1. (20 pts) In this problem we consider a personalized version of HITS for product recommendation. Given a set of products and a set of consumers, we set $L_{uv} = 1$ if consumer u has bought product v and $L_{uv} = 0$ otherwise. Let h_u be the hub score for consumer u and a_v be the authority score for product v. Note that we do not associate hub scores with products or authority scores with consumers. For $\epsilon \in [0, 1]$, the personalized HITS equations for consumer i are:

$$h_u = (1 - \epsilon) \sum_v L_{uv} a_v + b_u,$$

where $b_u = \epsilon$ if $u = i$ and 0 otherwise; and

$$a_v = \sum_u L_{uv} h_u.$$

We have the following data for consumers $\{c_1, c_2, c_3, c_4, c_5, c_6\}$ and products $\{p_1, p_2, p_3, p_4, p_5, p_6\}$:

- Consumer c_1 has bought products p_1 and p_2.
- Consumer c_2 has bought products p_1, p_2 and p_3.
- Consumer c_3 has bought products p_5 and p_6.
- Consumer c_4 has bought products p_4 and p_6.
- Consumer c_5 has bought products p_3, p_5 and p_6.
- Consumer c_6 has bought product p_6.

Compute product recommendations for consumer c_1 for $\epsilon = 0.1$ and $\epsilon = 0.6$. In particular, compute the hub scores of consumers and the authority scores of products. Which product would be recommended to c_1 in each case? Explain.

Hint: Use matlab, Excel or any other program to compute the solution iteratively. Remember to normalize after each step.

2. (10 pts) We have seen in class how PageRank can be gamed and now consider how HITS can be gamed. Suppose HITS is being used by a collaborative recommendation web-site. Products play the role of authorities, and users of the system play the role of hubs. There is a link from a user to a product if the user recommends that product. One of the users is actually a pseudonym for the manufacturer of one of the products. If this user is allowed to place exactly k product recommendations, intuitively explain which products he should recommend in order to increase the authority score of his product. Assume that he can not post more than one recommendation for a particular product.

3. One increasingly important use of network models is to determine how a seed investment in advertising will help brand awareness propagate through a network.
Consider the following simple scenario: You are given a social network with N individuals. A company invests X in educating one person, say v_1, about its product. This person then informs exactly one more person, v_2, chosen uniformly at random from the remaining $N - 1$ individuals, about the product. The newly educated person v_2 then informs one more person v_3, chosen uniformly at random from the remaining $N - 1$ individuals (i.e. other than v_2), about the product, and so on, forming a chain. The process terminates when the chain revisits an already informed individual. For example, if $v_3 = v_1$, the process terminates and only two individuals, v_1 and v_2 get informed; in this case we will say that the length of the chain is 2.

(a) With what probability is the length of the chain at least k? [5 pts]

(b) Assume that the expected length of the chain, l, can be modeled by the equation: $l(N) = aN^e$, for some constants a and e. Estimate the exponent e. Use a software program, Excel, or your own code to estimate the expected length of a chain for several different values of N; or download off the website data that has already been generated. Then fit this data to the model equation to determine the constant e. [10 pts]

(c) BONUS [10 pts] Find or approximate e mathematically.

(d) Comment on the power of viral marketing. [5 pts]

4. Concisely explain the winners’ curse and the optimizers’ curse. Make the connection between them and uncertainty. [10 pts]

5. Explain in an essay the business model of Skype. Relate the business model to the technical design. Use no more than 500 words total. [20 pts]