Basic Feasible Solutions: A Quick Introduction

CS 261

WILL FOLLOW A CELEBRATED INTELLECTUAL TEACHING TRADITION

TEN STEPS TOWARDS UNDERSTANDING VERTEX OPTIMALITY AND BASIC FEASIBLE SOLUTIONS

THESE SLIDES: MOSTLY INTUITION; PROOFS OMITTED

Step 0: Notation

- Assume an LP in the following form Maximize $\mathbf{c}^{\boldsymbol{T} \mathbf{x}}$

Subject to:

$$
\begin{aligned}
\mathbf{A} x & \leq \mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

- N Variables, M constraints
- $\mathrm{U}=$ Set of all feasible solutions

Step 1: Convex Sets and Convex Combinations

- Convex set: If two points belong to the set, then any point on the line segment joining them also belongs to the set
- Convex combination: weighted average of two or more points, such that the sum of weights is 1 and all weights are non-negative
- Simple example: average

Convex Combination

- Given points $x^{1}, x^{2}, \ldots, x^{k}$, in N dimensions
- For any scalars $a_{1}, a_{2}, \ldots, a_{k}$ such that
- Each a_{i} is non-negative
$-a_{1}+a_{2}+\ldots+a_{k}=1$

$$
a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{k} x^{k} \text { is a convex }
$$

combination of $x^{1}, x^{2}, \ldots, x^{k}$

Example: Convex combination of two points

Exercise

- If \mathbf{w} is a convex combination of \mathbf{x} and \mathbf{y}, and \mathbf{z} is a convex combination of \mathbf{x} and \mathbf{w}, then must \mathbf{z} be a convex combination of \mathbf{x} and \mathbf{y} ?

Example: Convex combination of three points

Exercise

Is the set of all convex combinations of N points always convex?

Exercise

Can any convex set be represented as a convex combination of N points, for finite N ?

Step 2: Half spaces are convex

- $\mathbf{a}^{\top} \mathbf{x} \leq b, a^{\top} \mathbf{y} \leq b$
- Choose $\mathbf{z}=(\mathbf{x}+\mathbf{y}) / 2$
- Then, we must have $\mathbf{a}^{\top} \mathbf{z} \leq b$

Step 3: Intersection of convex sets is
 convex

- Two convex sets S, T
- Suppose \mathbf{x}, \mathbf{y} both belong to $\mathrm{S} \cap \mathrm{T}$
- $\mathbf{z}=(\mathbf{x}+\mathbf{y}) / 2$
(1) z belongs to S since S is convex
(2) z belongs to T since T is convex
- Hence, z belongs to $S \cap T$
- Implication: $\mathrm{S} \cap \mathrm{T}$ is convex

Step 4: Feasible solutions to LP

- The set U of feasible solutions to a Linear Program is convex
- Proof: U is the intersection of Half Spaces

Exercise

- Must every convex set be bounded?

Step 5: Basic Feasible Solution

- \mathbf{x} is a basic feasible solution to a LP, if
(1) x is a feasible solution
(2) There do not exist two other feasible solutions \mathbf{y}, \mathbf{z} such that $\mathbf{x}=(\mathbf{y}+\mathbf{z}) / 2$
ALSO known as vertex solution, extreme point solution, corner-point solution

$$
x
$$

Step 6: BFS and Bounded Polytopes

- If U is bounded, then any point in U is the convex combination of its basic feasible solutions

Use $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{K}$ to denote the K basic feasible solutions

$$
x
$$

Step 7: BFS and Optimality for Bounded Polytopes

- If U is bounded and non-empty, then there exists an optimal solution that is also basic feasible

Step 8: BFS and Optimality for General LPs

- If an LP has a basic feasible solution and an optimum solution, then there exists an optimal solution that is also basic feasible
- Will call these solutions "Vertex Optimal" or "Optimum Basic Feasible"

Step 9: Two Implications

(1) SOLUTION OF LPs: The Simplex method which walks from bfs to bfs is correct for bounded polytopes
(2) STRUCTURAL CONSEQUENCES: The Vertex Optimal Solutions often have very interesting properties. Example: For the matching LP in the next video, every vertex optimal solution is integral

$$
x
$$

In Practice

- Most LP Solvers return an optimum basic feasible solution, when one exists.
- Either, they use Simplex
- Or, they transform the solution that they do find to a basic feasible solution
- Hence, when we solve a problem using Excel we get an optimum basic feasible solution, when one exists.

Step 10: A useful property

- At every basic feasible solution, at least N constraints are tight
- More specifically: Exactly N Linearly Independent Constraints are tight
- Basic solution: Not necessarily feasible, but exactly N Linearly Independent Constraints are tight

Exercise

Is it possible for a LP to have an optimum solution but no basic feasible solution?

Exercise

Is it possible for a LP to have a basic feasible solution but no optimum solution?

Exercise

You are given a LP with three decision variables where some of the constraints are

$$
\begin{aligned}
& 0 \leq x \leq 1 \\
& 0 \leq y \leq 1 \\
& 0 \leq z \leq 1
\end{aligned}
$$

Is it possible to add other constraints and an objective function such that the LP has an optimum solution but not an optimum basic feasible solution?

LP in standard form

Maximize $\mathbf{c}^{\boldsymbol{T}} \mathbf{x}$
Subject to:

$$
\begin{array}{r}
\mathbf{A x}=\mathbf{b} \\
\mathbf{x} \geq 0
\end{array}
$$

- N Variables, M constraints, assume that the M constraints are Linearly Independent
- At any BFS, at most M variables are strictly positive

Recap

- A feasible solution is basic feasible if it is not the average of two other feasible solutions
- If the feasibility region U for a LP is bounded and nonempty, then there exists an optimal solution that is also basic feasible
- If an LP has a basic feasible solution and an optimum solution, then there exists an optimal solution that is also basic feasible
- Commercial LP solvers return an optimum basic feasible solution by default, where one exists
- If there are N decision variables, then a basic feasible solution has N linearly independent constraints tight

