
MS&E 235, Internet Commerce

Stanford University, Winter 2007-08

Instructor: Prof. Ashish Goel, Notes Scribed by Shrikrishna Shrin

Lecture 14: Internet Architecture Contd.

Note:

TCP requires the following information: Source IP address, Destination IP
address, Source Port No. and Destination Port No. This is the reason why web
servers are able to identify applications and computers uniquely and are able
to process many connections simultaneously. However, UDP only requires the
Destination IP and Destination Port information.

NAT: Network Address Translation

An IP address consists 32 bits. Therefore, the total number of unique IP ad-
dresses that can exist is fixed. However, there is no shortage of IP addresses.
This is due to NAT. A machine like wireless router also runs something called
NAT (Network Address Translator). The NAT box has a unique ’real’ IP ad-
dress. However, computers that are connected to the router are assigned a ’fake’
address by the router. The internet governing body mandates that the IP ad-
dress 10.0.1.* is reserved for NATs. So the NAT box assigns these IP addresses
to computers that are attached to it. It maps these IP addresses and port num-
bers used by applications to its own port number space. Therefore, you cannot
run a server behind a NAT box without configuring NAT box to enable port
forwarding. Moreover, even peers cannot run behind a NAT box. This is where
skype has succeeded. In skype, there are nodes and super nodes. A few of the
super nodes are run by skype. Most of the super nodes are normal nodes which
are not behind a NAT box, and have been promoted to a super node. Each
super node maintains an index from phone numbers to IP addresses.

Skype

In other P2P networks such as kaaza, it did not matter as to which node you
connect to. However, when you want to make a phone call to a particular person,
it becomes important that your computer is connected to his/her computer.

In Skype’s architecture, super nodes are used to maintain a directory (map-
ping from phone numbers and Skype user accounts to IP addresses). Su-
per nodes also act as intermediaries for forming connections. Typically, User
A(skype instance used by user A) goes to a super node to find the address of
B (skype instance being used by B), and then connects to B. However, this
assumes that B is listening at some port. If B is behind a NAT or a firewall, A
cannot contact B directly. In such a case, a connection is established by keeping
As connection with the super node as well as B’s connection with the super

1



node alive. When A wants to call B (who is behind a NAT), the super node
sends a message to B asking it to contact A. B establishes a TCP connection
with A, and then A calls B.

What happens when both A and B are behind a NAT or a firewall? UDP
can be used as it is not connection oriented. If B has a connection with super
node, anyone else can also send UDP packets to B on the same connection.
This is known as UDP hole punching. B constantly sends UDP packets to some
super node(s). If A wants to contact B, super node asks B to use a particular
port for UDP and A uses the same UDP port to send message to B.

The only scenario when A and B cannot talk to each other is when both
of them are behind a really restrictive NAT (which does not allow UDP hole
punching). In this case they communicate through the super node S. A sends a
packet to S, S sends the packet to B and Vice-Versa.

Search engine architecture

In order to search through billions of web pages efficiently, search engines use a
reverse index. For every keyword, search engines maintain a sorted list of docu-
ments in which that keyword appears. This list is sorted based on some measure
of reputation (an example being page rank). The challenge for search engines
is to be able to find relevant search results for composite queries efficiently. It
is impractical to main a separate index for each composite query as this would
require prohibitive amount of storage. Furthermore, a large number of queries
are unique and therefore maintaining indexes for these queries is not viable.

Suppose there are N documents and M words. di is the number of words
in document i. wj is the number of documents in which word j occurs. The
total size of the index equals

∑N
i=1 di which is the same as the size of the reverse

index
∑M

j=1 wj . The size of the index is therefore the same as that of the reverse
index and this number is usually much smaller than the size of the data on the
web and storing them is not a problem.

Suppose you search for the phrase ’purple island’, the search engine has a
list of documents in which the word ’purple’ occurs ranked by reputation and
another list of documents in which the word ’island’ occurs again sorted by
reputation.

Each word can be present in millions of documents and the size of the corre-
sponding reverse index can be quite large. Finding an intersection between these
large indexes is computationally impractical. However, since the search engine
only needs to return a fixed number of results (1000 in the case of Google), it is
sufficient to find a certain number of intersections. Additionally, the documents
present in this intersection can be subjected to post filters to personalize the
search results (maintaining a separate index for each user is impossible due to
the scale of the problem).

In order for such an algorithm to work, the notion of reputation needs to be
context independent. This is because if a web page containing both ’purple’ and
’island’ were to appear toward the beginning in the reverse index for ’purple’

2



but toward the end in the reverse index for ’island’, it may take a long time to
find this web page as the ’island’ index has to be traversed before it is found.
Also, other (and possibly less reputed) web pages might be returned as results
instead.

3


