours (e.g., friends or members of their 
rotating, savings, and credit associations) varies with geometry. Both the theoretical and empirical 
economic literature suggest that it is ex ante ambiguous as to the relationship between the amount 
of network financial flows and curvature. For example, Kinnan and Townsend (2012) study how 
informal financial flows efficiently allocate credit to households that experience negative shocks in 
the network. Theory suggests that such flows are more efficient in more expansive networks, 
which require negative curvature (Ambrus et al., 2014). At the same time, as discussed above, 
the ability to facilitate informal financial transactions may increase in the importance of closure, 
and, therefore, require positive curvature. Which force dominates is an empirical question.

To study this, we estimate the following regression:

Network Loan Amounti = α + βE1{M̂p̂
i = E} + βH1{M̂p̂

i = H} + βN1{N/Ai} + ϵi 

where i indexes the village. Network Loan Amounti is the average volume of loans from either 
friends or rotating savings and credit association members that a household has in the village. 
The loan amount is presented in INR (USD 1 ≈ INR 73.5). Here, the omitted category (α) corre
sponds to the loan amount for a sphere.

The leftmost panel of Figure 6 presents the results. We find that a Euclidean village relative to a 
spherical one has INR 3,940 or 24% (p = 0.098) more informal network loans. Further decreasing 
curvature, we compare hyperbolic villages to spherical ones and find that hyperbolic villages have 
INR 5,865 or 35% (p = 0.034) more in informal network loans. These increases are extremely 
large in real economic terms: the difference in credit between the hyperbolic and spherical geom
etries corresponds to an individual in the hyperbolic geometry receiving additional credit worth 20 
days of wages. Taken together, we have seen greater financial flows precisely in geometries that 
permit more expansive network topologies.

Second, having studied how informal financial transaction patterns are associated with geom
etry, we now turn to studying determinants of geometry. Our primary interest is in whether the 
introduction of a formal credit market (microfinance) to a setting otherwise dominated by only 
informal financial transactions changes the network structure by changing the geometry. In our 
setting, as described below, microcredit was introduced to only some villages, allowing us to com
pare the impact of access to microfinance on network structure.

(a) (b)

Figure 5. Predicted geometries and dimensions for the Banerjee et al. (2019) village networks. (a) Geometry 
estimates. (b) Predicted dimensions.
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In addition to microcredit access, we focus on three other determinants: wealth, inequality, and 
caste fractionalization. It is ex ante not obvious as to how any of these might correlate with geometry 
and is, therefore, an important empirical question. For example, wealthier villages may have a reduced 
need to sustain informal insurance—their worst-case scenario is better off than their poorer counter
parts—and as a consequence may require less positive curvature. Or, in contrast, wealthier villages 
may be able to take on greater entrepreneurial risk as they can sustain losses, and such endeavours re
quire group cooperation and, therefore, closure. Similarly, within-village wealth inequality can change 
incentives for triadic closure, as can ethnic fractionalization (Currarini et al., 2009). Ultimately, the 
empirical correlations are of interest. The most important relationship to study is how the introduction 
of formal credit to villages that otherwise used informal network transactions affects geometry. From 
2007, a microfinance institution entered 43 of the 75 villages studied here and the network data we 
utilize is taken after the intervention (Banerjee et al., 2020, 2013). This allows us to study the effect 
of the introduction of microcredit on network geometry as a way to understand whether credit access 
differentially changes the need for ones’ friends to maintain relationships with each other. Note that 
this is different from clustering or other measures of closure per se, which are also affected by the lo
cations z and fixed effects ν. So we can specifically address that, all things being equal, whether the de
mand for one’s friends to themselves be linked increases, decreases, or is unchanged when the village 
now has access to formal financial instruments. It is a priori not obvious. On the one hand, the new 
credit opportunity may encourage re-lending or joint business ventures among clients of microcredit, 
increasing the need for closure and generating positive curvature. On the other hand, the new credit 
opportunity may reduce reliance on informal financial relationships with others in the village and 
push towards negative curvature. In either case, the answer as to how a large credit intervention 
may affect geometry is of empirical interest.

To study the determinants of geometry, we estimate a multinomial regression:

P(M̂p̂
i = m)

P(M̂p̂
i = S)

= exp (δm + βm
MFIMFIi + βm

WWealthi + βm
I Inequalityi + βm

F Fraci) 

where m ∈ {E, H, N/A}. MFIi denotes whether the microfinance institution entered village i. 
Wealthi denotes a wealth index measure.10 Inequalityi is within-village standard deviation of 

Figure 6. Regression coefficients showing the determinants of geometry. In the left figure, each line in the plot 
corresponds to the coefficient in a multivariate linear regression where the outcome is the average amount of loans 
(in thousands of INR) and the predictors are geometry types (with spherical as the reference). The wide bars 
correspond to one standard error and the narrow bars represent two standard errors. The reference value for 
spherical is 16.71 (again in thousands of INR). Plots 2–4 show the coefficients from a multinomial logistic regression 
where the outcome is the predicted geometry type for each village. Each panel shows all coefficients for a particular 
geometry (with spherical as the reference). Each line in the plot corresponds to an estimated coefficient. The wide 
bars correspond to one standard error and the narrow bars represent two standard errors. The constant values for 
the Euclidean, hyperbolic, and undetermined comparisons are 0.005, −0.69, and −0.01, respectively.

10 The Banerjee et al. (2019) dataset does not have consumption nor expenditure measures. So we utilize the score 
constructed from the first principle component of a number of household features that correlate with wealth in the village. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/85/2/240/7070598 by Stanford M

edical C
enter user on 24 M

ay 2023



J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 2                                                     265

wealth.11 Finally, Fraci = αU(1 − αU) where αU is the share of households that are of upper caste. 
The score is zero if society is perfectly homogenous and 1/4 for an even split. The right three panels 
of Figure 6 present the results. We begin by looking at microfinance. We estimate β̂H

MFI = −1.40 
(p = 0.093). This means that a village receiving microcredit is associated with an 8.8% decline 
in the probability of being hyperbolic relative to spherical. In other work, (Banerjee et al., 
2020), we have shown that introducing microcredit has decreased density and also the number 
of triads in the network. Our analysis here demonstrates that the fundamental value of having 
friends in common itself increased suggesting that the effects documented in our prior work 
came from shifts in node locations (zi) and efforts of socializing (νi) in the latent space rather 
than changes in the relative value of closure which appears to have increased.

We also find that wealthier villages are less likely to be hyperbolic relative to spherical. We es
timate β̂H

W = −1.02 (p = 0.098). This corresponds to a 8.4% decline in the relative probability of 
being hyperbolic as compared to spherical. We do not find any significant relationship between 
wealth inequality nor caste fractionalization and geometry.

Taken together, we have shown the empirical content of the estimation of the latent geometry. 
We can classify the vast majority of villages (despite allowing for N/A) and they are predominantly 
spherical. We find informal financial loans are higher in villages that exhibit negative curvature. 
Finally, and importantly, villages where microcredit was introduced tend to have a more spherical 
structure. This can perhaps be interpreted as showing that access to microcredit generates, ceteris 
paribus, demand for greater triadic closure.

6.3 Network of neurons
Our second setting looks at a network of neurons. There is neuroscience literature that is interested 
in documenting regularities in network structure as well as modelling network structure through 
statistical network formation models.

The first strand of the literature looks at how patterns of the graph of neurons relate to neuro
logical mechanisms (Karwowski et al., 2019). For instance, these networks exhibit short path 
lengths—disparate regions of the human brain are connected by a few steps. Further, the degree 
distribution reflects thick tails: certain nodes have numerous connections. Moreover, the network 
is dynamic: early in age the network exhibits high amounts of homophily whereas as the individual 
ages this declines.

The second strand develops low-dimensional statistical representations of the neural networks 
since this allows for interpretability, counterfactuals, and deals with the fact that otherwise there is 
a litany of statistics that can be used to correlate with biological outcomes without any interpret
able control (de Lange et al., 2014; Recanatesi et al., 2019). To this end, conditional edge inde
pendence models, scale-free models, block models, and latent space models have been explored 
(Karwowski et al., 2019; VanRullen & Reddy, 2019).

Third, and particularly relevant for latent space models, is the concept of the functional graph of 
neurons rather than the structural graph of neurons (Abdelnour et al., 2018; Petersen & Sporns, 
2015). The idea is that while a graph can be drawn of the physical links between all nodes, pre
dominantly the graph that is able to be activated—the functional network—is a network that is 
distinct. Much like individuals who reside in geographic space but functionally interact in a net
work that can be thought of as in a latent space, the functional network perspective presents an 
opportunity leverage latent space models.

Our specific application is to a network of neurons of Caenorhadbitis elegans, which are 
soil-dwelling roundworms. There is a long history of using C. elegans as a model organism for 
studying the nervous systems of animals. In fact neurons of C. elegans are extremely similar to 
that of humans (Leung et al., 2008). For our example, we use the C. elegans neuron data of 
Kaiser and Hilgetag (2006), which has been used a number of times in order to model neural net
work structure. There are several goals in modelling neural network structure. The relative loca
tion distribution, how distance affects linking rates, and the geometry all inform how signals could 

This consists of access to private electricity, home ownership, quality of roofing material, and number of rooms in the 
household.

11 Specifically, we take the score from the first principle component of the within-village standard deviation of each of 
the constituent wealth measures.
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be passed across nodes. Moreover, though beyond the scope of our knowledge, there may be in
terpretations to the distribution of fixed effects—latent heterogeneity in the propensity for certain 
neurons to systematically link to others.

A priori it is unclear what the right latent geometry ought to be. For instance, if the network of 
neurons ought to have a high degree of expansiveness, it ought to be embedded in hyperbolic 
space. In contrast, if it ought to reflect strong, localized redundancies, or a high degree of homo
phily it may be better modelled as being embedded in a spherical geometry.

The dataset contains a neural network from a single C. elegans, consisting of a connected graph 
of 131 neurons, with 764 edges, and a clustering coefficient of 0.245. The clique number of this 
graph is 6, but it has only one clique of size 6, but it has 29 cliques of size 5, so we use ℓ = 5. 
We find K = 12 cliques using the problem formulation in (16) and then take a maximally disjoint 
clique set which is sufficient for our test. We use Algorithm 2 and compute the p values for 
the Euclidean, spherical, and hyperbolic geometries and find these values are: pE = 
0.378, pS = 0.05, and pH = 0.267, so we reject the spherical hypothesis (noting that we can do 
so despite there being a high level of clustering). The C. elegans network of neurons, therefore, 
is inconsistent with a latent space with positive curvature, where neurons are excessively likely 
to exhibit triadic closure relative a flat benchmark. We can only say that there is no or negative 
curvature, but the data are not sufficiently powered to allow us to distinguish this.

7 Conclusion
Latent space models are widely used in network analysis across numerous disciplines, including, 
but not limited to sociology, economics, biology, and computer science. The predominant ap
proach is to assume a Euclidean latent space, though there is current discussion about adopting 
a hyperbolic space in certain contexts. Nonetheless, the current methods employed do not provide 
a way to estimate the geometry itself. Unfortunately, incorrect embedding spaces can deliver mis
leading results and while there may be convergence to pseudo-true values, counterfactual analysis 
will be affected.

We develop methods that the researcher can apply in order to consistently estimate the latent 
space geometry from network data. Our core observation is that the observed network data enc
odes information on the distance between nodes in latent space. That is, a finite sample network 
corresponds to a noisy set of distances. So we transform our network problem to a statistical 
geometry problem.

In our first result, we study a more general problem: whether an observed estimate of a distance 
matrix among K points contains enough information to consistently estimate the unobserved 
manifold in which the K nodes can be isometrically embedded. We answer this in the affirmative: 
the spectrum of a distance matrix encodes the manifold’s metric and, therefore, the manifold class, 
rank, and curvature. Leveraging results on eigenvalue perturbations, we prove the result. Our se
cond result applies to the network setting. By looking at cross-clique link frequencies, one can con
struct a noisy distance matrix and therefore estimate the latent manifold consistently.

An important advantage of our approach is that, unlike other strategies, we do not need to es
timate the fixed effects or the locations in a candidate manifold (nor integrate them out) in the es
timation procedure. Instead, by focusing on a strategy that exploits the fundamentals of geometry, 
we directly check isometric embeddings, so we can estimate the geometry without ever estimating 
the numerous other parameters and only move to them after having estimated the geometry.

We also demonstrate the empirical content of estimating the latent geometry which is novel in 
the literature. Strikingly, even though N/A is a possibility, we were able to classify (75%) of vil
lages, indicating the empirical relevance of our methods. Further, consistent with theory, we 
show Indian risk-sharing villages are often spherical. Additionally, villages that are more expan
sive are associated with a greater flow of informal financial loans through the network. Finally, the 
introduction of microcredit is associated with a shift to positive curvature: the relative value of 
having triadic closure increases when villages have access to formal credit.

A number of future steps come to mind. While our assumptions on geometry—that it is a simply 
connected, complete Riemannian manifold—are parsimonious and natural, they are also limited. 
They nest the current assumptions in the literature (we know of no empirical research that assumes 
a torus of genus two for instance in the networks literature) but they are still admittedly lacking. 
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Zoubouloglou et al. (2021) have shown a relationship between the torus and the sphere that might 
allow us to apply our current spherical methodology to the torus. We speculate that there may be 
strategies to use local structures in the network to patch together some more global structure. That 
is, for instance, if it can be arranged into a pseudo-block diagonal structure, perhaps in each block, 
there is room for a different geometry and then these can be stitched together. See Gu et al. (2019), 
among others, for related work on this topic. Additionally, extending our results to settings where 
the full graph is not observed, such as Aggregated Relational Data (Breza et al., 2020; McCormick 
& Zheng, 2015), would allow researchers who do not have resources to collect data on all edges to 
leverage insights about underlying geometry. Individual node covariates could also be leveraged to 
form trait groups in settings without complete network data. Finally, an interesting area of future 
research involves exploring how to optimally combine the results from multiple tests of the three 
geometries, where each test is computed using a different set of cliques. Of course, the tests based 
on different cliques would likely be correlated, and so an important question would be to under
stand how to use the correlation to increase the power of the combined test.
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Appendix A. Proofs
A.1 Proofs required for Theorem 1.1 (Section 3)

Proof of Proposition 3.1. We only prove this claim for the Euclidean case, but the same 
argument proves the claim for the other two geometries. We 
have by Weyls’s inequality that |λ1(Ŵ0) − λ1(W0)| ≤ 
‖Ŵ0 − W0‖F, where ‖A‖F is the Frobenius norm of A, that is 
‖A‖2F =

􏽐
l,l′ a

2
ll′ . Then, we have that P(|λ1(Ŵ0) − λ1(W0)| < 

θ) ≤ P(‖Ŵ0 − W0‖F < θ) for all θ. Under H0,e, λ1(W0) = 0, so 
we have that P(|λ1(Ŵ0)| < θ) ≤ P(‖Ŵ0 − W0‖F < θ). By setting 
θ to be the α quantile of ‖Ŵ0 − W0‖F, we conclude (3). This 
completes the proof.  □

Proof of Proposition 3.2. We prove this proposition for the spherical case. The hyperbolic 
case follows from a similar argument. By Theorem 2.1 in Newey 
and McFadden (1994), we have consistency if (i) the limit ob
jective function is uniquely maximized at the truth, (ii) the par
ameter space is compact, (iii) the limit objective function is 
continuous in the parameter, and (iv) there is uniform conver
gence of the empirical objective function to its limit. The latter 
holds if there is point-wise convergence and stochastic 
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equicontinuity. The parameter space is compact and since under 
the null Wκ(D) is positive semi-definite, the minimum eigen
value is 0 as long as K > p. Identification comes from continuity 
of eigenvalues in parameters of the matrix. Finally we check uni

form convergence. First, note by hypothesis that D̂→
p

D as 
T→∞. Since eigenvalues are continuous functions of their ma
trix arguments, we have by the continuous mapping theorem 

that λ1(κWκ(D̂))→
p

λ1(κWκ(D)) for every κ ∈ [a, b], and so we 
have pointwise convergence. To complete the proof, we will 
show stochastic equicontinuity to show uniform convergence. 
A sufficient condition is a Lipschitz condition (Lemma 2.9, 
Newey & McFadden, 1994): that for any κ1, κ2, 
|λ1(κ1Wκ1 (D̂)) − λ1(κ2Wκ2 (D̂))| ≤ BT|κ1 − κ2| for some random 
variable BT = Op(1). To do this, fix any κ1, κ2 ∈ [a, b]. By 
Weyl’s inequality,

λ1 κ1Wκ1 (D̂)
( 􏼁

− λ1 κ2Wκ2 (D̂)
( 􏼁􏼌

􏼌
􏼌

􏼌
􏼌
􏼌 ≤ ‖κ1Wκ1 (D̂) − κ2Wκ2 (D̂)‖F.

Since κWκ(D) = cos (
��
κ
√

D) and cos (·) is Lipschitz continuous 
with Lipschitz constant 1, we have for each l, l′,

cos (κ1/2
1 d̂l,l′ ) − cos (κ1/2

2 d̂l,l′ )
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 ≤ d̂l,l′ · κ1/2

1 − κ1/2
2

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌.

For κ1, κ2 ∈ [a, b],

|
���
κ1
√

−
���
κ2
√
| =

κ1 − κ2
���κ1
√ + ���κ2

√

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌 ≤

1
2

��
a
√ |κ1 − κ2|, 

so for any d̂i,j,

cos (κ1/2
1 d̂i,j) − cos (κ1/2

2 d̂i,j)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 ≤

d̂i,j

2a1/2 κ1 − κ2| |.

Putting this all together, we see that

λ1 κ1Wκ1 (D̂)
( 􏼁

− λ1 κ2Wκ2 (D̂)
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􏼌≤

���������������������������������
􏽘

i,j

κ1Wκ1 (D̂) − κ2Wκ2 (D̂)
( 􏼁2

i,j

􏽳

≤

������������������������

􏽘

i,j

d̂i,j

2a3/2 κ1 − κ2| |

􏼠 􏼡2
􏽶
􏽵
􏽵
􏽴

=

���������������

􏽘

i,j

d̂i,j

2a3/2

􏼠 􏼡2
􏽶
􏽵
􏽵
􏽴 |κ1 − κ2|.

Since 
�������������������􏽐

i,j (d̂i,j/2a3/2)2
􏽱

= Op(1), the desired Lipschitz condi

tion holds, which completes the proof. The hyperbolic case is 
handled in a similar way.  □
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Proof of Proposition 3.3. We prove the Euclidean case (part a) and note that the proofs of 
parts b and c (spherical and hyperbolic) are nearly identical. 
Define RT = (−∞, δT]. Let P0(A) denote the probability of event 
A under the null hypothesis that Mp(κ) is Euclidean. By (8),

P0(λ1(Ŵ0) ∈ RT) = P0(λ1(Ŵ0) ≤ δT) = o(1), 

by assumption. Under H1, λ1(W0) < 0 by Lemma 2.1. Since 
δT = oP(1),

P1(λ1(Ŵ0) ∈ RT) = P(λ1(Ŵ0) ≤ δT)

= 1 − P λ1(Ŵ0) ≥ δT
( 􏼁

= 1 − o(1).

This proves that the test for (4) is consistent, as claimed.  □

Proof of Proposition 3.5. For each index j = 1, . . . , K, we consider two different cases. In 

case 1, λj(Wκ) ≠ 0. In this case, know that since ϵT→
p

0, 
P(λj(Ŵκ̂) ∈ R)→ 0. Here we just use the fact that 
λ j(Ŵκ̂)→ c ≠ 0, so that eventually this eigenvalue is outside 
the rejection region. Note that this calculation does not require 
a particular rate on ϵ; we just need ϵ to go to zero in probability. 
We now handle case 2, in which λj(Wκ) = 0. This is the more 
subtle case. By definition of the rejection region,

P1(λj(Ŵκ̂) ∈ R) = P1(|λj(Ŵκ̂)| ≤ ϵT).

where the subscript here indicates that the alternative hypoth
esis that λj ≠ 0 is true. By Weyl’s inequality, the above probabil
ity then becomes

P1(|λj(Ŵκ̂)| ≤ ϵT) ≤ P1(‖Ŵκ̂ − Wκ‖
2 ≤ ϵ2

T) := P1(rT ≤ ϵT).

By assumption, we know that rT/ϵT → 0 in probability. 
Therefore, for any eigenvalue that is actually zero, for large 
enough T we will call this eigenvalue zero and it won’t count 
in the estimated rank. This concludes the proof.  □

Proof of Theorem 1.1. By assumption, we know that D̂→
p

D, so by Proposition 3.2, we 

have that κ̂→
p

κ. We will use Proposition 3.3 to argue that 􏽤Mp̂ is 
consistent for Mp(κ). To do this, note that if Mp(κ) is Euclidean, 

then by Proposition 3.3, 􏽤Mp̂ is consistent. To prove the claim for 
the spherical case, recall that we define ϕ(Ŵ0) = 1 to mean that we 
reject the hypothesis that Mp⋆

(κ⋆) is Euclidean. If ϕ(Ŵ0) = 0 then 
we fail to reject the hypothesis that Mp⋆

(κ⋆) is Euclidean. Similar 
definitions hold for the spherical and hyperbolic cases.

If Mp⋆
(κ⋆) is spherical, then we have that

PS
􏽤
Mp̂ = Sp(κ)

􏼒 􏼓

= PS(ϕ(Ŵ0) = 1, ϕ(Ŵκ̂) = 0)

= PS(ϕ(Ŵ0) = 1)PS(ϕ(Ŵκ̂) = 0)

→ 1, 
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where the notation PS indicates that Mp⋆
(κ⋆) = Sp(κ) and the 

third line follows from Proposition 3.3. A similar argument 

proves that 􏽤Mp̂ is consistent when Mp⋆
(κ⋆) is hyperbolic. 

Therefore, we can conclude that p̂ is consistent for the true rank 
of Wκ. This completes the proof.  □

A.2 Proofs required for Theorem 1.2 and Section 4

Proof of Theorem 1.2. In order to show that estimates of distances computed using cli
ques are consistent, we recall the form of the estimates from (14),

d(z⋆
i , z⋆

j ) = − log (pij) + log (γ), 

where γ := E{exp (ν)}2 and pij = P(Gij = 1 | z⋆
i , z⋆

j ). We estimate 
d(z⋆

i , z⋆
j ) with

d̂(zi, zj) = − log (p̂ij) + log (γ̂).

Under the assumptions of Theorem 1.2, we have a consistent es
timate γ̂→ γ, so we only focus on estimating the term pij. We es
timate this term using

p̂kk′ = ℓ−2
􏽘

i∈Ck(ℓ)

􏽘

j∈Ck′ (ℓ)

Gij, 

where Ck(ℓ) is a clique of size ℓ and Ck′ (ℓ) is another clique of size 
ℓ. Suppose that each node in a clique is at the same location, say ζk 

for clique k. Then, p̂kk′ is a consistent estimate of pij, the probabil
ity that node i at location zk connects to node j at location zk′ . In 
practice, the locations in cliques do not fall at exactly the same lo
cation, but as ℓ→∞, under Assumption 1.3, we do know that 

maxij d(z⋆
i , z⋆

j )→
p

0 for nodes i and j in any clique. Since the event 
that all nodes in a clique fall within δ of each other, for any δ > 0, 
occurs with probability going to 1, we can condition on the event 
that nodes in a clique are at the same location. By the preceding 

argument, we can then conclude that p̂kk′ − pij→
p

0. By the con
tinuous mapping theorem, we can then consistently estimate dij. 
We can now apply Theorem 1.1. This completes the proof.  □

Proof of Proposition 4.1. Before providing the proof, we provide a brief outline of our strat
egy. We will suppose that each ν⋆

i = 0 to simplify notation, but 
the general result claimed in the Proposition holds. Our goal in 
this proof is to show that P(Eδ ∣ clique)→ 1 as ℓ→∞. To 
make the proof easier, we will equivalently show that the ratio

P Eδ ∣ clique
( 􏼁

P Ec
δ ∣ clique

( 􏼁→∞.

Showing that this ratio goes to infinity shows the numerator goes 
to 1 since x/(1 − x)→∞ if and only if x→ 1. We now turn to 
the proof.
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We have

P Eδ ∣ clique
( 􏼁

P Ec
δ ∣ clique

( 􏼁 =
P clique ∣ Eδ
( 􏼁

P clique ∣ Ec
δ

( 􏼁 ·
P Eδ( )

1 − P Eδ( )

≥
P clique ∣ Eδ
( 􏼁

P clique ∣ Ec
δ

( 􏼁 × a(δ) ·
1/Aℓ

n

1 − 1/Aℓ
n

1 + o 1( )( )

for some positive constant a(δ) by Assumption 4.2.

Next, since we have L := ℓ
2

( 􏼁
possible links and δ is the max

imal distance between any two nodes,

P clique ∣ Eδ
( 􏼁

≥ exp −Lδ( ), 

so we have

P Eδ ∣ clique
( 􏼁

P Ec
δ ∣ clique

( 􏼁 ≥
exp −Lδ( )

P clique ∣ Ec
δ

( 􏼁 × a(δ) ·
1/Aℓ

n

1 − 1/Aℓ
n

1 + o 1( )( ).

For bounded support, μd = μd,n := E{d
Mp⋆

(κ⋆)(zi, z j)} is finite. 

Thus, by Lemma A.1, we have that

P clique ∣ Ec
δ

( 􏼁
≤ exp −Lμd

( 􏼁
.

Then, substituting this upper bound on P(clique ∣ Ec
δ) into the 

ratio of interest, we have

P Eδ ∣ clique
( 􏼁

P Ec
δ ∣ clique

( 􏼁 ≥
exp −Lδ( )

exp −Lμd

( 􏼁 × a(δ) ·
1/Aℓ

n

1 − 1/Aℓ
n

1 + o 1( )( )

= exp −L δ − μd

( 􏼁􏼈 􏼉
× a(δ) ·

1/Aℓ
n

1 − 1/Aℓ
n

1 + o 1( )( ).

We can rewrite this as

exp Lμd − Lδ
􏼈 􏼉

× exp log a(δ) + ℓ log A−1
n − log 1 − A−ℓ

n

( 􏼁
+ o 1( )

􏼈 􏼉
(A1) 

and now need to show that this lower bound goes to infinity. 
We do this by appealing to Assumption 4.3. Specifically, by 
Assumption 4.3, the following condition is true for sufficiently 
large n

Lμd − Lδ ≥ ℓ log An − log 1 − Aℓ
n

( 􏼁
+ log a(δ).

Substituting the above expression into the lower bound in (A1), 
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we have

P Eδ ∣ clique
( 􏼁

P Ec
δ ∣ clique

( 􏼁 ≥ exp Lμd − Lδ
􏼈 􏼉

× a(δ) ·
1/Aℓ

n

1 − 1/Aℓ
n

1 + o 1( )( )

→∞, 

completing the proof in the case where each Ωn is bounded.
To handle the case where Ωn is not bounded, such as when F 

is a Gaussian distribution on Rp, define an event

Fn := zi ∈ Ωn, for all i = 1, . . . , n
􏼈 􏼉

.

In words, Fn holds whenever all zi are in the set Ωn. Recall that 
under Assumption 4.1(1), P(Fn) = 1, and under Assumption 
4.1(2) there is an exponentially thin tail. This allows us to con
clude that

P(clique | Ec
δ) = P(clique | Ec

δ, Fn)P(Fn) + P(clique | Ec
δ, F

c
n)P(F c

n)

≤ P(clique | Ec
δ, Fn)P(Fn) + P(F c

n) 

Since the zi are i.i.d., we also know that 
P(Fc

n) = P(zi ∉ Ωn)n := p(n)n. Combining this, we have that

P(clique | Ec
δ) ≤ exp (−μdL) + p(n)n 

Supposing that p(n) = exp (−bA1/p⋆

n ), where again p⋆ is the di
mension of the latent space, we see that

P Eδ ∣ clique
( 􏼁

P Ec
δ ∣ clique

( 􏼁 ≥
exp (−Lδ)

exp (−Lμd) + p(n)n × a(δ) ·
1/Aℓ

n

1 − 1/Aℓ
n

1 + o 1( )( )

=
exp (−Lδ)

exp (−Lμd) + exp (−nbA1/p⋆

n )
× a(δ) ·

1/Aℓ
n

1 − 1/Aℓ
n

1 + o 1( )( )

Now, if we can show that exp (−nbA1/p⋆

n )→ 0 is negligible in 
the limit, then the above inequality reduces to the inequality for 
the bounded case, for which we proved that taking ℓ to grow 
faster than the term in this Proposition is sufficient. Since 
n >> ℓ, the term exp (−nbA1/p⋆

n ) is negligible, which allows us 
to re-use the proof of the bounded case. This completes the 
proof.  □

Lemma A.1 Consider any distribution of locations from which zi are drawn i.i.d. on 
Mp⋆

(κ⋆) with finite expected distance, μd := E{d
Mp⋆

(κ⋆)(zi, z j)} < ∞. Then, 
if again L = ℓ

2

( 􏼁
,

E
􏽙

i<j

exp −d
Mp⋆ κ⋆( )

zi, z j
( 􏼁􏽮 􏽯

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
Ec

δ

⎡

⎣

⎤

⎦ ≤ exp −Lμd

( 􏼁
.
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Proof. We have

E
􏽙

i<j

exp −d
Mp⋆ κ⋆( )

zi, z j
( 􏼁􏽮 􏽯

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
Ec

δ

⎡

⎣

⎤

⎦ ≤ E
􏽙

i<j

exp −d
Mp⋆ κ⋆( )

zi, z j
( 􏼁􏽮 􏽯

􏼢 􏼣

≤
􏽙

i<j

E exp −L · d
Mp⋆ κ⋆( )

zi, z j
( 􏼁􏽮 􏽯􏽨 􏽩􏼐 􏼑1/L

≤
􏽙

i<j

E exp −L · xij
􏼈 􏼉􏼂 􏼃( 􏼁1/L

≤ exp −Lμd

( 􏼁
×
􏽙

i<j

E exp −L · ηij

􏽮 􏽯􏽨 􏽩􏼐 􏼑1/L

≤ exp −Lμd

( 􏼁
× 1 

where we (a) unconditioned on the event since the probabilities of linking are high
er within E than Ec

δ, (b) used Holder’s generalized inequality, (c) used 
exp (a)L = exp (La), (d) defined xij := d

Mp⋆
(κ⋆)(zi, z j), (e) decomposed xij = μd + 

ηij where ηij := xij − μd, and (f) used the boundedness of linking probabilities.  □

Proof of Example 6. Let Ω = [0, B1/p]p ⊂ R p so vol(Ω) = B with B = Bn. Assume there are 
C = Cn communities, each with m nodes, distributed uniformly at 
random in Ω′ = [0, b1/p]p ⊂ Ω with |B1/p − b1/p| =: t and 
t = ω(

������
log n

􏽰
). That is, the community centres—not members neces

sarily—reside in a subset within the space of interest with a distance 
between the boundaries of at least 

������
log n

􏽰
. The extra factor controls 

for tail events.
Given these community centres ζc, we have nodes distributed

zi ∼ Fc ζ c, σ2
c

( 􏼁

where F is a Gaussian distribution on R p centred at ζc with variance 
σ2

c .
Note that if σ2

c = 0 then we have an example of an inhomogenous 
lattice, and with B = C this operates like Example 4 exactly. On the 
other hand, if σ2

c →∞ and we restrict attention only to Ω itself, then 
we return to the uniform case. In between lies the case of multimodal 
location distributions with dispersion, governed by community 
centres. We will identify similar rates, mildly adjusted for tail events 
of extreme community or individual locations, though the bounds 
are not tight.

Define an event

F := zi ∈ Ω, for all i = 1, . . . , n
􏼈 􏼉

and observe that the calculations conditional on F are identical to 
the lattice and point process cases. We compute

P Ec
δ|clique

( 􏼁
= P Ec

δ|clique, F
( 􏼁

P F( ) + P Ec
δ|clique, F c( 􏼁

P F c( )

≤ P Ec
δ|clique, F

( 􏼁
P F( ) + P F c( )

≤ exp −Lμd

( 􏼁
1 + o 1( )( )
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where μd is the expected distance between two points distributed in 
Ω from the mixture model.

To bound P(F c), observe that

P max
i

dist zi, ζ c
( 􏼁

> t
􏼒 􏼓

≤ exp −const. × t2 + log n( )
( 􏼁

→ 0 

by the sub-Gaussian distribution of the distance function for nor
mals (the folded normal is sub-Gaussian), the growth assumption 
on t, that it holds for all communities simultaneously (which is 
not tight since most nodes will not be within the t-shell of the bound
ary due to the slow expansion of Euclidean balls). Below we calcu
late t > const. ×

�����������
LB1/p ��

p
√􏽰

, from which the result follows.
By the application of Lemma A.1, and a calculation of the ex

pected distance which is c2B1/p ��
p
√

,

P Ec
δ|clique, F

( 􏼁
≤ exp −c2LB1/p ��

p
√( 􏼁

, 

and so

P Eδ|clique
( 􏼁

P Ec
δ|clique

( 􏼁 = exp c2LB1/p ��
p
√

− Lδ
( 􏼁

·
P Eδ( )

1 − P Eδ( )
.

We, therefore, have

ℓ ≥ a(δ)
log

B
c3δ p − 1

􏼒 􏼓

B1/p ��
p
√

− δ
1 + o 1( )( ) + 1 

which gives the growth-rate bound on the clique size. Now recall the 
restriction on the growth rate of B relative to b. If b = αB for some 
α < 1, then

t = B1/p − b1/p = B1/p 1 − α1/p( 􏼁
= Θ B1/p

n

( 􏼁

and so the restriction is immediate if for instance Bn = ω([log n]p/2). 
This admits many simple rates such as if C = log n, then m = n/Cn = 
n/log n or Bn = ω([ log (n/log n)]p/2) which is a slow poly- 
logarithmic growth rate. In this case, the number of communities 
is smaller than the domain. But if C =

��
n
√

, then m =
��
n
√

and, there
fore, Bn = ω(2−p/2( log n) p/2), the number of communities can grow 
faster than the domain.  □

Appendix B. Generating latent space points
We now describe how we generate our points in the three latent spaces. The basic idea is to gen
erate K group centres. We then call the first n/K nodes to be in group 1, the second n/K nodes to be 
in group 2, and so on. Let ci ∈ {1, . . . , K} denote the group membership of node i. Finally, we dis
tribute the node latent space positions centred at their group locations according to some proced
ure that is unique for each of the three geometries. To generate the latent space positions in the 
Euclidean case, we do the following: 
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1. Generate K group centres μ ∈ Rp distributed according to μ i.i.d.
􏽥

N(0p, σ2Ip).

2. Then simulate the positions of the nodes as zi | ci i.i.d.
􏽥

N(μci
, (σ2/K)Ip).

To generate the latent space positions in the spherical case, we do the following:

1. Generate K group centres μ ∈ S2(κ). To do this, we generate two angles: θ i.i.d.
∼

Unif(0, π) and 

ϕ i.i.d.
∼

Unif(0, 2π). Then compute

μi = κ−1/2 sin (θi) cos (ϕi), sin (θi) sin (ϕi), cos (ϕi)
( 􏼁

∈ R3.

2. Then simulate the positions of the nodes. To do this, generate two angles θi ∼ Unif(θci − 
δ, θci + δ) and ϕi ∼ Unif(ϕci

− δ, ϕci
+ δ) and compute

μi = κ−1/2 sin (θi) cos (ϕi), sin (θi) sin (ϕi), cos (ϕi)
( 􏼁

∈ R3.

To generate the latent space positions in the Hyperbolic case, we do the following:

1. Generate K group centres μ ∈ H2(κ). To do this, we generate two locations xi and yi distrib

uted uniformly on [− s, s] × [− s, s] and select the third coordinate z =
����������������

1/κ + x2
i + y2

i

􏽱

so by 

construction (x, y, z) ∈ H2(κ).
2. Then simulate the positions of the nodes. To do this, generate two coordinates xi and yi dis

tributed uniformly on [xci − δ, xci + δ] × [yci − δ, yci + δ] then set zi =
����������������

1/κ + x2
i + y2

i

􏽱

.

We next present the parameters used for the simulations in Section 5. In Table B1, κ is the curva
ture used for the Spherical geometry. The σ parameter determines the spread of the points in the 
Euclidean geometry. For the hyperbolic geometry, the scale refers to the scale of the first two co
ordinates of the space. In all of these results, we use rate = 1/3. We draw the node effects 
νi i.i.d.

∼
Unif(β, 0), where we set β = −0.01.

Appendix C. Choosing bounds for curvature estimate
We now discuss a way to pick a, the lower bound in the spherical method to pick κ. Note that the 
maximum distance between any two points is rπ = π/

��
κ
√

, which occurs when the points are anti
podal. This shows that for a distance matrix D = {dij}, which contains distances between K points 
on Sp(κ), it must be that

max
1≤i,j≤K

di,j ≤
π
��
κ
√ .

By solving for κ, we see that κ satisfies

Table B1. The parameter values used to make the results in Section 5

E S H

E σ = 0.5 σ = 0.8 σ = 0.8

S κ = 0.75 κ = 1 κ = 0.75

H scale = 2.5, κ = 0.75 scale = 2.5, κ = 0.75 scale = 2.5, κ = 1

Note. The rows correspond to the true data-generating process and the columns correspond to the null hypothesis being 
tested.
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κ ≤
π

max
1≤i,j≤Kdij

􏼠 􏼡2

:= b.

Based on the discussion in Wilson et al. (2014), we set

a :=
1

3 mini,j di,j

􏼒 􏼓2

.

The suggestion for a comes from Wilson et al. (2014), which says that for curvature values less 
than a, the space is essentially Euclidean. We use the same bounds for the hyperbolic case, but 
we flip the signs so that [a, b] ⊆ (−∞, 0]. Future work could more thoroughly investigate how 
to pick the bounds for the hyperbolic case.

Figure 2a plots the function κ 7! |λ1(κWκ)| when D corresponds to K = 15 points drawn ran
domly on S2(1). Figure 2b plots the function κ 7! |λK−1(κWκ)| when D corresponds to K = 15 
points drawn randomly on H2(−1). The functions are both minimized at the true curvature (κ0 = 
1 for the spherical case and κ0 = −1 for the hyperbolic case).

Appendix D. Additional details on the bootstrap procedure
Given n independent and identically distributed data points X1, . . . , Xn drawn from a distribution 
we want to estimate a parameter θ with an estimator θ̂n. We make the following assumption about 
θ̂n, which appears in Politis and Romano (1994).

Algorithm 3: Hypothesis Testing via Sub-sample Bootstrap

Input: adjacency matrix G, sub-sample size m, and number of bootstrap samples B, and rate r ≥ 0.

1. Compute the observed eigenvalue λk̃(Ŵκ̂(D̂)) for k̃ = K for Euclidean/spherical and k̃ = 2 for hyperbolic.
2. Construct a bootstrap distribution of eigenvalues. For b = 1, . . . , B: 

(a) Sample D⋆
b 

(i) Let I := {I1, . . . , Im} and J := {J1, . . . , Jm} be two sets of integers of length m drawn independently 
and uniformly from {1, . . . , ℓ} with replacement.

(ii) Calculate P⋆
b with entries

p⋆
b,kk′ = max

1
m2

􏽘

i,j

Gij · 1 i ∈ Ck ∩ I, j ∈ Ck′ ∩ J
􏼈 􏼉

,
1
ℓ2

􏼨 􏼩

.

(iii) Calculate D⋆
b = − log (P⋆/τ̂2) where division is component-wise.

(b) Calculate W⋆
b = Wκ̂(D⋆

b ) and eigenvalue λk̃(Wκ(D⋆
b )).

3. Compute the CDF of the deviation in the bootstrapped and empirical eigenvalue

L̂n x( ) :=
1
B

􏽘B

b=1

1 m2r · λk̃(Wκ̂(D⋆
b )) − λk̃(Ŵκ̂(D̂))

( 􏼁
≤ x

􏼈 􏼉
, for any x ∈ R.

4. Compute critical values cn,1−α = inf x : L̂n x( ) ≥ 1 − α
􏼈 􏼉

.
5. Test hypotheses: 

(a) Reject H0,e and H0,s when, for each of their respective test matrices,

ℓ2r · λK(Ŵκ̂(D̂)) < cn,α.

(b) Reject H0,h when

ℓ2r · λ2(Ŵκ̂(D̂)) > cn,1−α.
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Assumption D.1 There exists a deterministic sequence τn such that τn(θ̂n − θ) converges in 
distribution to some random variable L.

Suppose that the goal is to construct confidence intervals for θ using X1, . . . , Xn. To do this, we 
select a sub-sample rate m = m(n), where m ≤ n. Then, let Y1, . . . , Y n

b( )
be all the subsets of X of 

size b, and let θ̂n,i be the estimate of θ using the ith subset Yi. Using the rate τn from Assumption 
D.1, with n replaced by the ‘sub-sample’ size b, we can form the empirical CDF of τb(θ̂n,i − θ̂n),

Ln(x) :=
1
n
b

( 􏼁
􏽘

n
b( )

i=1

1 τb(θ̂n,i − θ̂n) ≤ x
􏼈 􏼉

.

Intuitively, as n and b→∞, we expect that Ln converges to the CDF of τn(θ̂n − θ), denoted by L. If 
this were true, then we could use the quantiles of τb(θ̂n,i − θ̂n) as estimates of the quantiles of 
τn(θ̂n,i − θ̂n), which would allow us to compute confidence intervals for θ. The following result 
shows when we can use Ln to construct asymptotically correct confidence intervals for θ.

Proposition D.1 (Theorem 2, (iii) of Politis & Romano, 1994). Let cn(1 − α) : = 
inf{x : L̂n(x) ≥ 1 − α}. Similarly, let c(1 − α) = inf{x : L(x) ≥ 1 − α} 
where L is the CDF of X1. If the CDF of X1 is continuous at c(1 − α) 
and τb/τn → 0 and b/n→ 0 then

P τn(θ̂n − θ) ≤ cn(1 − α)
( 􏼁

→ 1 − α.

This proposition allows us to construction asymptotically correct confidence intervals for θ 
from the sub-sampled data. Note that when n is large, computing all n

b

( 􏼁
subsets of X is computa

tionally infeasible, so we instead select a collection {Y1, . . . , Ys} for some integer s ≤ n
b

( 􏼁
, and com

pute

L̂n(x) :=
1
s

􏽘s

i=1

1 τb(θ̂n,i − θ̂n) ≤ x
􏼈 􏼉

.

According to Politis and Romano (1994), we have the following result:

Proposition D.2 (Theorem 2, (iii) of Politis & Romano, 1994). Let cn(1 − α) : = 
inf{x : L̂n(x) ≥ 1 − α}. Similarly, let c(1 − α) = inf{x : L(x) ≥ 1 − α} 
where L is the CDF of X1. If the CDF of X1 is continuous at c(1 − α) 
and τb/τn → 0 and b/n→ 0, then

P τn(θ̂n − θ) ≤ ĉn(1 − α)
( 􏼁

→ 1 − α.

This result allows us to construct confidence intervals for θ. Having described the sub-sampling 
method from Politis and Romano (1994), we now return to our original problem and show how to 
apply this method to our problem. The parameter interest θ is the eigenvalue λk⋆ (W). To study this, 
we will show how to use the Politis and Romano (1994) method to sub-sample the distance matrix 
D. Using this sub-sampled distance matrix, we can then compute sub-sampled matrices Wκ and 
compute their eigenvalues, since Wκ is just a simple transformation of D.

The data in our problem is the adjacency matrix G. More concretely, it is the adjacency matrix 
for the subgraph with nodes 

􏽓K
k=1 Ci(ℓ), the union of all K cliques. We fix some sub-sample rate m. 

With the sub-sample rate, we then want to re-sample the entries of D. To do this, we will focus on 
how to do this for the (k, k′) entry of D. This process is repeated for all the entries of D. Let G̃k,k′

denote the adjacency matrix corresponding to the sub-graph induced by the nodes in Ck(ℓ) ∪ 
Ck′ (ℓ). For example, if ℓ = 3, then a potential Ỹk,k′ might take the form
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G̃k,k′ =
1 0 0
1 1 0
0 1 0

⎛

⎝

⎞

⎠.

This indicates that the first node in Ck connects to the first node in Ck,k′ but not to the second or 
third nodes in Ck′ . We then sample two sets of integers of length m, denoted by Ik and Ik′ , inde
pendently and uniformly from {1, . . . , ℓ}, without replacement. These indices will be the re- 
sampled nodes. We then compute

P⋆
k,k′ =

1
m2

􏽘
[G̃k,k′ ]ij1{(i, j) ∈ Ik × Ik′ }.

Since it is possible that P⋆
k,k′ is zero (meaning that the re-sampled pairs of nodes do not connect), we 

use P⋆
k,k′ = max (1/ℓ2, P⋆

k,k′ ), since we observe at least one edge in G̃k,k′ . We repeat this procedure 
for all pairs of edges (k, k′).We then compute D⋆ using (1). We provide a step-by-step implemen
tation of the sub-sampling method in Algorithm 3.

Recalling that our parameter of interest is the eigenvalue λk⋆ (W), we use the above procedure to 
compute λk⋆ (W⋆

b ) for b = 1, . . . , B. We then define

L̂n(x) =
1
B

􏽘B

i=1

1{m2r λk⋆ (W⋆
i ) − λk⋆ (Ŵ)

( 􏼁
≤ x}, for any x ∈ R.

We then perform hypothesis testing. To do this, we let cn(1 − α) = inf{x : L̂n(x) ≥ 1 − α} be the (1 − 
α)100% percentile of m2r(λk⋆ (W⋆

i ) − λk⋆ (Ŵ)). Then, from Proposition 3.1, we know that 
P(m2r(λk⋆ (Ŵ) − λk⋆ (W)) ≤ cn(1 − α)) ≈ 1 − α + o(1) for large ℓ. This motivates the bootstrapping 
method we summarize in Algorithm 3.

D.1 Sensitivity of bootstrapping algorithm
We now analyse the sensitivity of the sub-sampling algorithm in 3 to the parameter B, the number 
of matrices D⋆ we generate. To do this, we generate a 2-dimensional lattice in R2 of length 5 and 7 
and randomly select 9 points from these C2 points. Using these 9 points, we generate 50 networks 
and compute the p-values for the Euclidean, spherical, and hyperbolic geometries using B = 1,000 
and B = 10,000. In Figures D1 and D2, we plot the 50 p-values for this simulation, and a diagonal 

Figure D1. Plot of the p-values for the three geometries (Euclidean, spherical, hyperbolic from left to right). Each 
point (x, y) corresponds to two p-values. The x coordinate is the p-value computed using B = 1,000 and the y 
coordinate is the p-value computed using B = 10,000. The graph is computed using the graph model in (1) and we 
use 9 latent space positions drawn randomly from a 5 × 5 lattice in R2. Since most points fall on or near the diagonal, 
this is evidence that in this scenario, the sub-sampling algorithm in Algorithm 3 is not very sensitive to the choice of 
B, the number of distance matrices we sub-sample.
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line from (0, 0) to (1, 1). We see that most p-values lie on or very near to the diagonal line, which 
indicates that the sub-sampling algorithm is not very sensitive to the choice of parameter B.

Appendix E. Rank estimator
In Algorithm 4, we formally describe the algorithm and the estimate of the rank of Wκ.

Algorithm 4: Estimating Rank of Wκ

1. Compute the scree function ϕT (j) := λ̂K−j−1􏽐K

i=1
λ̂i 

for j ∈ {0, 1, . . . , K − 1}.

2. Sample B bootstrapped D⋆
1 , . . . , D⋆

B matrices from Algorithm 3 and use them to compute W⋆
1 , . . . , W⋆

B .

3. For j ∈ {0, 1, . . . , K − 1}, 
(a) Define Âj ∈ RK×j with Âj = (v̂K−j+1, . . . , v̂K).
(b) Let v⋆

1 , . . . , v⋆
K denote the eigenvectors of W⋆

i corresponding to its eigenvalues λ⋆
1 ≤ · · · ≤ λ⋆

K.

(c) Set A⋆
j,i ∈ RK×j with A⋆

j,i = (v⋆
K−j+1, . . . , v⋆

K).
4. Compute

f 0
n (j) = 1 −

1
B

􏽘B

i=1

|det(ÂT
j A⋆

j,i)|

5. Compute

fn(j) =
f 0
n (j)

􏽐K−1
i=0 f 0

n (i)
.

6. The estimate r̂ of the rank of Wκ is

r̂ = arg min
j∈{0, 1, ..., K−2}

ϕT (j) + fn(j)
( 􏼁

. (E1) 

Luo and Li (2016) estimator use two pieces of information. The first is the scree function, which 
plots the sample eigenvalues in order from larges to smallest. In Figure E1, we plot the scree function 
for a distance matrix computed between K = 15 points on a 3-dimensional Euclidean latent space. 
We see that the scree plot is large but decreasing for the first three eigenvalues but becomes flat 
after that point. The second piece of information this estimator uses is the variability of the 
bootstrapped eigenvectors of the matrix Wκ, given in step (4) of Algorithm 4. Luo and Li (2016)

Figure D2. Plot of the p-values for the three geometries (Euclidean, spherical, hyperbolic from left to right). Each 
point (x, y) corresponds to two p-values. The x coordinate is the p-value computed using B = 1,000 and the y 
coordinate is the p-value computed using B = 10,000. The graph is computed using the graph model in (1) and we 
use 9 latent space positions drawn randomly from a 7 × 7 lattice in R2. Since most points fall on or near the diagonal, 
this is evidence that in this scenario, the sub-sampling algorithm in Algorithm 3 is not very sensitive to the choice of 
B, the number of distance matrices we sub-sample.
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argue that for j < r, the true rank of Wκ, there is little variation in the term fn(j) in step (4) but for 
j ≥ r, this function increases. We see this behaviour in Figure E1: For j < 3, the bootstrap variability 
is lower than when j ≥ 3. See Luo and Li (2016) for a more thorough explanation of why this phe
nomenon occurs. Based on these two pieces of information, Luo and Li (2016) suggest adding the 
two functions together to produce a final objective function. They claim that this new function has a 
‘ladle shape. The minimum of this new function is our estimate of the rank of Wκ.

Appendix F. Additional details for the Banerjee et al. (2019) data
We show cumulative distribution plots of the number of cliques (sizes 4, 5, and 6) across the 75 
villages in Figure F1.

Appendix G. Additional simulation results
We plot curvature estimates for 100 simulated graphs using cliques of size ℓ ∈ {5, 7, 9}. We see 
that as ℓ increases, the variance and bias of κ̂S decreases in the spherical case (Figure G1).

We now analyse the accuracy of the curvature methods for the spherical and hyperbolic latent 
space models. The estimator in Proposition 3.2 minimizes κ 7! λ1(κŴκ). But from Lemma 2.1, we 
in fact know that the first few eigenvalues of cos (

��
κ
√

D̂) are zero, which suggests that we can use the 
estimator

Figure E1. We generate a graph using a 3-dimensional Euclidean latent space with K = 10 cliques. We plot the 
scree function ϕ and the bootstrap variability function fn defined in Algorithm 4. We also plot their sum, defined as 
the objective function. The horizontal axis represents the possible ranks of the matrix. We see the objective function 
has a minimum at 3, so we estimate the rank of the matrix to be 3, which is the true dimension of the latent space.

(a) (b)

Figure F1. CDF of number of cliques for clique sizes ℓ ∈ {4, 5, 6} for the 75 Indian villages.
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κ̂(q) =
1
q

􏽘q

i=1

κ̂i, κ̂i = arg min
κ∈[a, b]

λi κW(D̂)κ
( 􏼁􏼌

􏼌
􏼌

􏼌
􏼌
􏼌 (G1) 

Assuming that q << K, we can reasonably believe that the first through qth eigenvalues of 
cos (

��
κ
√

D) are zero. In fact, it is easy to modify the proof of Proposition 3.2 to show that 

κ̂(q)→
p

κ, provided that q << K. Taking q > 1 does not always reduce the variance of κ̂(t), which 
could be because the κ̂1, . . . , κ̂q are not necessarily independent. In Figure G1, we plot 250 esti
mates of κ when Mp(κ) = S2(1) and when Mp(κ) = H2(−1) using K = 10. Specifically, we generate 
a network and find K cliques of size 4, 5, 6. We estimate distances between these K groups using the 
number of cross-clique edges as described in Algorithm 2. Although Proposition 3.2 says that the 

(a) (b)

Figure G1. Left: Curvature estimates for S2(1) using K = 10 cliques, with clique size ℓ = 4, 6, 8 on the horizontal 
axis. We use q = 1, 3, 5 where q is defined in (G1). We plot the true curvature κ = 1 in the black dashed line. Right: 
Curvature estimates for H2(−1) using K = 10 cliques, with clique size ℓ = 4, 6, 8 on the horizontal axis. In Figure. G2, 
we analyse how large the clique size must be for the hyperbolic curvature estimator to perform better. (a) Spherical. 
(b) Hyperbolic.

Figure G2. We plot the estimated curvature using distances computed from K = 10 points in H2(−1) for various 
clique sizes on the x-axis. To simulate this figure, we fix a set of K = 10 locations on H2(−1) and compute pairwise 
distances dij . We then simulate 50 independent noisy realizations d̂ij ∼ N(dij , σ2) for σ ∈ {0.1, 0.01, 0.001, 0.0001, 
0.00001}. We then compute the estimate of the curvature from (7) using D̂ = {d̂ij }. Given a certain noise level, we use 
the fact that when using cliques to estimate distances, the variance of d̂ij is on the order of 1/ℓ2. So we equate σ2 = 
1/ℓ2 to compute an approximately required clique sized required. For example, we require clique sizes of 
approximately 104 or higher to obtain an estimator that does not always select the lower bound a in (7).
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estimate is consistent as the sample size grows, we see that the hyperbolic curvature estimate has 
not reached its asymptotic behaviour for cliques of size 4, 5, and 6. In Figure G2, we determine 
how big the cliques must be in order for the Hyperbolic curvature estimator to be close to the 
true curvature. However, as we see in Figure 4, we see that the classification of geometry is still 
accurate, which is our ultimate goal.

Appendix H. Sectional curvature definitions
To discuss sectional curvature, some preliminary definitions are required. We review these con
cepts in a self-contained way. The reader may look to O’Neill (1983) for a more in-depth explan
ation of these concepts. The tangent space at m ∈Mp is denoted Tm(Mp), defined as the set of all 
tangent vectors to the manifold at m: that is, all real-valued functions v that map any smooth func
tion f :Mp → R to v(f (m)) ∈ R that is R-linear and Leibnizian.12

A Riemannian manifold (Mp, g) comes equipped with a metric tensor g which at every point 
m ∈Mp takes two vectors in the tangent space of the manifold at m, u, v ∈ Tm(Mp), and maps 
it to a non-negative number: gm(u, v) 7! R≥0 and the map is symmetric, non-degenerate, and bi
linear. That is, g defines a scalar product over the manifold; on a smooth manifold the metric ten
sor smoothly varies over the manifold itself.

To define curvature, we first need to define the Riemann curvature tensor, R evaluated at point 
m ∈Mp, which takes three tangent vectors in the tangent space at m—u, v, w ∈ Tm(Mp)—and 
returns Rm(u, v)w ∈ Tm(Mp)13

Rm(u, v)w := ∇[u,v]w − [∇u, ∇v]w.

Here is some intuition. Consider the vector w which is tangent to the manifold at m. Consider the 
plane defined by u and v which are tangent at m as well. Now take w and parallel transport it, 
meaning take it along the parallelogram in the u direction and then v direction and compare 
that to taking the same w along the v direction and then u direction to the same point. The returned 
vector has entries that describe how much w changes relatively across the two paths. If this is iden
tically zero, this means of course that there was no change in this parallel transportation. 
Intuitively, if one does this on a flat manifold, for instance R2 with the usual Euclidean metric, 
it is clear that the vector w does not change whatsoever. But on a sphere, for instance, the reader 
can intuit that things change.

Then the sectional curvature at m, which we refer to simply as curvature for the remainder of 
this paper, is given by

κm(u, v) :=
gm(Rm(u, v)v, u)

gm(u, u) · gm(v, v) − gm(u, v)2 .

It turns out that this is independent of basis u, v whatsoever (see Lemma 39 in O’Neill, 1983 for 
instance) so we can simply write κm. That the manifold has constant sectional curvature means 
that for all m ∈Mp, κm = κ and so we simply write Mp(κ).

Appendix I. Lattice simulations
We now demonstrate the type 1 error and power simulations by drawing points on a lattice in 
Euclidean, spherical, and hyperbolic space. We present the results in Figures I1–I6.

Appendix J. Other graph models
In (1), we consider an exponential link function that connects distances in the latent space to the 
probability that nodes form an edge. The exponential function has the desirable property that 

12 An obvious tangent vector is the directional derivative at a point on the manifold: it maps a smooth function to its 
derivative in that direction evaluated at that point on the manifold.

13 Here [., .] is the Lie bracket.
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exp (a + b) = exp (a) exp (b) which allows us to isolate the node effects and distances:

P(gij = 1 | ν⋆
i , ν⋆

j , z⋆
i , z⋆

j ) = exp (ν⋆
i + ν⋆

j ) exp {−d(z⋆
i , z⋆

j )}.

So by integrating out the node effects, we see that

P(gij = 1 | z⋆
i , z⋆

j ) = E{ exp (ν)}2exp {−d(z⋆
i , z⋆

j )}.

Figure I2. Simulation results for the two-dimensional lattice. Using a 4 × 4 lattice in R2, we randomly select 25 sets 
of 9 latent space positions. For each set of positions, we generate 50 networks from using the graph model in (1) and 
calculate how many of these 50 networks we reject the null hypothesis that M is spherical or hyperbolic. We repeat 
this for all 25 sets of latent space positions and plot the resulting power. We also report the average degree (middle 
figure) and average clustering coefficient for the simulated networks. We use τ = 0.4.

Figure I1. Simulation results for the two-dimensional lattice. Using a 4 × 4 lattice in R2, we randomly select 25 sets 
of 9 latent space positions. For each set of positions, we generate 50 networks from using the graph model in (1) and 
calculate how many of these 50 networks we reject the null hypothesis that M is Euclidean. We repeat this for all 25 
sets of latent space positions and plot the resulting probability of type 1 error for ℓ = 4, 5, 6. We see that the type 1 
error is at α = 0.05 or below and decreases as ℓ increases. We also report the average degree (middle figure) and 
average clustering coefficient for the simulated networks. We use τ = 0.4 and β = −0.6.

Figure I3. Simulation results for the two-dimensional lattice. Using a 3 × 3 lattice in S2(1), we randomly select 25 
sets of 4 latent space positions. For each set of positions, we generate 50 networks from using the graph model in 
(1) and calculate how many of these 50 networks we reject the null hypothesis that M is Euclidean. We repeat this 
for all 25 sets of latent space positions and plot the resulting probability of type 1 error for ℓ = 4, 5, 6. We see that the 
type 1 error is above α = 0.05 but decreases to about 0.1 as ℓ increases. We also report the average degree (middle 
figure) and average clustering coefficient for the simulated networks. We use β = −0.2.
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We now illustrate how our approach can be applied to other graph models.

Example 7 (Expit link function). Suppose instead of the exponential link function, we use 
the expit link function, which was used in Hoff et al. (2002), among many 
others:

P(gij = 1 | ν⋆
i , ν⋆

j , z⋆
i , z⋆

j ) = expit{ν⋆
i + ν⋆

j − d(z⋆
i , z⋆

j )}, 

where expit(x) = exp (x)/{1 + exp (x)} is the expit function.

The choice of which link function to choose is an important one, which network goodness-of-fit 
tests can help address (Lubold et al., 2021; Ouadah et al., 2019; Xu & Reinert, 2021).

Figure I4. Simulation results for the two-dimensional lattice. Using a 5 × 5 lattice in S2, we randomly select 25 sets 
of 9 latent space positions. For each set of positions, we generate 50 networks from using the graph model in (1) and 
calculate how many of these 50 networks we reject the null hypothesis that M is Euclidean. We repeat this for all 25 
sets of latent space positions and plot the resulting power. We also report the average degree (middle figure) and 
average clustering coefficient for the simulated networks. We use β = −0.2.

Figure I5. Simulation results for the two-dimensional lattice. Using a 5 × 5 lattice in H2(−1), we randomly select 25 
sets of 9 latent space positions. For each set of positions, we generate 50 networks from using the graph model in 
(1) and calculate how many of these 50 networks we reject the null hypothesis that M is Euclidean. We repeat this 
for all 25 sets of latent space positions and plot the resulting power. We also report the average degree (middle 
figure) and average clustering coefficient for the simulated networks. We use β = −0.2.

Figure I6. Simulation results for the two-dimensional lattice. Using a 5 × 5 lattice in H2(−1), we randomly select 25 
sets of 9 latent space positions. For each set of positions, we generate 50 networks from using the graph model in 
(1) and calculate how many of these 50 networks we reject the null hypothesis that M is Euclidean. We repeat this 
for all 25 sets of latent space positions and plot the resulting power. We also report the average degree (middle 
figure) and average clustering coefficient for the simulated networks. We use β = −0.2.
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Now, after integrating out the node effects, we have

P(gij = 1 | ν⋆
i , ν⋆

j , z⋆
i , z⋆

j )= ∫∫ expit{ν⋆
i + ν⋆

j − d(z⋆
i , z⋆

j )}dF(ν⋆
i )dF(ν⋆

j ), 

which again assumes that the node effects are drawn independently of each other. Let us define a 
function H : [0, ∞)→ [0, ∞) with

H(x) := ∫∫ expit{ν⋆
i + ν⋆

j − x}dF(ν⋆
i )dF(ν⋆

j ).

Using Monte Carlo integration, we can approximate H to within any desired certainty. Now, sup
pose that Ck and Ck′ are two cliques in the graph G drawn from this graph model. Then,

p̂kk′ :=
1
ℓ2

􏽘

i∈Ck

􏽘

j∈Ck′

Gij ≈ H{d(zk, zk′ )}.

We can then solve for the argument of H that solve the above expression. That is, assuming that H 
is invertible, we can write d̂kk′ = H−1(p̂kk′ ).Assuming H−1 is continuous, we can estimate distances 
consistently.

Example 8 (Latent space model with covariates). Consider the model given in Hoff et al. 
(2002):

P(gij = 1 | α⋆, β⋆, z⋆
i , z⋆

j ) = expit{α⋆ + β⋆Xij − d(z⋆
i , z⋆

j )}.

where α⋆ measures the baseline probability of connecting, Xij is a dyad-level 
covariate, β⋆ measures the effect of this covariate on the probability of edges, 
and d measures distances in the latent space.

To illustrate how to estimate parameters in this model, suppose that Xij is measuring homo
phily, so that Xij is 1 if nodes i and j share some common trait (like ethnicity, education level, pol
itical beliefs, etc.) and is 0 otherwise. Suppose also that covariates are observable.

Suppose we observe a clique of nodes with the same trait. Then,

1
ℓ
2

( 􏼁
􏽘

i<j

Gij ≈ expit(α⋆ + β⋆), (J1) 

since nodes in the same clique are likely to be close to each other and, therefore, d(z⋆
i , z⋆

j ) = 0 for i 
and j in the same clique (Assumption 1.3).

Suppose we also observe an ℓ-clique C(ℓ) with nodes that have different traits. Partition these 
nodes into two groups, C0(ℓ) and C1(ℓ), where the subscript 0 and 1 indicates whether the cova
riate is 0 or 1, so that C(ℓ) = C0(ℓ) ∪ C1(ℓ). Then,

(|C0(ℓ)||C1(ℓ)|)−1
􏽘

i∈C0(ℓ)

􏽘

j∈C1(ℓ)

Gij ≈ expit(α⋆).

Thus, we can estimate α⋆ by solving the above equation. Using this estimate, we can then plug this 
value into (J1) and solve for β̂.

Given estimates of α⋆ and β⋆, we can now estimate distances between cliques. To do this, we 
define for any two cliques Ck and Ck′ , where all nodes have the same traits,

P̂kk′ := (|Ck(ℓ)||Ck′ (ℓ)|)
−1

􏽘

i∈C0(ℓ)

􏽘

j∈C1(ℓ)

Gij.
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where Ck(ℓ) and Ck′ (ℓ) are cliques of size ℓ. We can then solve for D̂kk′ ,

D̂kk′ = logit(P̂kk′ ) − α̂ − β̂.

Appendix K. Existence of cliques and locations of nodes in a clique
In Theorem 1.2, we used edges between cliques to estimate distances between points on the un
known latent surface M. Theorem 1.2 then states that as the graph size n and the clique size ℓ
both go to infinity, we can consistently estimate all parameters of the latent space graph model. 
In particular, we have assumed that as ℓ, n both go to infinity, that we observe cliques of size ℓ. 
To understand the rate at which ℓ, n can grow, we consider a simplifying example. Let G be an 
undirected random graph drawn from the Erdos-Renyi model with parameters n and p. That is, 
edges form independently with probability p. The following result is a well-known result which 
says that in an ER graph, the clique number grows like log (n) for large n. It can be found in 
many places, such as in Grimmett and McDiarmid (1975).

Proposition K.1 (Grimmett & McDiarmid, 1975). The clique number of an ER model 
Zn,p satisfies

Zn,p

log (n)
→

2
log (1/p)

.

almost surely.

In other words, the clique number Zn,p grows like C log (n) for the constant C = 2{log (1/p)}−1. 
So by taking ℓ = C log (n), we will almost surely see an ℓ clique in the graph as n, ℓ→∞. Now let 
us return to our problem. We observe a graph drawn from (1), where the node locations and effects 
are drawn iid from two distributions. Clearly, the probability of observing an ℓ = ℓ(n) clique de
pends on the distributions of the points and node effects. To our knowledge, there are no results 
like Proposition K.1 that hold for arbitrary graph models. However, we would like to investigate 
the behaviour of the clique number for three common ways of assigning points in the latent space. 
In particular, we want to determine if there are cliques of size log (n) in graphs where the node lo
cations are drawn according to a lattice mode, Gaussian mixture model, and uniform model. 
These three models are the models we study in Section 4.4. We give these results in Figures K1, 
K2, and K3. We see cliques of size log (n) with probability going to 1 as n→∞. The models 
are listed in increasing ‘difficulty’, meaning that it should be less likely for there to be clique 
when points are uniformly drawn (C) than when they are drawn from a GMM (B). And, when 
nodes are at the same location (A), it should be even more likely that a clique exists. We see 

(a) (b) (c)

Figure K1. We generate 25 sets of n latent space positions using the lattice model. For each set of LS positions, we 
generate 50 graphs and count the number of times a clique of size log (n) exists in the graph. For each set of LS 
positions, we record the average degree for the 50 graphs and plot the 25 average values in (B). Similarly, in (C), we 
plot the average clustering coefficient. (a) Estimated probability of log (n) clique. (b) Average degree. (c) Average 
clustering coefficient.
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this pattern in our simulations; for any n, the GMM in (B) has a higher probability of containing a 
log (n) clique for every n. But, for sufficiently large n, all models contain cliques of size at least 
log (n) with relatively high probability.

We also verify in Figure K4 that as the size of a clique goes up, the probability that node loca
tions in the latent space are close to each increases.

Appendix L. Testing geometry using the Cayley–Menger determinant
For K := 4 points with pairwise distances D = {dij}, define the Cayley–Menger determinant to be 
the determinant of the matrix

CM :=

0 1 1 1 1
1 0 d2

12 d2
13 d2

14
1 d2

21 0 d2
23 d2

24
1 d2

31 d2
32 0 d2

34
1 d2

41 d2
42 d2

43 0

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠
.

When these points are in R2, then the determinant of the matrix CM is 0. The goal of this section is 
to derive an estimator of geometry that uses this idea. Similar results hold for points from a spher
ical space or hyperbolic space, with slightly modified matrices.

We now propose a test of geometry using this method. To ensure that this is a reasonable com
parison to our previous results, we generate a stochastic block model with locations z1, . . . , zK, 

(a) (b) (c)

Figure K2. We generate 25 sets of n latent space positions using the Gaussian mixture model. For each set of LS 
positions, we generate 50 graphs and count the number of times a clique of size log (n) exists in the graph. For each 
set of LS positions, we record the average degree for the 50 graphs and plot the 25 average values in (B). Similarly, in 
(C) we plot the average clustering coefficient. (a) Estimated probability of log (n) clique. (b) Average degree. (c) 
Average clustering coefficient.

(a) (b) (c)

Figure K3. We generate 25 sets of n latent space positions from a uniform distribution. For each set of LS positions, 
we generate 50 graphs and count the number of times a clique of size log (n) exists in the graph. For each set of LS 
positions, we record the average degree for the 50 graphs and plot the 25 average values in (B). Similarly, in (C), we 
plot the average clustering coefficient. (a) Estimated probability of log (n) clique. (b) Average degree. (c) Average 
clustering coefficient.
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and assign edges based on P(Gij = 1|zi, zj) = exp (−d(zi, zj)). These locations correspond to K cli
ques that we might find in a network. We then compute the determinant of 􏽤CM, which is defined as 
above except that we use d̂2

ij in place of d2
ij. Since the distribution of the random variable under 

H0 : CM = 0 is hard to derive, let us do a parametric bootstrap. For b = 1, . . . , B, we repeat the 
following steps: 

1. For each i < j, draw with replacement ℓ2 edges from the set of edges that exist between loca
tions zi and zj. This is the re-sampling step.

2. Compute the average number of re-sampled edges between i and j for any i < j. Call this num
ber p⋆

ij and set d⋆
ij = − log (p⋆

ij ).
3. Compute CM⋆

b = det(CM⋆), where CM⋆ is the matrix above with dij now replaced by d⋆
ij .

If 0 falls outside of the interval

(2det(􏽤CM) − q1−α/2{det(CM)⋆}, 2det(􏽤CM) − qα/2{det(CM)⋆}), 

then we reject H0, where qα/2{det(CM)⋆} is the α/2 quantile of the empirical distribution 
{det(CM)⋆}.

(a)

(c)

(b)

Figure K4. We generate 25 networks on n nodes for n ∈ {100, 200, 400, 800}. Using C = log (n), we generate C 
communities in a lattice model (A), a GMM (B), or a uniform model (C). We check how many times out of 25 nodes in 
an arbitrary clique are at the same location. We plot the corresponding probabilities above for clique sizes 4, 5, 6.
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We plot the power of this method using spherical data in Figure L1. We see that when we use 
K = p + 2, then the method works its best, but it still performs relatively poorly. So this seems to 
suggest that only at this value of K does it work well.
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