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Abstract. Random geometric graphs result from taking n uniformly dis-

tributed points in the unit cube, [0, 1]d, and connecting two points if their
Euclidean distance is at most r, for some prescribed r. We show that mo-

notone properties for this class of graphs have sharp thresholds by reducing

the problem to bounding the bottleneck matching on two sets of n points dis-
tributed uniformly in [0, 1]d. We present upper bounds on the threshold width,

and show that our bound is sharp for d = 1 and at most a sublogarithmic factor

away for d ≥ 2. Interestingly, the threshold width is much sharper for ran-
dom geometric graphs than for Bernoulli random graphs. Further, a random

geometric graph is shown to be a subgraph, with high probability, of another

independently drawn random geometric graph with a slightly larger radius;
this property is shown to have no analogue for Bernoulli random graphs.

1. Introduction

Consider n points distributed uniformly and independently in the unit cube
[0, 1]d. Given a fixed distance r > 0, connect two points if their Euclidean distance
is at most r. Such graphs are called random geometric graphs, and are denoted by
G(d)(Xn; r), as in Penrose (2003). Classically, these graphs have been the subject
of much study because of connections to percolation, statistical physics, hypothesis
testing, and cluster analysis. Further, random geometric graphs are better suited
than more combinatorial classes (such as Bernoulli random graphs) to model prob-
lems where the existence of an edge between two different nodes depends on their
spatial distance. As a result, random geometric graphs have received increased
attention in recent years in the context of distributed wireless networks (such as
sensor networks), see for example Gupta and Kumar (2001, 2000, 1998); and layout
problems as in i Silvestre (2001); Dı́az et al. (1998); Penrose (2003). Another area is
cluster analysis, especially its applications in Medicine, Biology and Ecology, these
may be found in Godehardt (1990).

In applications such as distributed wireless networks, the connectivity of random
geometric graphs is of interest. Gupta and Kumar show that for d = 2, if πr(n)2 =
(log n + cn)/n, then as n ↑ ∞ the graph is connected almost surely as n ↑ ∞ if
cn ↑ ∞ and is disconnected almost surely if cn ↓ −∞ (Gupta and Kumar (1998)).
This result is remarkably similar to the corresponding result for Bernoulli random
graphs (also known as Erdős-Renyi graphs). An instance of a Bernoulli random
graph is obtained by taking n points and connecting any two with probability p,
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independently of all other pairs. This class of graphs is denoted by Gn,p. Erdős
and Renyi (1960, 1959) showed that if p(n) = (log n + cn)/n, then the graph is a.s.
connected or disconnected as cn ↑ ∞ or cn ↓ −∞. For d = 2, Gupta and Kumar’s
result can also be obtained from Penrose’s work on the longest edge of minimal
spanning tree of G(Xn; r(n)) (Penrose (1997)). Connectivity of random geometric
graphs for d = 1 is also studied by Godehardt and Jaworski (1996). Connectivity
results under the l∞-norm may be found in Appel and Russo (2002).

In both random geometric graphs and Bernoulli random graphs, property thresh-
olds are of great interest. To quote Bollobás (2001):

One of the main aims of the theory of random graphs is to determine
when a given property is likely to appear.

Particularly interesting are thresholds for monotone properties, of which connectiv-
ity is a classic example. A seminal result of Friedgut and Kalai (1996) states that
all monotone graph properties have a sharp threshold in Bernoulli random graphs,
and the threshold width is δ(ε) = O(log ε−1/ log n). They also demonstrated a
monotone property with a threshold width of Ω(1/ log2 n) and conjectured that
this is tight (i.e. the best upper bound on threshold width is O(1/ log2 n)). Their
upper bound on threshold width was improved to O(1/ log2−γ n) for all γ > 0 by
Bourgain and Kalai (1997).

The similarity of the connectivity threshold for random geometric graphs and
Bernoulli random graphs led to the conjecture that all monotone properties also
have a sharp threshold in random geometric graphs (see Krishnamachari et al.
(2002); McColm (2003) for a more detailed discussion). For the d = 1 case,
sharp thresholds for monotone properties are implicit in the recent work of Mc-
Colm (2003), though he does not compute bounds on the width. The definition of
sharp thresholds we use in this paper is the one used by Friedgut and Kalai and is
based on the threshold width. The definition used by McColm is the one used in
the text by Janson et al. (2000), and is stronger than the one used by Friedgut and
Kalai; we discuss this in more detail at the end of the introduction. The analysis
of random geometric graphs is technically challenging because of dependence of
the edges. The triangle inequality implies that the event that points x and z are
connected is not independent of the event {(x, y) and (y, z) are edges}. This is in
stark contrast to the case of Bernoulli random graphs. Hence proof techniques that
have been successful for Gn,p cannot be exploited in the case of random geometric
graphs.

Our results. We show that all monotone graph properties have a sharp threshold
for random geometric graphs, thus resolving the above conjecture. In fact, the
threshold width for random geometric graphs is much sharper than for Bernoulli
random graphs. In order to state our results formally, we need to establish some
notation and some definitions.

We use the symbol ∼ to mean ‘distributed as’, so that G ∼ G(d)(Xn; r) means
that G is picked from G(d)(Xn; r). For ease of notation, we omit the superscript d
in G(d)(Xn; r) as the dimension will be clear from the context. The critical radius
for connectivity is defined as rc := (log n/πdn)1/d, where πd is the volume of the
unit sphere in Rd.
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A graph property A is a set of undirected and unlabelled graphs. A property A
is increasing if and only if

G ∈ A =⇒ (∀G′)[(V (G′) = V (G) and E(G) ⊆ E(G′)) ⇒ G′ ∈ A].

Intuitively speaking, an increasing property is one that is preserved when edges
are added to the graph. A graph property A is monotone if either A or Ac is
increasing. Without loss of generality, for the rest of the paper, we shall implicitly
mean increasing properties when referring to monotone properties.

If A is an increasing property, then for 0 < ε < 1/2, let r(n, ε) = inf{r > 0 :
P{G(Xn; r) ∈ A} ≥ ε}. Define further δ(n, ε) := r(n, 1− ε)− r(n, ε). A property is
said to have a sharp threshold if δ(n, ε) = o(1) for all 0 < ε < 1/2.

Our main results are:

Theorem 1.1. For every monotone property, the width δ(n, ε) is

O

(√
log ε−1

n

)
for d = 1. For d = 2,

δ(n, ε) = O(rc log1/4 n) ≡ O(log3/4 n/
√

n),

and for d ≥ 3, the width

δ(n, ε) = O(rc) ≡ O(log1/d n/n1/d).

Thus, all monotone properties have sharp thresholds. Observe that the width
is much sharper than the threshold width for Gn,p. Moreover, we prove a stronger
result: the graphs G(Xn; r) become subgraphs of G(Xn; ρ) for ρ > r, whp as n ↑ ∞.
Note only that this is not the case for Bernoulli random graphs—we shall make this
precise in section 2.

For the lower bounds we have:

Theorem 1.2. For d ≥ 2, there exists a monotone property with width δ(n, ε) =
Ω((log ε−1)1/dn−1/d). For d = 1, there exists a monotone property with width

δ(n, ε) = Ω(
√

log ε−1/
√

n).

Hence, we have a tight characterisation of the threshold width for d = 1, and
our upper bounds are only a sublogarithmic factor away for d ≥ 2.

The key idea is to relate the behaviour of monotone properties to the weight
of the ‘bottleneck’ matching (to be defined later) of the bipartite graph whose
vertex sets are obtained by distributing n points uniformly and independently in
[0, 1]d. Sharp results on the ‘bottleneck’ matching weight are implicit in the work
of Leighton and Shor (1989) for d = 2 and Shor and Yukich (1991) for d ≥ 3. We
repeat them here for convenience.

Theorem 1.3. [Leighton and Shor ’89, Shor and Yukich ’91] Consider the
bipartite graph on 2n points, where each set of n points is distributed uniformly and
independently in the unit cube [0, 1]d, and independently of each other. If M is the
length of the bottleneck matching, then whp as n ↑ ∞:

M =

{
Θ(rc log1/4 n), if d = 2,
Θ(rc), if d ≥ 3.
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In section 4 we present our own proof of the bound for d ≥ 3. The proof
for the d ≥ 3 case in Shor and Yukich (1991) invokes results from polyhedral
geometry. We present a simpler proof that relies only on the properties of order
statistics and Chernoff bounds. We prove that for d = 1, the bottleneck matching
is O(

√
log ε−1/

√
n) with probability 1− ε. Moreover, our results also hold for any

`p norm when p > 1, and not just under the Euclidean norm as in the setting of
this paper. We omit the details, as they require straightforward modifications of
the proofs given herein.

It might seem curious that we do not report the dependence on ε in some of
our bounds on the threshold width. This is because the results of Shor and Yukich
as well as those of Leighton and Shor are high probability results: the bottleneck
matching length is Θ(rc log1/4 n) in two dimensions and Θ(rc) in higher dimensions
not just in expectation but with probability 1 − o(n−β) for some β > 0. Hence,
in asymptotic notation, our upper bound on δ(n, ε) in two and higher dimensions
does not depend on ε as long as ε = Ω(n−β).

Related work. There is a vast body of literature that is directly related to this
paper. It would require a survey paper to even mention the salient results with any
degree of honesty. We can only point the reader to the book by Penrose (2003),
the papers by Gupta and Kumar (1998, 2000, 2001) and the paper by Shakkottai
et al. (2003) We note here that our techniques imply a sharp threshold for the
coverage problem as discussed in Shakkottai et al. (2003), which is not a graph
problem. We omit the details. The theory of Bernoulli random graphs is covered
in the books by Bollobás (2001) and Janson et al. (2000). For some results on
matchings in a similar context, see the paper by Holroyd and Peres (2003) and
for some results on covering algorithms see Booth et al. (2003). Sharp thresholds
for random geometric graphs were conjectured in Krishnamachari et al. (2002);
McColm (2003). Muthukrishnan and Pandurangan (2003) obtained asymptotically
tight thresholds for connectivity, covering and routing-stretch in d-dimensions using
a new technique called bin-covering.

Additive versus multiplicative thresholds. In this paper we are primarily concerned
with bounding the threshold width of a property, along the lines of Friedgut and
Kalai (1996). Informally, this corresponds to proving sharp ‘additive’ thresholds.
As we mentioned earlier, the notion of sharp thresholds presented in Janson et al.
(2000) or in McColm (2003), is stronger in that they require δ(n, ε)/rΠ(n) = o(1).
Informally, this corresponds to ‘multiplicative’ thresholds. We observe that our the-
orem 1.1 also yields sharp thresholds in this stronger sense, provided the threshold
radius is high enough. More precisely, if Π is a monotone property and rΠ(n) is its
threshold radius, such that:

rc = o(rΠ(n)), when d ≥ 3,

rc = o(rΠ(n)/ log1/4 n), when d = 2,
√

nrΠ(n) → ∞, when d = 1,

then Π also has a sharp threshold in the sense of Janson et al. (2000).

Plan of this paper. We first establish the relationship between monotone properties
to bottleneck matchings and prove the upper bound in section 2. In section 3 we
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furnish the lower bounds. In section 4 we discuss the upper bound for d ≥ 3, and
in section 5 for d = 1. We conclude in section 6 with some open problems.

2. Bottleneck matchings and monotone properties

Recall that in a bipartite graph with vertex sets V1 and V2, a perfect matching
is a bijection φ : V1 → V2, such that each v is adjacent to φ(v). Thus a perfect
matching is a disjoint collection of edges that covers every vertex. If the graph is
weighted, then we define the weight of the matching as the maximum weight of
any edge in the matching. A bottleneck matching is the perfect matching with the
minimum weight.

Let S1 and S2 denote two sets of n points each, where the points are iid, chosen
uniformly at random from the set [0, 1]d. Form the complete bipartite graph on
(S1, S2) and let the weight of an edge be the Euclidean distance between its end-
points. Let M

(d)
n denote the bottleneck matching weight of this graph. We omit

the dimension d where it is clear from the context.
We first link the weight of the bottleneck matching with a containment property

on random geometric graphs. We shall write G ⊂ G′ to mean that the graph G is
contained in the graph G′, ie, is isomorphic to a subgraph of G′.

Lemma 2.1. Suppose P{Mn > γ(n)} ≤ p for some function γ(n) and some con-
stant p. For any radius r, consider independent random samples G ∼ G(Xn; r) and
G′ ∼ G(Xn; r + 2γ(n)) in d dimensions. Then, P{G ⊂ G′} ≥ 1− p.

Proof. Let V represent the set of points in graph G and V ′ the set of points in
graph G′. Let φ denote the bottleneck matching between V and V ′, then Mn is the
weight of this matching. Suppose (u, v) ∈ E(G), i.e., ||u − v||2 ≤ r. Then, using
triangle inequality,

||φ(u)− φ(v)||2 ≤ ||φ(u)− u||2 + ||u− v||2 + ||v − φ(v)||2.

But ||φ(u)−u||2 and ||φ(v)−v||2 are both at most Mn, and hence ||φ(u)−φ(v)||2 ≤
2Mn + r. If Mn ≤ γ(n), then the mapping φ establishes that G ⊂ G′, and hence
P{G ⊂ G′} ≥ 1− p.

The main result linking monotone properties to bottleneck matchings is:

Theorem 2.2. If P{Mn > γ(n)} ≤ p, then the
√

p-width of any monotone property
in d-dimensions is at most 2γ(n).

Proof. Let p = ε2, so that P{Mn > γ(n)} ≤ ε2. Let Π be an arbitrary increasing
monotone property. Let rL = r(n, ε), rU = rL + 2γ(n). Let G ∼ G(Xn; rL),
and G′ ∼ G(Xn; rU ), and define q := P{G′ 6∈ Π}. Since G is independent of G′,
P{G ∈ Π, G′ 6∈ Π} = ε · q. The monotonicity of Π implies that if G ∈ Π and
G′ 6∈ Π then G 6⊂ G′. This means that P{G 6⊂ G′} ≥ ε · q. By lemma 2.1 above,
P{G 6⊂ G′} ≤ p, so that we must have q ≤ ε. But then r(n, 1−ε) ≤ r(n, 1−q) = rU ,
so that δ(n, ε) ≤ rU − rL = 2γ(n).

With theorem 2.2, the upper bound theorem follows with very little more work:

Proof of theorem 1.1. Leighton and Shor (1989) show that:

M (2)
n = Θ(rc log1/4 n),
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with probability at least 1−n−κ, for some κ > 0, and Shor and Yukich (1991) show
that

M (d)
n = Θ(rc), for d ≥ 3,

with probability at least 1−n−κ′ , for some κ′ > 0. Hence theorem 2.2 implies that
δ(n, ε) = O(rc log1/4 n) for d = 2 and δ(n, ε) = O(rc) for d ≥ 3, for any constant
ε > 0. In fact, the bound on δ(n, ε) holds for any ε = Ω(n−c), where c > 0 is a
constant.

In proposition 5.1 (see section 5), we show that for d = 1,

P{M (1)
n ≤ β√

n
} ≥ 1− exp(−cβ2),

for some c > 0. By applying theorem 2.2 with ε = exp(−cβ2) we obtain

δ(n, ε) = O

(√
log ε−1

n

)
.

Remark 1. We have in fact shown that G(Xn; r) is a subset of G(Xn; r′) whp,
when r′ = r + o(1). The corresponding result does not hold for Bernoulli random
graphs. To see this suppose that G ∼ Gn,p and G′ ∼ Gn,P . For G ⊂ G′, every edge
in G must exist in G′. Hence, for M =

(
n
2

)
, q = 1− p and Q = 1−P , and a given

matching φ:

P{G ⊂ G′ under φ} =
M∑

K=0

(
M

K

)
pKqM−K

×
M−K∑
L=0

(
M −K

L

)
PK+LQM−K−L

=
M∑

K=0

(
M

K

)
pKqM−K

×PK
M−K∑
L=0

(
M −K

L

)
PLQM−K−L

=
M∑

K=0

(
M

K

)
(pP )KqM−K (P + Q)M−K

= (pP + q)M = (p(1−Q) + q)

= (1− pQ)M .

Choose p = 1/4, and P = 3/4. As there are n! matchings:

P{G ⊂ G′} ≤ n! exp
(
−n(n− 1)

32

)
.

The last expression goes to zero as n ↑ ∞. Hence, even in this extreme case when
P − p = 1/2, we do not have Gn,p ⊂ Gn,P with constant probability.
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3. The lower bounds

We now present examples of monotone properties to show that our bounds are
tight in the d = 1 case and within a sublogarithmic factor for d ≥ 2.

For the d = 1 case, we consider the property Π, defined by:

G ∈ Π ⇔ min
u∈V

deg(u) ≥ |V |
4

,

where V is the vertex set of G. Let x1, . . . , xn, be the n uniformly distributed
points in [0, 1], these are the vertices of the graph G. Let x(i) denote the ith order
statistic. We have the following two estimates:

Lemma 3.1. If 0 < ε ≤ 0.5e−44/6, then for property Π:

r(n, 1− ε) ≥ 1
4

+

√
log 1/2ε

2n
.

Proof. Let u = 1/4+∆, where ∆ > 0 is to be determined later. Pick G ∼ G(Xn;u),
and let the vertices be x1, . . . , xn. Then x1, . . . , xn are distributed uniformly in
[0, 1]. Observe that

P{x(n/4) > u} ≥ ε ⇒ P{deg(x(1)) <
n

4
} ≥ ε

⇒ P{G 6∈ Π) ≥ ε,

where in the first implication we have used the fact that deg(x(1)) < n/4 ⇔
x(n/4+1) − x(1) > u, and that x(n/4+1) − x(1)

d= x(n/4).
Now, P{x(n/4) > u} = P{Bin(n, u) < n/4}, and for some suitably large n0,

P{Norm(0, 1) < −
√

n∆} ≥ 2ε ⇒ P{Bin(n, u) < n/4} ≥ ε,

whenever n > n0, by the Normal approximation to the Binomial.
Put ∆ = β/

√
n for β =

√
6 log(0.5/ε)/11. Then for 0 < ε ≤ 0.5e−44/6, we have

β ≥ 2. With a little bit of work, one can see that: β2/2 ≤ −4β/3 − log 2ε. Since
x ≥ log x for x ≥ 1, the last inequality implies that β2/2 ≤ log(3β−1/4)− log(2ε).
Observe that any β ≥ 2 satisfies:

3
4β

≤ 1
β
− 1

β3

so that:
β2

2
≤ log

(
1
β
− 1

β3

)
+ log

1
2ε

,

or (
β−1 − β−3

)
exp

(
−β2

2

)
≥ 2ε.

But then by theorem 1.4 of Durrett (1996), we can conclude P{Norm(0, 1) > β) ≥
2ε. This shows that

P

{
G

(
Xn;

1
4

+

√
log (2ε)−1

2n

)
6∈ Π

}
≥ ε.

and since Π is increasing, this means that

r(n, 1− ε) ≥ 1/4 +

√
log (2ε)−1

2n
.
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Lemma 3.2. For property Π:

r(n,
1
2
) ≤ 1

4
+

c√
n

,

for some fixed constant c > 0.

Proof. Suppose G ∼ G(Xn, l). For any u ∈ V (G), write degL(u) for the number
of points to the left of u and adjacent to it, and similarly let degR(u) stand for
the number of right neighbours. Note that if deg(x(1)) ≥ n/4, then necessarily
deg(x(i)) ≥ n/4 for all 1 ≤ i ≤ n/4. With this observation we have:

P {G 6∈ Π} = P

 ⋃
1≤i≤n

{
deg(x(i)) <

n

4

}
≤ P

{{
deg(x(1)) <

n

4
or deg(x(n)) <

n

4

}}
+P

 ⋃
n
4 <i< 3n

4

{
degL(x(i)) <

n

8

}
+P

 ⋃
n
4 <i< 3n

4

{
degR(x(i)) <

n

8

}
≤ 2 P

{
{deg(x(1)) <

n

4

}
︸ ︷︷ ︸

(1)

+n P
{

deg(x(i)) <
n

8

}
︸ ︷︷ ︸

(2)

.

To bound the first term (1), first observe that by arguing as in the last lemma
P{deg(x(1)) < n/4} = P{Bin(n, l) < n/4}. By applying Chernoff bounds, we can
find a C1 > 0 so that P{Bin(n, l) < n/4} < e−C2

1/2, when l = 1/4 + C1/
√

n.
To bound the second term (2), again apply Chernoff’s bounds to find C2 > 0,

such that for l = 1/4 + C2/
√

n,

nP{deg(x(1)) <
n

8
} = nP{Bin(n, l) <

n

8
} ≤ n exp

(
− n

32

)
,

so that for n large enough this term is overwhelmingly small. Therefore, for c ≥
max(C1, C2), and l = 1/4 + c/

√
n, we have

P{G 6∈ Π} ≤ e−c2/2 + n exp
(
− n

32

)
,

so that r(n, 1/2) ≤ 1/4 + c/
√

n, for a suitably chosen c.

Lemmata 3.1 and 3.2 show that for the graph property Π defined by:

G ∈ Π ⇔ min
u∈V

deg(u) ≥ |V |
4

,

we have:

rΠ(n, 1− ε) ≥ 1
4

+

√
log 1/2ε

2n
, when 0 < ε ≤ 0.5e−44/6

rΠ(n,
1
2
) ≤ 1

4
+

c√
n

,

Hence we have shown the d ≥ 2 case of theorem 1.2:
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Proof. [Theorem 1.2, lower bound for d = 1] Immediate from the last two
lemmata.

Theorem 3.3. For d ≥ 2, there exists an increasing property Π such that for
0 < ε < 1/2, the threshold width satisfies:

δ(n, ε) = Ω(n−1/d).

Proof. Let Π be the property that the graph is complete. This is trivially a mo-
notone property.

∆+

u

(a)

l

2∆−

(b)

Figure 1. Definition of ∆+ and ∆−.

Suppose 0 < ε < 1/2. Let u :=
√

d(1− 2∆+) (see figure 1(a)), for ∆+ such that

0 < ∆+ ≤ 1
n−1/d

[
min(

√
2ε, log 2/2)

]1/d

,

and pick G ∼ G(Xn;u). Fix a pair of diagonally opposite corner cubes with side
∆+, and consider the event that there is exactly one point in each. If this happens
then the graph is not complete, since the points are more than u apart. Hence:

P{G 6∈ Π} ≥
(

n

2

)
(∆d

+)2 · 2 · (1− 2∆d
+)n−2,

since ∆+ < (log 2/(2n))1/d. Thus, for large enough n we have

(1− 2∆d
+)n−2 ≥

(
1− 2 log 2

2n

)n−2

≥ 1
2
,

which implies that

P{G 6∈ Π} ≥
(

n

2

)
(∆d

+)2 ≥ ε.

The last inequality follows because we chose ∆d
+ ≤ n−1 × min(

√
2ε, log 2/2).

Therefore,

(1) r(n, 1− ε) ≥ u ≥
√

d(1− cε1/2d

n1/d
).

Now we shall bound r(n) above. To this end set l =
√

d− 1 + (1− 4∆−)2 (see
figure 1(b)). Now suppose that ∆− = (log ε−1)1/d/(4n1/d), and pick G ∼ G(Xn; l).
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Using elementary geometry it is easy to see that, if none of the n points lies in any
of the 2d cubes of side 2∆− at the corners of [0, 1]d, then the graph is complete.
Hence, for n large:

P{G ∈ Π} ≥ (1− 2d(2∆−)d)n ≥ exp(−n(4∆−)d).

where we have used the fact that 1−x ≥ e−x, when x ≥ 0, so that (1−x)n ≥ e−nx,
if x < 1. Since exp(−n(4∆−)d) = ε, by our choice of ∆−, it must be that

(2) rn(ε) ≤ l =

√
d− 1 +

(
1− (log ε−1)1/d

n1/d

)2

.

Putting equations (1) and (2) together:

δ(n, ε) = rn(1− ε)− rn(ε) ≥ u− l

≥
√

d
(
1− cε1/d

n1/d

)
−

√√√√d− 1 +

(
1−

(
log ε−1

n

)1/d
)2

=
√

d
(
1− cε1/d

n1/d

)
−

√
d− 2

(
log ε−1

n

)1/d

+
(

log ε−1

n

)2/d

=
√

d

(1− cε1/d

n1/d

)
−

√
1− 2

d

(
log ε−1

n

)1/d

+
1
d

(
log ε−1

n

)2/d


=
√

d
[(

1− c
( ε

n

)1/d
)
− 1

+
1
2

2
d

(
log ε−1

n

)1/d
(

1− 1
2

(
log ε−1

n

)1/d
)

+
1
8

4
d2

(
log ε−1

n

)2/d
(

1− 1
2

(
log ε−1

n

)1/d
)2

+ . . .
]

=
√

d

[
log1/d ε−1 − cdε1/d

dcn1/d
+ o

(
1

n1/d

)]

= Ω

(
log1/d ε−1

n1/d

)
.

Observe that for any κ > 0 constant, if ε = n−κ, our lower bound for d ≥ 3,
matches our upper bound on the threshold width, and is only a factor of Θ(log1/4 n)
away for d = 2. For any constant ε, the difference between the bounds is O(log1/d n)
and O(log3/4 n) respectively.

4. Bounding the bottleneck matching for d ≥ 3

We now present a simpler proof of Mn = Θ(rc) when d ≥ 3 than the proof
presented in Shor and Yukich (1991). We emphasise that even though we also
recursively sub-divide the cube, our principle is different. In our proof, at the end
of each step, the points are distributed uniformly in each subcuboid. This requires
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careful choice of the cutting plane and a linear transformation based on order
statistics. This however, permits us to bound the matching length via Chernoff
bounds, as opposed to estimating the aspect ratios of rectangular solids as in Shor
and Yukich (1991).

The basic idea is to divide the unit square into n equal boxes. Given n points
distributed uniformly on the square, move the points so that there is roughly a
single point in each box. Now consider the two samples of red and blue points.
Apply this process to both samples. Let ∆ be the maximum distance by which
a red point is shifted, and similarly, let ∆′ be the maximum shift for any blue
point, along any coördinate direction. Then the triangle inequality tells us that the
bottleneck matching is less than

√
d(∆ + ∆′ + n−1/d).

We shall now use this idea to bound the bottleneck matching in [0, 1]d.
To move each point into its unique box we follow a recursive process. We shall

provide only an informal description here, relegating the details to appendix A.
Moreover, for simplicity, we shall suppose n to be a power of 2. First divide the
square by drawing a vertical line so that there are exactly n/2 points in each half.
Transform the x-coördinates of the points in each half so that they are uniformly
distributed in [0, 1/2] and [1/2, 1]. Now repeat the process along the y-axis for each
rectangle, and then along the z-axis and so on. Repeat when all coördinate axes
have been done once, and so on. One can carry this process for log n steps so that
there is exactly one point in each box. However, for d ≥ 3 it is better to stop at
the jth step, where j < log n. Choose j = dd−1 log2(n/ log n)e. Then the side of
the box and hence the shift thereafter is ≤ 2−j . With this observation we can now
show

Proposition 4.1. If Mn is the weight of the bottleneck matching on a geometric
random bipartite graph on 2n points in the [0, 1]d, for d ≥ 3, then for any β > 1,
we can find a constant cd > 0 such that:

P{Mn > cdβrc} ≤
1

nβ2−1
,

so that Mn = O(rc) whp.

Proof. To estimate Mn, we compute the total shift experienced by an arbitrary
point. To this end, we shall find the shift along each axis, and so shall concentrate
on one coördinate at a time. Let x1, . . . , xd denote the coördinates. We regard a
step as one cycle in which divisions along all axes have been completed, according
to the scheme described above. Therefore, if a step begins with a d-dimensional
cube of side l containing n points, by the end of the step, the cube has been divided
into 2d cubes of side l/2, with n/2d points each.

Let ni = n/2d(i−1) denote the number of points in a subcube at the beginning
of the i-th step, and li = 2−i+1 denote the length of the side of the cube. Lemma
A.2 implies that for any point in the left half of such a subcube, the shift δ

(k)
i in

the xk-direction experienced during the ith step satisfies:

P{|δ(k)
i | > γi} ≤ 2 exp

(
−γ2

i

l2i
ni

)
, for any γi > 0.
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Therefore, if δi is the total shift suffered by a point during the ith step

P{|δi| > γi} ≤ P{ max
1≤k≤d

∣∣∣δ(k)
i

∣∣∣ > γi} ≤
d∑

k=1

P{|δ(k)
i | > γi}

≤ 2d exp
(
−γ2

i

n

2(i−1)(d−2)

)
.

Now fix a β > 1, and choose γi such that γ2
i ·n/2(i−1)(d−2) = β2 log n. Observe that

with this choice, γi is decreasing with i only when d > 2. Let ∆ be the maximum
total shift experienced by any point. Then it must be that:

P

{
|∆| >

√
d

j∑
i=1

γi

}
≤ 2dnj exp

(
−β2 log n

)
,

which follows from taking the union bound over all n points, and all d coördinates,
and the fact that after j steps, we divided a given coördinate at most j times. Notice
that after j = log n steps, the side of the subcube reduces to 2− log n+1 = Θ(1/n),
and therefore subsequent shifts cannot move the point by more that O(1/n). Hence
we can halt the subdivisions after log n steps, knowing that the matched point is
already within O(1/n). Hence,

P

{
|∆| >

√
d

log n∑
i=1

γi

}
≤ 2dn log n exp

(
−β2 log n

)
,

However, with a little bit of work, one can see that:
log n∑
i=1

γi = β

√
log n

n

log n∑
i=1

2
(i−1)(d−2)

2

≤ 2 · β
√

log n

n
2

d−2
2 · 1d (log2 n−log2 log n)

= 2β

(
log n

n

) 1
d

.

Recall that (log n/n)1/d = rcπ
1/d
d , so that we have just shown:

j∑
i=1

γi ≤ 2βπ
1/d
d rc

Therefore, we have:

P
{
|∆| > 2

√
dβπ

1/d
d rc

}
≤ P

{
|∆| >

√
d

j∑
i=1

γi

}
≤ 2d log n

nβ2−1
.

After j steps the side of the cube is 2−j and hence if we arbitrarily move points
within the subcube, the extra shift is at most

√
d2−j . Therefore, if we choose cd to

be any constant larger than
√

d + 2
√

dπ
1/d
d , we get |∆| ≤ cdβrc with probability at

least 1− n1−β2
.

We note en passant that for the above method to provide a bound in the d = 2
case, one must proceed for log n steps, so that there is only a single point in each
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box. However, in this case, one only gets an O(rc log n) bound, which is off by
log1/4 n from the sharp bound in Leighton and Shor (1989).

5. The bound for d = 1

Given n points uniformly distributed in [0, 1], follow the recursive division pro-
cedure described in the last section. In this case, at each step the number of points
decreases by half. Therefore, we obtain a stronger result:

Proposition 5.1. For any β > 0

P{M (1)
n ≥ β/

√
n} = O

(
exp(−cβ2)

)
for some positive constant c.

Proof. For the sake of simplicity we assume that n = 2k for some k ∈ N, this makes
no difference to the proof except for simplifying some expressions. In the ith step
there are 2i sets of n/2i points each. Therefore, if δi is the shift of an arbitrary set,
then for βi > 0, by lemma A.2:

P{|δi| ≥
βi√
n
} ≤ 2 exp(−2iβ2

i ),

so that the maximum shift ∆ of any point satisfies:

P{max |∆| ≥
∑

i βi√
n
} ≤ 2

∑ n

2i
exp(−2iβ2

i ).

Choose the βis such that 2iβ2
i = β2

0 + i, for some β0. Then
∑

i βi ≤ Kβ0 for some
suitable constant K > 0. Taking β = Kβ0, we get:

P{M (1)
n ≥ β√

n
} ≤ c′ exp(−cβ2),

for some constants c, c′ > 0.

6. Conclusion

We have shown that all monotone graph properties have a sharp threshold for
random geometric graphs. Moreover, this threshold is sharper than the one for
Bernoulli random graphs.

We have a sharp result for d = 1. For d ≥ 3 we believe the upper bound of O(rc)
to be actually tight. For d = 2 case we believe the upper bound to be O(rc) as
well, though this cannot be obtained via bottleneck matchings.
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Appendix A. Estimating the shift in each recursive step

To establish a bound on the amount by which each point is moved, we must
examine the ‘shrinking’ and ‘stretching’ process formally. For simplicity we con-
centrate on the d = 2 case. Ignore the y-coördinates. Then we have n iid Unif[0, 1]
points x1, . . . , xn. It is well known (Nevzorov (2001)) that the k smallest points
are iid uniform in [0, x(k+1)), and that the n − k largest points are iid uniform in
(x(k), 1], where x(i) is the ith order statistic. Suppose that n is even—the anal-
ysis below applies mutatis mutandis when n is odd. Set δl = x( n

2 +1) − 1/2 and
δr = 1/2− x( n

2 ). Then transform the points as follows:

x(i) 7→

{
x(i) 1/2

1/2+δl
, for i = 1, . . . , n

2 ,

1− (1− x(i)) 1/2
1/2+δr

, for i = n
2 + 1, . . . , n.

This transform leaves the smallest n/2 points uniformly distributed in [0, 1/2] and
the largest n/2 points uniformly distributed in [1/2, 1]. This process is now repeated
dlog ne times alternating the x- and y-coördinates. The maximum shift at any step
is not more than |δl| for the points on the left and not more than |δr| for points on
the right. We use shall δ = max{δl, δr}.

Let Xt be the number of points in [0, t] prior to the transformation. The following
result is immediate:

Lemma A.1. For 0 < γ < 1/2,

P {|δ| > γ} ≤ 2P
{

X1/2+γ <
n

2

}
.

To bound the last probability, observe that Xt is just the sum of n iid Bernoullis
that are 1 with probability t. Hereafter β > 0 is some constant.

Lemma A.2. The shift δ of any point in the recursion step satisfies:

P {|δ| > γ} = O
(
exp

(
−n′(γ/l)2

))
,

where n′ is the number of points in the subcuboid being divided, and l is length of
the side that is being divided.

Proof. The proof is a straightforward application of Chernoff’s bound. Assume
wlog that l = 1.

P{|δ| > γ} ≤ 2P{X1/2+γ <
n′

2
}

= 2P
{

X1/2+γ < n′
(

1
2

+ γ

)
− n′γ

}
≤ 2 exp

(
− n′2γ2

2n′(γ + 1/2)

)
≤ 2 exp

(
−n′γ2

)
, since γ ≤ 1/2.

Generalisation to the d ≥ 3 case is straightforward.
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