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Lecture 10: eigenvalue Methods

PageRank Continued

Let 7, be the PageRank of page(node) v. Also, P, = 0 if there is no link from
u to v and P,, = 1/d,, otherwise (d,, is the number of out links from node u).

Ty = (zu: Puoma)(1 —€) + %

where N is the number of pages and e is the reset probability.
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In order to solve for the value of PageRank, think of 7 as a row vector

= (71, T2, Mgereeeen TN)

Let I be the identity matrix.
b= (e/N,e/N,e/N........ ,€/N)(1 x N matrix )
In matrix form, the PageRank equation can be written as

m=(1—¢enP+b

Starting with an initial value of 7, 7(%) = (1/N,1/N,....1/N), we iteratively
compute successive values of (%) as:

7@ =1-er-VP4b

This method converges to the actual value of PageRank.

Proof

Let 7(P) be the true value of PageRank.
Let 7(9) = 7(B) 4 A®) where A is the vector by which the value of PageR-
ank computed at the current iteration ¢ differs from the equilibrium value 7(#)

7®) L AW = (1 — ) (P + ACD)P 4 p
by rearranging terms we get

B L AD = (1 -7 P+b)+ (1 - ADP



since 7(F) is a true PageRank vector, it is a solution to the equation 7(¥) =
(1 —e)7®)P + b and therefore we get

AW = (1 -eAt-Dp

Since € > 0, A® is multiplied by a constant factor (< 1) at each iteration
and the value of A(®) decreases with each iteration as a result. It can be shown
that this equation corresponds to a contraction map and that the value of A®)
converges to zero.

The idea behind a contraction map is that as we move from one iteration to
the next, the value of A() strictly decreases. This can be shown as follows:

A =(1-€> P,AfY

Since in the above expression some terms in the expression Agf -1 may be
negative and (1 — €) is positive,
By triangle inequality we have

AP IS A=) Pu | ATV |

summing both sides over v we get,

DIAPIS (=) Y Pu | ATV

by interchanging the order of summation we get,

YAl <a-9Y A YR,

Now, >, Py, = 1. This is because, as described in an earlier lecture, the
”"monkey” never leaves the system and therefore the probability that the ”mon-
key” moves to some other page v from page u is 1.

Therefore the inequality becomes:

YIAP -9 (Al

Now, we can think of 3 | A | as size of error in iteration ¢. From the
above inequality, this error is at most (1 — €) times the error in the previous
iteration. The size of error therefore exponentially converges to 0. This is true
because, the error in step zero (>, |A5LO)\ (where AY =7 _ W&O))) is at most
2 as both 7(¥) and 7(°) are unit vectors.

The fact that >, P,, = 1 and (1 —¢€) < 1 ensure that the above equations

converge.



PageRank and Product Recommendations

Let us consider a product graph which is obtained by adding links between
products such that if a link exists from product A to product B with weight
w, it means that a person who has bought product A is likely to buy product
B with probability w. We can define something like PageRank on this product
graph starting with a node(product) A except that all resets bring the ”random
surfer” back to node A. What we obtain by such a method is the correlation of
product A with other products.

Personalized PageRank

In the original PageRank algorithm, suppose instead of resetting to a random
web page, resets were allowed only to web pages already viewed by the user,
the PageRank values sort of get personalized depending on each user’s browsing
history. Also, if resets were allowed only to educational(.edu) web pages, for
example, and resets occur after 1/e page views on average, the PageRank values
get biased towards .edu web pages.

PageRank and eigenvalue Methods

If for a given matrix A and a vector v, vA = Av for some constant A, then A is
known as the eigenvalue and v as an eigenvector of matrix A. Furthermore, if
all rows of A sum to 1 (as is the case in all examples we consider), then A = 1
is an eigenvalue and the vector v satisfying vA = v is an eigenvector.

Consider the PageRank equation 7 = (1 — €)Pw + b.

Define @ such that Q = (1 — ¢€)P.

The PageRank equation becomes m = 7@ 4+ b. This equation can be written
as:

r=1Q+bQ-1)"NQ 1)

Rearranging terms we get,

TH+bI(Q -1 =71Q +b(Q - 1)"1Q
That is,

(r+b(Q—-1)"")=(r+bQ-1)""Q

Therefore, 7 +b(Q — I)~! is an eigenvector of the matrix Q. These methods
are therefore known as eigenvalue methods.

HITS: Hypertext Induced Topics Search

HITS is another example of an eigenvalue method that was developed by Klein-
berg around the same time as the PageRank algorithm. The primary goal of
HITS was to help search engines rank web pages. When you search using a



keyword, you get a bunch of web pages that match the keyword. The HITS
algorithm defines two kinds of web pages. A web page is called a hub if it links
to many pages with information relevant to the query. A web page is called an
authority if it contains relevant information to the query. If the search query
was for a "shoe”, examples of hubs would be Yahoo directory pages on shoes
or a Top 10 Shoes list and examples of authorities would be web pages of Nike
and Reebok.

A hub is considered good if it links to many good authorities and an authority
is considered good if it is linked to from many good hubs. The iterative definition
of reputation in this case hints that HITS is an eigenvalue method.

Let h, be the hub score of page u. L., = 1 if there is a link from u to v,
else, it is equal to 0. Let a, be the authority score for page v.

hy = Z Lyvay
Ay = Z Lyyha

Therefore, in matrix notation, h = La or h = LLTh and a = LTh or
a=L"La.

However, the above equations do not converge. This is because the HITS
algorithm rewards hubs for pointing to many good authorities and so Y, Ly, is
not equal to 1 (similarly ), L., is not equal to 1 for authorities). As mentioned
earlier, such an equality is necessary for the eigenvalue method to converge.

In order to make the equations converge, the values for h, and a, are nor-
malized after each iteration such that their Ly norm (), (th))2 and Zv(ag)f)
isequal to 1.

HITS and Product Recommendations

The HITS algorithm can also be used to generate product recommendations in
the following fashion. Users are modeled as hubs and the products they buy
as authorities. A link between a user and a product indicates that the user
has bought the product. We can then determine product recommendations as
follows:

1. Begin with a user (a hub)

2. Determine the set of products that he has bought (authorities liked to by
that hub)

3. Determine the set of users that have bought the same products (hubs that
link to the same authorities)

4. Determine the products that these users have bought (authorities linked
to by these hubs)

This set of products can then be used to generate recommendations for the
user. This type of analysis can also be carried out in a nested fashion .



