
CS261 Winter 2018 - 2019
Lecture 9: Complementary Slackness Theorems;

Shortest Path

Instructor: Ashish Goel
Scribe: Kaidi Yan

February 6, 2019

1 Complementary Slackness Theorems

Let P and D denote the primal and dual linear program (in standard form) respectively.
The Complementary Slackness1 Theorems state the following:

Theorem 1. If x and y are feasible solutions to P and D respectively and x, y satisfy
complementary slackness conditions, then x and y are optimum.

Theorem 2. If x and y are optimal solutions to P and D respectively, then x and y satisfy
complementary slackness conditions.

Here we present the proof to Theorem 22.

Proof. Since x and y are optimal solutions to P and D, we know they are also feasible
solutions to P and D. Hence we have:

yT (b− Ax) ≥ 0 (1)

xT (ATy − c) ≥ 0 (2)

Adding these two inequalities together and rearranging terms, we get:

yT (b− Ax) + xT (ATy − c) ≥ 0 (3)

(yTb− xTc)− yTAx + xTATy ≥ 0 (4)

Now, notice that yTb = xTc due to strong duality; also yTAx = xTATy since we have
(yTAx)T = xTATy and both are scalar values. Hence inequality (4) must hold with equality.
This implies that both inequality (1) and (2) must also hold with equality, which is exactly
how complementary slackness conditions are defined in terms of matrix multiplication.

1For definition of complementary slackness, please refer to Tim Roughgarden’s Lecture #9 notes
2You can read the proof to Theorem 1 in Tim Roughgarden’s Lecture #9 notes also

1



2 Complementary Slackness in Max-Flow/Min-Cut

Given a directed graph G = (V,E) and let P be the set of all s-t paths on G. Recall that
the linear program for a max-flow problem on G is:

max
∑
P∈P

fP

subject to ∑
P∈P:e∈P

fP ≤ ue for all e ∈ E

fP ≥ 0 for all P ∈ P

Its dual program, which we show in previous lectures corresponding to a min-cut problem,
is:

min
∑
e∈E

uele

subject to ∑
e∈P

le ≥ 1 for all P ∈ P

le ≥ 0 for all e ∈ E

Let’s see what complementary slackness conditions imply in this case. Let f∗(indexed by
P) and l∗(indexed by E) be optimal solutions to the primal and dual programs. If f ∗P 6= 0 for
some P ∈ P , then by complementary slackness conditions we know that

∑
e∈P le = 1 must

hold for that P . What does this mean? For every optimal 0-1 l∗, we know that an edge e is
cut if and only if le = 1. Hence,

∑
e∈P le = 1 implies that if any max-flow has a path which

carries flow, then exactly one edge in that path is cut in any integral min-cut (induced by
the 0-1 optimal dual solution).

On the other hand, if l∗e 6= 0 for some e ∈ E, then complementary slackness conditions
tell us that

∑
P∈P:e∈P fP = ue for that e. This means that if an edge is cut in any min-cut

(integral or fractional), then that edge must be saturated in any max-flow.

3 Shortest Path

In this section, we illustrate how LP duality can lead to algorithmic understanding, using
the shortest path problem as an example.

In order to apply a linear programming model, we think of a shortest path problem on
G = (V,E) as a min-cost flow problem, where we send one unit of flow from starting vertex
s to destination vertex t. Each edge e ∈ E has infinite capacity and the cost ce is equal to

2



the length of e. Each vertex v has demand dv = 0 except for s with ds = −1 and t with
dt = 1, since we send out one unit of flow from s and sink one unit of flow into t.

Hence the linear program of such a min-cost flow problem (equivalent to our original
shortest path problem) is:

min
∑
e∈E

fece

subject to ∑
(w,v)∈E

f(w,v) −
∑

(v,w)∈E

f(v,w) ≥ dv for all v ∈ V (5)

fe ≥ 0 for all e ∈ E (6)

Notice that constraint (5) should technically be∑
(w,v)∈E

f(w,v) −
∑

(v,w)∈E

f(v,w) = dv for all v ∈ V

We replace = with ≥ here to write the LP in dual standard form3. We are able to do this
since if we sum up (5) for all v ∈ V , then we get 0 ≥ 0, which implies that (5) must hold with
equality for all v ∈ V . This is similar to what we did for proving Complementary Slackness
Theorem 2.

Let this be the primal linear program. We now turn to the dual linear program. From
(5) we define the dual decision variables to be lv for all v ∈ V . Applying the recipe for
primal-dual yields:

max lt − ls

subject to

lq − lp ≤ c(p,q) for all (p, q) ∈ E (7)

lv ≥ 0 for all v ∈ V (8)

Notice that this dual program only deals with differences between lv’s — It’s analogous to a
potential field where we can define zero potential anywhere and all it matters is the potential
differences. Hence we can safely set ls = 0 and remove (11) in this case, yielding:

max lt

subject to

lq − lp ≤ c(p,q) for all (p, q) ∈ E (9)

ls = 0 (10)

3Here we write the primal in dual standard form and the dual in primal standard form. It’s easy to verify
that the dual of a LP in dual standard form is exactly a LP in primal standard form

3



Strong duality ensures that if we solve this dual program, then the optimal solution value
must be equal to the primal optimal solution value, which is equal to the shortest path
length.

Intuitively, the dual program models a scenario where every edge e ∈ E is replaced with
a spring with stationary length ce. We fix s at zero level and try to “pull” the graph as far
away as possible, with the constraint that we cannot stretch any spring (we are allowed to
compress some of the springs). The furthest level t can reach is the length of a shortest path
from s to t.

To propose a shortest path algorithm based on the dual program, let’s first define the
following function:

function relax(v, w)
if lw > lv + c(v,w) then

lw ← lv + c(v,w)

end if
end function

Essentially, RELAX(v, w) fixes the value of lw such that constraint (12) is satisfied on
edge (v, w). For convenience, we call RELAX(p, q) a “relaxation” of (p, q). To see how we
can use relaxation to find the shortest path, let’s consider the following example:

s

a

t

2 3

6

Figure 1: example G. The number next to each edge indicates the edge length.

In this simple graph, suppose we have an initial infeasible solution to the dual program
ls = 0, la = 5 and lt = 16. It’s easy to see that constraint (12) is violated for every edge in
this graph. Now let’s apply relaxations several times:

RELAX(a, t) → ls = 0, la = 5, lt = 8
RELAX(s, t) → ls = 0, la = 5, lt = 6
RELAX(s, a) → ls = 0, la = 2, lt = 6
RELAX(a, t) → ls = 0, la = 2, lt = 5

Each time after we relax some edge, there might still be edges in the graph where constraint
(12) is violated — so we keep applying relaxations until all edges satisfy constraint (12). In

4



this case, after applying relaxations four times we arrive at a feasible solution ls = 0, la =
2, lt = 5 and indeed lt = 5 is the optimal solution for the example. Note that we ended up
relaxing edge (a, t) twice.

Ford’s Algorithm

initalization: ls = 0, lv =∞ for all v ∈ V \ {s}
repeat

1. Find an edge (p, q) with lq > lp + c(p,q)

2. RELAX(p, q)

until: all edges (p, q) satisfy lq ≤ lp + c(p,q)

In fact, this is exactly what Ford’s algorithm does. Ford’s algorithm keeps finding edges
(p, q) which violates constraint (12) and performing relaxation on (p, q) to fix the value of
lq. When the algorithm terminates, all edges must satisfy constraint (12) and lt stores the
shortest path length from s to t.

Notice that we didn’t specify the way to choose which edge to relax in case there are many
edges which violate the constraint. In CS161 we have learnt several shortest-path algorithms
such as Bellman-Ford’s algorithm and Dijkstra’s algorithm. Both Bellman-Ford’s algorithm
and Dijkstra’s algorithm use the idea of relaxation and they are both more specific versions
of Ford’s algorithm in terms of the way they choose which edge to relax.

5


