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Chapter 1

Introduction

Optimization is the process of selecting the best among a set of alternatives.
An optimization problem is characterized by a set of feasible solutions and
an objective function, which assigns a measure of utility to each feasible
solution. A simple approach to optimization involves listing the feasible
solutions, applying the objective function to each, and choosing one that
attains the optimum, which could be the maximum or minimum, depending
on what we are looking for. However, this approach does not work for most
interesting problems. The reason is that there are usually too many feasible
solutions, as we illustrate with the following example.

Example 1.0.1. (Task Assignment) Suppose we are managing a group
of 20 employees and have 20 tasks that we would like to complete. Each
employee is capable of completing only a subset of the tasks. Furthermore,
each employee can only be assigned one task. We need to decide on which
task to assign to each employee. The set of feasible solutions here is the set
of 20! possible assignments of the 20 tasks to the 20 employees.

Suppose our objective is to maximize the number of tasks accomplished.
One way of doing this is to enumerate the 20! possible assignments, calculate
the number of tasks that would be completed in each case, and choose an
assignment that maximizes this quantity. However, 20! is a huge number
– its greater than a billion billion. Even if we used a computer that could
assess 1 billion assignments per second, iterating through all of them would
take more than 75 years!

Fortunately, solving an optimization problem does not always require it-
erating through and assessing every feasible solution. This book is about
linear programs – a class of optimization problems that can be solved very
quickly by numerical algorithms. In a linear program, solutions are encoded
in terms of real-valued decision variables. The objective function is linear
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in the decision variables, and the feasible set is constrained by linear in-
equalities. Many important practical problems can be formulated as linear
programs. For example, the task-assignment problem of Example 1.0.1 can
be formulated as a linear program and solved in a small fraction of a sec-
ond by a linear programming algorithm running on just about any modern
personal computer.

This book represents a first course on linear programs, intended to serve
engineers, economists, managers, and other professionals who think about
design, resource allocation, strategy, logistics, or other decisions. The aim
is to develop two intellectual assets. The first is an ability to formulate
a wide variety of practical problems as linear programs. The second is a
geometric intuition for linear programs. The latter helps in interpreting
solutions to linear programs and often also leads to useful insights about
problems formulated as linear programs. Many other books focus on linear
programming algorithms. We discuss such algorithms in our final chapter,
but they do not represent the focus of this book. The following sections offer
previews of what is to come in subsequent chapters.

1.1 Linear Algebra

Linear algebra is about systems of linear equations. It forms a foundation for
linear programming, which deals with both linear equations and inequalities.
Chapter 2 presents a few concepts from linear algebra that are essential
to developments in the remainder of the book. The chapter certainly does
not provide comprehensive coverage of important topics in linear algebra;
rather, the emphasis is on two geometric interpretations of systems of linear
equations.

The first associates each linear equation in n unknowns with an (n− 1)-
dimensional plane consisting of points that satisfy the equation. The set
of solutions to a system of m linear equations in n unknowns is then the
intersection of m planes. A second perspective views solving a system of
linear equations in terms of finding a linear combination of n vectors that
generates another desired vector.

Though these geometric interpretations of linear systems of equations
are simple and intuitive, they are remarkably useful for developing insights
about real problems. In Chapter 2, we will illustrate the utility of these
concepts through examples involving contingent claims analysis and produc-
tion. In contingent claims analysis, the few ideas we discuss about linear
algebra lead to an understanding of asset replication, market completeness,
and state prices. The production example sets the stage for our study of
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linear programming.

1.2 Linear Programs

In Chapter 3, we introduce linear programs. In a linear program, a solution
is defined by n real numbers called decision variables. The set of feasible
solutions is a subset of the n-dimensional space, characterized by linear in-
equalities. Each linear inequality is satisfied by points in the n-dimensional
space that are on one side of an (n − 1)-dimensional plane, forming a set
called a half space. Given m inequalities, the set of feasible solutions is the
intersection of m half-spaces. Such a set is called a polyhedron. A linear
program involves optimization (maximization or minimization) of a linear
function of the decision variables over the polyhedron of feasible solutions.
Let us bring this to life with an example.

Example 1.2.1. (Petroleum Production) Crude petroleum extracted from
a well contains a complex mixture of component hydrocarbons, each with a
different boiling point. A refinery separates these component hydrocarbons
using a distillation column. The resulting components are then used to man-
ufacture consumer products such as low, medium, and high octane gasoline,
diesel fuel, aviation fuel, and heating oil.

Suppose we are managing a company that manufactures n petroleum prod-
ucts and have to decide on the number of liters xj, j = 1, . . . , n of each
product to manufacture next month. Since the amount we produce must be
positive, we constrain the decision variables by linear inequalities xj ≥ 0,
j = 1, . . . , n. Additional constraints arise from the fact that we have limited
resources. We have m types of resources in the form of component hydrocar-
bons. Let bi, i = 1, . . . ,m, denote the quantity in liters of the ith resource to
be available to us next month. Our process for manufacturing the jth prod-
uct consumes aij liters of the ith resource. Hence, production of quantities
x1, . . . , xn, requires

∑n
j=1 aijxj liters of resource i. Because we only have bi

liters of resource i available, our solution must satisfy

n∑
j=1

aijxj ≤ bi.

We define as our objective maximization of next month’s profit. Given
that the jth product garners cj Dollars per liter, production of quantities
x1, . . . , xn would generate

∑n
j=1 cjxj Dollars in profit. Assembling constraints
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and the objective, we have the following linear program:

maximize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m
xj ≥ 0 j = 1, . . . , n.

The above example illustrates the process of formulating a linear program.
Linear inequalities characterize the polyhedron of feasible solutions and a
linear function defines our objective. Resource constraints limit the objective.

1.3 Duality

Associated with every linear program is another called the dual. In order to
distinguish a linear program from its dual, the former is called the primal.
As an example of a dual linear program, we describe that associated with
the petroleum production problem, for which the primal was formulated in
Example 1.2.1.

Example 1.3.1. (Dual of Petroleum Production) The dual linear pro-
gram comes from a thought experiment about prices at which we would be
willing to sell all our resources. Consider a set of resource prices y1, . . . , ym,
expressed in terms of Dollars per liter. To sell a resource, we would clearly
require that the price is nonnegative: yi ≥ 0. Furthermore, to sell a bundle
of resources that could be used to manufacture a liter of product j we would
require that the proceeds

∑m
i=1 yiaij at least equal the revenue cj that we would

receive for the finished product. Aggregating constraints, we have a charac-
terization of the set of prices at which we would be willing to sell our entire
stock of resources rather than manufacture products:

∑m
i=1 yiaij ≥ cj, j = 1, . . . , n

yi ≥ 0 i = 1, . . . ,m.

The dual linear program finds our minimum net proceeds among such situa-
tions:

minimize
∑m

i=1 yibi

subject to
∑m

i=1 yiaij ≥ cj, j = 1, . . . , n
yi ≥ 0 i = 1, . . . ,m.

Duality theory studies the relationship between primal and dual linear
programs. A central result – the duality theorem – states that optimal ob-
jective values from the primal and dual are equal, if both are finite. In our
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petroleum production problem, this means that, in the worst case among situ-
ations that would induce us to sell all our resources rather than manufacture,
our proceeds would equal the revenue we could earn from manufacturing.

In Chapter 4, we develop duality theory. This theory extends geometric
concepts of linear algebra, and like linear algebra, duality leads to useful
insights about many problems. For example, duality is central to under-
standing situations where adversaries compete, as we now discuss.

1.4 Two-Player Zero-Sum Games

A two player zero-sum, or competitive, game considers the situation where
two agents are dividing a good. Examples include two companies competing
over a market of constant size, or games of chess, football, or rock-paper-
scissors.

In many situations the game can be described as follows. Each agent
picks an action. If agent 1 picks action i and agent 2 picks action j then
agent 1 receives rij units of benefit and agent 2 receives −rij units of benefit.
The game is said to be zero-sum because the benefits received by the two
players always sum to zero, since one player receives rij and the other −rij.

Agent 1 wants to maximize rij, while agent 2 wants to maximize −rij (or,
equivalently, minimize rij). What makes games like this tricky is that agent
1 must take into account the likely actions of agent 2, who must in turn take
into account the likely actions of agent 1. For example, consider a game of
rock-paper-scissors, and suppose that agent 1 always chooses rock. Agent 2
would quickly learn this, and choose a strategy that will always beat agent
1, namely, pick paper. Agent 1 will then take this into account, and decide
to always pick scissors, and so on.

The circularity that appears in our discussion of rock-paper-scissors is
associated with the use of deterministic strategies – strategies that selects
a single action. If the opposing player can learn an agent’s strategy, he
can design a strategy that will beat it. One way around this problem is to
consider randomized strategies. For example, agent 1 could randomly choose
between rock, paper, and scissors each time. This would prevent agent 2 from
predicting the action of agent 1, and therefore, from designing an effective
counter strategy.

With randomized strategies, the payoff will still be rij to agent 1, and
−rij to player 2, but now i and j are randomly (and independently) chosen.
Agent 1 now tries to maximize the expected value of rij, while player 2 tries
to maximize the expected value of −rij.

Example 1.4.1. (Drug running) A South American drug lord is trying to
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get as many of his shipments across the border as possible. He has a fleet
of boats available to him, and each time he sends a boat, he can choose one
of three ports at which to unload. He could choose to unload in Miami, Los
Angeles, or San Francisco.

The USA Coastguard is trying to intercept as many of the drug shipments
as possible but only have sufficient resources to cover one port at a time.
Moreover, the chance of intercepting a drug shipment differs from port to
port. A boat arriving at a port closer to South America will have more fuel
with which to evade capture than one arriving further away. The probabilities
of interception are given by the following table.

Port Probability of interception
Miami 1/3
Los Angeles 1/2
San Francisco 3/4

The drug lord considers sending each boat to Miami, but the coastguard
realizing this would always choose to cover Miami, and 2/3 of his boats would
get through. A better strategy would be to pick a port at random (each one
picked with 1/3 probability). Then, the coastguard should cover port 3, since
this would maximize the number of shipments captured. In this scenario, 3/4
of the shipments would get through, which is better than 2/3. But is this the
best strategy?

If we allow for randomized strategies, the problem of finding a strategy
that maximizes an agents expected payoff against the best possible counter-
strategy can be formulated as a linear program. Interesting, the formulation
from the perspective of the first agent is the dual of the formulation from
the perspective of the second agent. We will see that duality guarantees that
there are a pair of strategies for agents 1 and 2 that put them in equilibrium.
In particular, when these strategies are employed, agent 1 can not improve
her strategy benefit by learning the strategy of agent 2, and vice-versa. This
is also treated in Chapter 4 as a special case of duality.

1.5 Network Flows

Network flow problems are a class of optimization problems that arise in
many application domains, including the analysis of communication, trans-
portation, and logistic networks. Let us provide an example.

Example 1.5.1. (Transportation Problem) Suppose we are selling a sin-
gle product and have inventories of s1, . . . , sm in stock at m different ware-
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house locations. We plan to ship our entire inventory to n customers, in
quantities of d1, . . . , dn. Shipping from location i to customer j costs cij Dol-
lars. We need to decide on how to route shipments.

Our decision variables xij represent the number of units to be shipped
from location i to customer j. The set of feasible solutions is characterized
by three sets of constraints. First, the amount shipped from each location to
each customer is not negative: xij ≥ 0. Second, all inventory at location i is
shipped:

∑n
j=1 xij = si. Finally, the number of units sold to customer j are

shipped to him:
∑m

i=1 xij = dj. Note that the last two constraints imply that
the quantity shipped is equal to that received:

∑m
i=1 si =

∑n
j=1 dj.

With an objective of minimizing total shipping costs, we arrive at the
following linear program:

minimize
∑m

i=1

∑n
j=1 cijxij

subject to
∑n

j=1 xij = si, i = 1, . . . ,m∑m
i=1 xij = dj, j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n.

The set of feasible solutions to the transportation problem allows for
shipment of fractional quantities. This seems problematic if units of the
product are indivisible. We don’t want to send a customer two halves of
a car from two different warehouses! Surprisingly, we never run into this
problem because shipping costs in the linear program are guaranteed to be
minimized by integral shipments when inventories s1, . . . , sm and customer
sales d1, . . . , dn are integers.

The situation generalizes to network flow problems of which the trans-
portation problem is a special case – when certain problem parameters are
integers, the associated linear program is optimized by an integral solution.
This enables use of linear programming – a formulation involving continuous
decision variables – to solve a variety of optimization problems with discrete
decision variables. An example is the task-assignment problem of Example
1.0.1. Though the problem is inherently discrete – either we assign a task
to an employee or we don’t – it can be solved efficiently via linear program-
ming. In Chapter 5, we discuss a variety of network flow problems and the
integrality of optimal solutions.

1.6 Markov Decision Problems

Markov decision problems involve systems that evolve in time. In each time
period, the system can be in one of a number of states, and based on the state,
a decision is made that influences the future evolution of the system. The
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state of the system in the next time period depends only upon the current
state and decision.

Markov decision problems arise in a variety of applications, from epidemi-
ology to queueing to the design of interactive robots.

Example 1.6.1. (Machine replacement) Suppose we wish to minimize
the average cost of running a machine over time. At each time period, the
machine can be in one of states 1, . . . , n where state 1 represents a a perfect
condition, and higher-valued states represent greater degrees of deterioration.

The cost of running a machine in state i for one time period is c(i). The
cost is increasing in i – it costs more to run a deteriorated machine. As
a machine is used, it deteriorates at a random rate. In each time step, if
the state i of the machine is less than n, there is a probability p that the
state increases to i + 1. Once in state n, the machine remains in this highly
deteriorated state.

At each time period, based on the state of the machine, we can decide to
replace it. Replacing the machine incurs a cost of C and leaves us with a
machine in state 1 in the next time period. We wish to design a decision
strategy that minimizes our time-averaged cost.

We discuss in Chapter ?? how Markov decision problems like the machine
replacement problem can be solved using linear programming.

1.7 Linear Programming Algorithms

As we have discussed, many important problems can be formulated as lin-
ear programs. Another piece of good news is that there are algorithms that
can solve linear programs very quickly, even with thousands and sometimes
millions of variables and constraints. The history of linear programming al-
gorithms is a long winding road marked with fabulous ideas. Amazingly,
over the course of their development over the past five decades, linear pro-
gramming algorithms have become about a thousand times faster and state-
of-the-art computers have become about a thousand times faster – together
this makes a factor of about one million. A linear program that required one
year to solve when the first linear programming algorithms were developed
now takes about half a minute! In Chapter ??, we discuss some of this history
and present some of the main algorithmic ideas in linear programming.


