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Abstract

DNA self-assembly is emerging as a key paradigm for nano-

technology, nano-computation, and several related disci-

plines. In nature, DNA self-assembly is often equipped with

explicit mechanisms for both error prevention and error cor-

rection. For artificial self-assembly, these problems are even

more important since we are interested in assembling large

systems with great precision. So far, theoretical studies of

DNA self-assembly have primarily focused on the efficiency

of the assembly process in terms of the program size and

the running time. In this paper, we perform a preliminary

study of algorithms for DNA self-assembly that are both ro-

bust and efficient.

Strand invasion is an important error-correction mech-

anism observed in several natural self-assembling sys-

tems. We first define invadable self-assemblies as self-

assembling systems which can effectively use the strand in-

vasion mechanism for error-correction. We then show that

O(log2 n/ log log n) tiles are sufficient to assemble an n × n

square in this model. The running time of our system is

Õ(n). We obtain our result by growing a counter which

simulates Chinese remaindering. The running time and the

program size of our invadable system are within polyloga-

rithmic factors of known lower bounds for general systems,
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i.e. the efficiency penalty for obtaining robustness is small

in our model. We also show how to simulate an arbitrary

Turing machine using an invadable self-assembly system.

1 Introduction

Self-assembly is the ubiquitous process by which objects
autonomously assemble into complexes. Nature pro-
vides many examples: Atoms react to form molecules.
Molecules react to form crystals and supramolecules.
Cells sometimes coalesce to form organisms. It has
been suggested that self-assembly will ultimately be-
come an important technology, enabling the fabrica-
tion of great quantities of small complex objects such
as computer circuits. DNA has emerged as an impor-
tant component to use in artificial self-assembly of nano-
scale systems due to its small size, its incredible ver-
satility, and the precedent set by the abundant use of
DNA self-assembly in nature. Accordingly, DNA self-
assembly has received significant attention over the last
few years, both by practitioners [13, 14, 11], and by the-
oreticians [5, 6, 12, 1, 7, 8, 2, 3]. The theoretical results
have focused on efficiently assembling structures of a
controlled size (the canonical example being assembly
of n × n squares). In this paper, we perform a prelim-
inary study of algorithms for DNA self-assembly that
are both robust and efficient.

The Tile Assembly Model, originally proposed by
Rothemund and Winfree [8], and later extended by
Adleman et al. [2], provides a useful framework to study
the efficiency (as opposed to robustness) of DNA self-
assembly. In this model, a square tile is the basic unit
of an assembly. Each tile has a glue on each side; each
glue has a label and a strength (typically 1 or 2). A
tile can add to a position in an existing assembly if at
all the edges where this tile “abuts” the assembly, the
glues on the tile and the assembly are the same, and
the total strength of these glues is at least equal to a
system parameter called the temperature (typically 2).
Assembly starts from a single seed crystal and proceeds
by repeated accretion of single tiles. The speed of an
addition (and hence the time for the entire process



to complete) is determined by the concentrations of
different tiles in the system. Details are in Section 2.

Rothemund and Winfree [8] gave an elegant self-
assembling system for constructing squares by self-
assembly in this model. Their construction of n ×
n squares requires time Θ(n log n) and program size
Θ(log n). Adleman et al. [2] presented a new construc-
tion for assembling n × n squares which uses optimal
time Θ(n) and optimal program size Θ( log n

log log n
). Both

constructions first assemble a roughly log n×n rectangle
(at temperature 2) by simulating a binary counter, and
then complete the rectangle into a square. Later, Adle-
man et al. [3] studied several combinatorial optimization
problems related to self-assembly. Together, the above
results are a comprehensive treatment of the efficiency
of self-assembly, but they do not address robustness.

Robust Self-Assembly and Strand Invasion:
In nature, DNA self-assembly is often equipped with
explicit mechanisms for both error prevention and error
correction. For artificial self-assembly, these problems
are even more important since we are interested in
assembling large systems with great precision. In
reality, several effects are observed which lead to a loss of
robustness compared to the above model. The assembly
tends to be reversible, i.e., tiles can fall away from an
existing assembly. Also, incorrect tiles sometimes get
incorporated and locked into a growing assembly, much
like defects in a crystal. However, for sophisticated
combinatorial assemblies like counters, which form the
basis for controlling the size of a structure, a single error
can lead to assemblies drastically larger or smaller (or
different in other ways) than the intended structure.
Finally, the temperature of the system can be controlled
only imperfectly.

To address these issues, we need greater under-
standing of natural tools used to correct DNA self-
assemblies, model them algorithmically, design robust
self-assembling systems which incorporate these tools,
and analyze the performance of these new system. This
is an exciting direction. In this paper, we present one
such paradigm based on the notion of strand invasion
observed in natural systems [14].

Consider DNA strands 1, 2, and 3 in Figure 1(A).
DNA strands 3 and 1 are complementary to each other,
and we would like them to attach to each other. DNA
strand 2 is complementary to a part of strand 1, but
not to the entire strand 1. Imagine that DNA strands
2 and 1 are attached to each other. Strand 3 can still
form a weak bond with the remaining unpaired portion
of strand 1. Now, strands 3 and 2 compete for that part
of strand 1 which is paired with strand 2. Since strand 3
is anchored, it ultimately wins, and “invades” strand 2
off. This can be modeled using a random walk on a line;
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Figure 1: Illustrating strand invasion

we omit the details. In Figure 1(b), each of the incorrect
strands 2 and 4 has attached to one half of strand 1,
leaving no “foothold” for strand 3. Our basic idea is
to design tile systems such that every correct tile that
must attach to a growing assembly has an opportunity
to get a foothold and invade incorrect tiles away. We
call such tile systems invadable; a more formal definition
is presented in Section 2. Invadable assemblies appear
to be a good first step towards obtaining robustness in
the self-assembly process.

Quite apart from their connection to strand inva-
sion, invadable systems may well be of interest as sub-
routines for other mechanisms to obtain robustness –
since a correct tile always has a foothold, an error can
only happen from one direction at any given site which
might make it easier to detect and repair.

Our Results: We observe in Section 3.1 that the
constructions by Adleman et al. [2], as well as the
one by Rothemund and Winfree [8] to assemble n × n
squares are non-invadable. Winfree’s tile system [11] to
assemble a Sierpinski triangle, a useful fractal shape, is
also non-invadable. Hence, the problem of designing
invadable systems to build structures is non-trivial
and interesting. We then show (section 3.2) that a
constant number of tiles can be used to extend an n× 1
rectangle into an n×n square using invadable assemblies
at temperature 2; this can not be accomplished at
temperature 1 in the non-invadable case and hence gives
us hope that invadable self-assemblies can be used for
additional non-trivial constructions. Our main results
are the following:

1. We show (Section 4) how to construct a K × n
rectangle, where K = O(log n/ log log n), in the
invadable self-assembly model at temperature 2.
We use O(log2 n/ log log n) tiles in our construc-
tion. Our construction involves growing a counter
whose height is controlled using the Chinese re-
mainder theorem. As an intermediate step, we ob-
tain a system that works at temperature 3, and



then convert it into a temperature 2 system us-
ing twice the number of tiles. Using results from
Section 3.2, this rectangle can be converted into a
square. The running time1 in our construction is
Õ(n). Both the number of tiles and the assembly
time are only polylogarithmic factors away from the
lower bounds even without the invadability restric-
tion. Closing the gap between the lower and upper
bounds remains an important open problem.

2. We then prove (Section 5) that invadable tile sys-
tems can simulate a Turing machine, matching
the computational power of unrestricted tile sys-
tems [11]. To achieve this, we first define recti-
linear tile systems, where the assembly can grow
only in one horizontal direction (either east to west
or west to east) and in only one vertical direction.
We show how any rectilinear tile system that has K
tiles can be made invadable with only an O(log K)-
factor increase in the number of tiles. Since Turn-
ing machines can be simulated using a rectilinear
tile system [11], invadable tile systems are also uni-
versal. As an illustrative example, we show that
the Sierpinski tile system can be made invadable.
All our constructions in Section 5 leave holes in the
assembled structure. Avoiding the use of holes (or
proving that they are necessary) remains an inter-
esting open problem.

So far, the ideas presented in this paper have not
been investigated in a laboratory setting. An alternate
approach to error-correction would be to simulate an
error-correction code. Winfree’s lab [10] has recently
used this approach to reduce the probability of mis-
insertions from p to p2 when assembling a structure
that resembles a Sierpinski triangle. Another approach
would be to use the idea of step-wise self-assembly pro-
posed by Reif [6]. We have made some preliminary
progress in using the step-wise model; details are omit-
ted from this version. We are optimistic that the results
from our work as well as these alternate approaches
would serve as useful rules of thumb for achieving ef-
ficient and robust DNA self-assembly in practice.

2 Definitions

The Tile Assembly Model: The tile assembly
model [8, 2] extends the theoretical model of tiling by
Wang [9] to include a mechanism for growth based on
the physics of molecular self-assembly. We will present
a succinct definition, with minor modifications for ease
of explanation.

1The Õ(n) notation hides polynomial factors of log n.

A tile is an oriented unit square with the north,
east, south and west edges labeled from some alpha-
bet Σ of glues. For each tile t, the labels of its four
edges are denoted σN (t), σE(t), σS(t), and σW (t).
Sometimes we will describe a tile t as the quadru-
ple (σN (t), σE(t), σS(t), σW (t)). Consider the triple
< T, g, τ > where T is a finite set of tiles, τ ∈ Z>0

is the temperature, and g is the glue strength function
from Σ × Σ to Z≥0, where Σ is the set of glues. It is
assumed that for all x, y ∈ Σ, (x 6= y) ⇒ g(x, y) = 0 .
A configuration is a partial function from Z2 to T .

Let C and D be two configurations. Suppose there
exist some t ∈ T and some (x, y) ∈ Z2 such that (x, y) 6∈
Dom(C), D(x, y) = t and D = C except at (x, y). Let
fN,C,t(x, y) = g(σN (t), σS(C(x, y + 1)) if (x, y + 1) ∈
Dom(C) and fN,C,t(x, y) = 0 otherwise. Informally
fN,C,t(x, y) is the strength of the bond between C
and the north side of t. Define fS,C,t(x, y), fE,C,t(x, y)
and fW,C,t(x, y) similarly. Then we say that tile t
is attachable to C at position (x, y) iff fN,C,t(x, y) +
fS,C,t(x, y) + fE,C,t(x, y) + fW,C,t(x, y) ≥ τ , and we
write C →T D to denote the transition from C to D
in attaching a tile to C at position (x, y). Informally,
C →T D iff D can be obtained from C by adding a tile
t such that the total strength of interaction between t
and C is at least τ .

A tile system is a quadruple T =< T, s, g, τ >,
where T, g, τ are as above and s ∈ T is a special tile
called the “seed”. We define the notion of a derived
supertile of a tile system T =< T, s, g, τ > recursively
as follows:

1. The configuration Γ such that Dom(Γ) = (0, 0) and
Γ(0, 0) = s is a derived supertile of T, and

2. if C →T D and C is a supertile of T, then D is
also a derived supertile of T.

Informally, a derived supertile is either just the seed
(condition 1 above), or obtained by legal addition of a
single tile to another derived supertile (condition 2).
We will often omit the word “derived” in the rest of the
paper, and use the terms “seed supertile” or just “seed”
or s to denote the special supertile in condition 1.

A terminal supertile of the tile system T is a derived
supertile A such that there is no supertile B for which
A →T B. If there is a terminal supertile A such that
for any derived supertile B, B →∗

T
A, we say that the

tile system uniquely produces A. Given a tile system
T which uniquely produces a supertile, we say that the
program size complexity of the system is |T | i.e. the
number of tile types.

A shape is a finite connected subset of Z2. The
shape of a supertile Γ is Dom(Γ). A tile system T is said
to uniquely produce a shape W iff it uniquely produces



some supertile Γ and the shape of Γ is identical (upto
translation) to W .

We will now add the notion of running time to
this model. We associate with each tile t ∈ T a
nonnegative probability P (t), such that

∑
t∈T P (t) = 1.

We assume that the tile system has an infinite supply
of each tile, and P (t) models the concentration of tile
t in the system. Now self-assembly of the tile system
corresponds to a continuous time Markov process where
the states are in a one-one correspondence with derived
supertiles, and the initial state corresponds to the seed
s. Suppose a single tile t can be added to supertile B
to produce supertile C. Then there is a transition from
state B to C in the Markov chain, and the rate of the
transition is P (t). Suppose the tile system produces a
unique terminal supertile AT . In the Markov chain, the
time for reaching AT from s is a random variable. The
“running time” of the self-assembly process is defined
as the expected value of this random variable.

Note that the Markov process modeling the self
assembly process is inherently parallel. For details
see [2].

Invadable Self-Assembly: Consider a tile system
T, a supertile Γ of T and a tile t ∈ T that is attachable
to Γ at some position p. We say t has a north-foothold
in Γ at p iff fN,Γ,t(p) > 0 and no tile in T but t has glue
σN (t) on its north edge. We define (south,west,east)-
foothold similarly.

Definition 2.1. We say tile t has a foothold in Γ at p
iff t has a north, south, east or west-foothold in Γ at p.

Definition 2.2. We say the attachment of t to Γ at p
is safe iff t has a foothold in Γ at p and no tile in T
other than t is attachable to Γ at p.
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Figure 2: The attachment of A at p is safe if τ = 2 since

A has a south-foothold, while the attachment of B at p′ is

non-safe.

Figure 2 shows an example of a safe and of a non-
safe attachment at temperature 2. The attachment of
A to the supertile displayed in the figure at p is safe
because no tile other than A has glue y on its south
side, i.e. A has a south-foothold, and neither B nor
C can attach at p. The attachment of B at p′ is not
safe because B has no foothold in the supertile at p′

even though B fits perfectly there. In a lab experiment

with tiles made out of DNA, it could be the case that
B attaches at p though the bond will be weak because
the strength of x is 1. A has a chance of forming a
bond using its south glue and invade B off. For the
attachment of B at p′ the former reasoning is not true
anymore. An ”incorrect” A tile could form a weak bond
on its north side while an ”incorrect” C tile forms a
weak bond on its east side. Then, B would not be able
to invade A and C off. Hence, it seems plausible to
posit that safe attachments reduce the probability of
tile mis-insertions.

Definition 2.3. A tile system T is invadable if and
only if all attachments to all supertiles that can be
assembled from a seed supertile are safe.

Intuitively, we are saying that every possible attach-
ment to every supertile that can be derived from the
seed has to be safe. Note that in this paper we are not
extending the self assembly models in [8] and [2]. In-
vadable tile systems form a proper subset of all the tile
systems allowed in [8] and [2]. Invadable systems are in-
teresting because they may lead to less error-prone self
assembly processes.

3 Preliminaries

We first show that existing square constructions are
non-invadable, and then show that invadable systems
at τ = 2 are strictly more powerful than regular tile
systems at τ = 1.

3.1 Non-invadability of existing tile systems for
assembling counters Adleman et al. [2] described a
τ = 3 tile system of size O(1) that uniquely produces a
rectangle on top of a seed row. The self assembly process
resembles a binary counter that takes its initial value
from the bottom row. A simpler τ = 2 tile system that
represents a binary counter was described later in [4].
These constructions are interesting because they prove
that τ > 1 systems can be smaller and run faster than
τ = 1 systems.

Figure 3(a) shows the tile system described in [4] as
well as a derived supertile from a seed row representing
the binary number 0001. Observe that tile labeled as
”0′” is the only one attachable to the left of the only
tile in the top row. That attachment is not safe because
the tile with label ”1′” has glue c on its east side and
tile ”O∗” has glue n on its south side. Hence, the tile
system is not invadable. The earlier constructions [8, 2]
of counters are also non-invadable, and it is not obvious
whether or not an invadable counter can be created.
Other interesting constructions such as the Sierpinski
tile system described in [11] are also non-invadable.



a

c 1s1 ss

0c 1 *

*

0

0 s

u

(a)

c0’1’

i

i

n

z

b

z

u

z

n

z

u

a

c

n

n

c

u

u

c

bu

i

1

n n

z

a

c

Seed row

f

f

f

Ff yf

x

A

f

uy

z

x

B uu

z

z

C

z

x

B

z

z

C

z

z

C

z

z

uCC

z

zf

f

Ff

B

z

B

z

C

z

C

z

C

A

f

A C

B

C

u

z

C

u

z

z

u

f

f

x
A

f

f

F

F C

C

F

f

f

(b)

Figure 3: (a) A tile system at τ = 2 that behaves as a binary counter and a derived, non-terminal supertile. (b) A tile

system that solves SQC(6) and a derived, non-terminal supertile. The shaded areas indicate where attachments can occur.

3.2 On the power of invadable systems First,
observe that if a τ = 1 system T uniquely produces
some shape S, then T is invadable, because a non-safe
attachment would immediately contradict the unique
production of S. We will now present a problem that
can be solved more efficiently in terms of both program
size and time complexity with τ > 1 invadable tile
systems than with regular tile systems at τ = 1.

The Square completion problem SQC(n):
Given a positive integer n find a tile system T, such
that T uniquely produces an n × n square from a seed
supertile whose shape is a horizontal line of length
n. We are allowed to assume arbitrary glues on the
north sides of tiles on the line. If T satisfies the above
definition, then it is said to solve SQC(n).

We observe now that if a tile system T solves
SQC(n) at τ = 1, then |T| = Ω(n), because of the
arguments presented by Rothemund [7]. Based on the
results in [2], we also observe that the time complexity
for producing the square from the seed in T is Ω(n2) if
τ = 1. The next theorem gives upper bounds for time
and space complexity of τ = 2 invadable solutions to
SQC.

Theorem 3.1. For all positive integers n, there exists a
τ = 2 invadable system T and a concentrations function

P for T such that T solves SQC(n), |T| = O(1) and
the time to complete the square is O(n).

Proof Outline: The proof is constructive. For all
n we use the same set of tiles depicted in Figure 3(b).
We will refer to the tiles by the labels on their centers,
so T = {A, B, C, F}. Make the set of glues equal to
{f, u, v, x, y, z}. For a given n, we define the seed row
s in such a way that the west-most tile is F , the tile
immediately to the east of F is B and all the remaining
tiles in the seed are C tiles. We can prove by induction
that T uniquely produces the n × n square and all
attachments are safe.

To prove the O(n) time bound we make P (A) =
P (B) = P (C) = P (F ) = 1/4 and we analyze the time
complexity using the techniques described in [2]. 2

Theorem 3.1 shows that there are invadable so-
lutions to SQC which are asymptotically faster and
smaller than the fastest or smallest solutions at temper-
ature 1. This gives us hope that additional non-trivial
assemblies are possible using invadable systems without
sacrificing efficiency too much. Also, the square com-
pletion problem is a useful subroutine in Section 4.



4 Invadable Assembly of n × n squares using
Chinese Remaindering

We describe a tile system which assembles into an
n×n square and uses only a polylogarithmic number of
different tiles. The system works at temperature 3, and
results in invadable self-assembly.

Our tile system first assembles a k × (n − k)
rectangle (that we call the counter) where k is roughly
log n/ log log n, and then completes this into an n × n
square. Completing a line to obtain a square using
invadable self-assembly has already been described in
Section 3.2. The process for converting an a×b rectangle
into an (a + b) × (a + b) square is very similar, and we
will not repeat our earlier arguments.

First, we pick k distinct primes p1, p2, . . . , pk such
that Πk

i=1pi ≥ n. The tile system contains a seed tile s,
and k − 1 “base” tiles B2, B3, . . . , Bk; we also use the
term B1 to denote s. For each prime pi, the tile system
contains pi “counter” tiles labeled Ci,0, Ci,1, . . . , Ci,pi−1.

The north side of the tile Ci,j has glue gi,j ; all the
gi,j ’s are distinct. The south side of tile Ci,j+1 also has
glue gi,j . Here additions are modulo pi, so Ci,pi

is the
same as Ci,0. The glue gi,j has strength 3 if j 6= pi − 1
and strength 2 otherwise. All tiles Ci,j have the same
glue α of strength 1 on their west and east sides.

There is no glue on the south sides of the Bi tiles.
There is no glue on the east side of tile B1 or the west
side of tile Bk. There is a glue βi of strength 3 on the
west side of tile Bi for 1 ≤ i < k. All the βi’s are
distinct. The same glue βi occurs on the east side of
tile Bi+1. The north glue of tile Bi is the same as the
north glue on tile Ci,0.

We will give an informal description of the as-
sembly process. The final counter will be composed
of k columns. The base row will have the tiles
B1, B2, . . . , Bk. For each prime pi, there is going to be
a “counter column” which will repeatedly count from
0 to pi − 1 and then roll over to 0 again. Notice that
the glues are defined such that in the i-th counter col-
umn, the tiles have sufficient strength to count from 0 to
pi−1. But then to roll over to 0, one of the the adjacent
columns needs to provide a glue of strength one. If even
one tile in a row is of type Ci,j for j 6= pi − 1 then that
tile can attach a tile of type Ci,j+1 to its north using the
glue gi,j of strength 3. This provides a glue of strength
1 to the east and west, and inductively, allows an entire
new row to assemble. When all tiles in a row are of type
Ci,pi−1 then the assembly process stops. Figure 4(a) il-
lustrates the assembly process for k = 2, p1 = 2, p2 = 3.

Since the primes are all distinct and the base tiles
are designed to look like tiles Ci,0 on the north, the
Chinese remainder theorem tells us that the counter will
grow to have Πk

i=1pi rows. The number of base tiles

in the systems is k and the number of counter tiles is∑k

i=1 pi. Hence the total number of tiles is
∑k

i=1(pi+1).
Two points are worth noting:

1. Invadability: Consider the assembly process. Tile
Bi can not attach in the base row till the tile to its
east (i.e. tile Bi−1) is in place, except of course for
the case i = 1 since B1 is the seed. For tiles not in
the base row, a tile can only attach when the tile
to its south is in place. But the glue on the west
sides of the base tiles is unique, and the glue on
the south side of each counter tile is also unique.
Hence, whenever a tile X is attachable at position
P , there is at least one glue at that position where
only tile X can attach. Further, it is easy to see
that the remaining glues at that position can not
have a total strength greater than 2.

2. Height control: By the Chinese remainder theorem,
each vector 〈x1, x2, . . . , xk〉 occurs exactly once
as the vector of labels in a row in the above
construction, where 0 ≤ xi < pi. Let V (r) =

〈x
(r)
1 , x

(r)
2 , . . . , x

(r)
k 〉 denote the vector which occurs

in the r-th row, starting from the base. Thus,
V (1) = 〈0, 0, . . . , 0〉 and V (Πpi) = 〈p1 − 1, p2 −
1, . . . , pk − 1〉. In order to make a k × H square
for H ≤ Πk

i=1pi, we can make the north glue of
tile Bi resemble the north glue of tile C

i,x
(r)
i

where

r = Πk
i=1pi−H +1. This would be like starting the

counting from the vector V (r) and going to V (Πpi).

Now consider the size of the tile system. We
want to choose a number k as well as distinct primes
p1, p2, . . . , pk such that Πk

i=1pi ≥ n but the number of

tiles (i.e.,
∑k

i=1(pi + 1)) is small.
We can choose log n/ log log n primes between log n

and 3 log n. Their product is at least n and their sum
is at most 3 log2 n/ log log n.

Now assign the same concentration to each tile.
We will use the Õ notation to hide factors which are
polynomial in log n. Each time a tile is attachable, it
takes an expected time Õ(1) for it to attach. Since there
are Õ(n) positions in the counter, it takes Õ(n) expected
time to assemble the counter. The time to complete the
rectangle into a square can easily be made O(n) using
arguments from an earlier work by Adleman et al. [2].

Given the tile system and the discussion above, the
following theorem can be derived easily. We omit a
formal proof.

Theorem 4.1. There exists an invadable tile system
with O(log2 n/ log log n) tiles which uniquely produces
an n × n square in expected time Õ(n).
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In the above construction, a newly attaching tile
can have competitors on both the east and the west,
but only one foothold on the south. Thus, the correct
tile may have to invade off two incorrect tiles (see
Figure 4(b)). We now describe how to modify our
construction to reduce the temperature to 2 and also
eliminate the above problem in the process. The basic
intuition is to split the column corresponding to each
prime into two columns. Since each column only
interacts with one other prime’s column, each newly
attaching tile can only have competitors on the east or
the west, but not at both places.

Theorem 4.2. There exists an invadable tile system
with O(log2 n/ log log n) tiles which uniquely produces
an n×n square in expected time Õ(n) at temperature 2.

Proof. Since the “square completion problem” de-
scribed in Section 3.2 already uses temperature 2, we
just have to demonstrate construction of a counter at
temperature 2. Our proof is constructive: we use a sim-
ple variation of Chinese Remainder system described
above.

For each prime pi, we construct two columns
Ci1 and Ci2 with the same period pi. Namely,
column Ci1 has tiles Di1,1, Di1,2, ..., Di1,pi

; col-
umn Ci2 has tiles Di2,1, Di2,2, ..., Di2,pi

. For all
i and k, Di1,k = (Gi1,k, G1, Gi1,k−1, G2), Di2,k =
(Gi2,k, G2, Gi2,k−1, G1). The glues Gi1,k and Gi2,k have
strength 2 for k = 1, 2, . . . , pi−1. The glues Gi1,pi

=
Gi1,0 and Gi2,pi

= Gi2,0 have strength 1. Glue G2 has
strength 2 and Glue G1 has strength 1.

It is easy to see that this tile system is invadable and
uniquely produces a rectangle of height p1∗p2∗ ...∗pn at
temperature 2. We can use O(log n/ log log n) different
primes between log n and 3 log n as before.

5 Universality of invadable systems

In this section, we show that we can use invadable tile
systems to perform universal computation. We will do
this by constructing an invadable system to simulate
the Sierpinski tile system described below, and then
generalize this method to a large class of tile systems.

The Sierpinski tile system by Winfree [12] assem-
bles a useful and well-known fractal shape. It con-
sists of seven tiles. In this system, the seed tile is
at the southwest corner of all derived supertiles. An-
other tile builds a vertical line on top of the seed
and a third tile builds a horizontal line to the east
of the seed. These tiles are called boundary tiles.
The core computation is performed by four rule-tiles
S0,0, S0,1, S1,0, S1,1. Each tile Sx,y can be described by
the quadruple (x xor y, x xor y, y, x), where all glues
are of strength 1. At temperature 2, the system grows
from south and west to north and east. In each step,
a rule-tile that matches with both glues on the south
and west will attach and provide glues on its north and
east sides. Conceptually, each rule-tile reads two inputs
(i.e. the glues on its west and south sides), computes
the xor of the inputs and outputs the result on its north
and east sides. We observe that the system is not in-
vadable since every rule-tile can be blocked by two other
partially matched rule-tiles.



Lemma 5.1. The Sierpinski tile system described above
can be simulated by an invadable system.

Proof Outline: The proof is constructive. We will
use a 3 by 3 square of tiles (called a block) to simulate
one individual tile in the original system. We will
use coordinates to refer to positions within a block.
Position (1, 1) is the south-west corner, (1, 3) is the
south-east corner of a block and so forth. Each block
uses the glues provided by two other blocks on its south
and west to grow and provides glues on its east and
north sides for future growth. There are four blocks
B00, . . . , B11 corresponding to the four original rule-
tiles. See Figure 5 for a description of the four blocks,
the glues on their boundaries, and the tiles that compose
them. Note that some edges do not have any glue. In
the same figure we also describe the strength of each
bond. The details of the glue assignment to edges that
are not part of the block boundary are omitted.

The tiles T00A, T01A, T10A, T11A have the function of
the original rule-tiles, i.e. computing xor of the inputs,
but there are two locations where these tiles can attach.
T00A and T01A can only attach at position (1, 1) in a
block while T10A and T11A can only attach at position
(2, 2). Our tile system is designed in such a way that in
the final assembly, only one of two these locations will
have a tile while the other position will be empty. Once
one of these four tiles is added to the assembly, its north
and east sides of will provide strength 2 glues that allow
tiles to attach at positions (1, 3),(2, 3),(3, 3),(3, 2) and
(3, 1). These tiles provide glues that allow new blocks
to start growing.

We will now describe how B01 grows. B01 can only
grow on the north side of either B01 or B10 and to the
east of either B00 or B11. The first tile to be attached is
either T01A at (1, 1) or T1S at (2, 1). After T10A attaches,
T01B... T01G can be attached in that order. The analysis
for B10 is similar and hence we omit it.

The growth of B11 is as follows: B11 can only grow
on the north side of either B01 or B10 and to the east
of either B10 or B10. The first tile to be attached is
either T1W at (1, 2) or T1S at (2, 1). After both T1W

and T1S are in place, T11A becomes attach able. After
T11A attaches, T11B...T11G can be attached completing
the block. The analysis for B00 is similar.

Note that in the final assembly, all B11 and B00

blocks will have their respective (1, 1) positions empty.
All B01 and B10 blocks will have their respective (2, 2)
positions empty.

In this construction, we can show that each block
can actually perform the function of one tile in the
original Sierpinski tile system. It is easy to show that we
can use 7 tiles (one at the corner, three tiles on each side)
to replace the boundary tiles to get the same pattern.

In our system, T0S, T1S and T1W are
uniquely matched with one of the other blocks;
T00A, T01A, T10A, T11A are uniquely matched with the
glue on its south side. All the output tiles are uniquely
determined by the tile attached at (1, 1) or (2, 2), so
the tile system is invadable. 2

We will now define a class of tile systems that can
be simulated with invadable systems. A temperature-2
tile system is an SW-system iff all of the following are
true:

1. The strength of all glues is 1.

2. Each tile can be uniquely identified by its south and
west glues, i.e., any two different tiles must either
have different south glues, or different west glues,
or both.

3. For all positions p for all derivable supertiles of the
system, if a tile t is attachable at p then positions
p + (−1, 0) and p + (0,−1) are occupied (i.e. there
are already tiles attached to the immediate south
and the immediate west of the newly attaching tile)
while p + (1, 0) and p + (0, 1) are empty.

Note that since in an SW-system a tile t can be
identified by the ordered pair (σS(t), σW (t)), there is a
function F : Σ2 → T such that t = F (σS(t), σW (t)) for
all tiles t in the tile set. For all (g1, g2) in Dom(F ),
we define N(g1, g2) = σN (F (g1, g2)), and E(g1, g2) =
σE(F (g1, g2)). Conceptually, the attachment of a tile
to a supertile can be viewed as evaluating N and E.

We can similarly define SE, NW, and NE systems.
A tile system is said to be rectilinear if it is either a SW,
a SE, a NW, or a NE system.

Theorem 5.1. A rectilinear tile system with n tiles can
be simulated by an invadable system using O(n log n)
tiles.

Proof Outline: Without loss of generality, we will
assume that the rectilinear system is a SW system. Let
GS be the set of all glues used on south sides of tiles, and
let GW be the set of all glues used on west sides of tiles.
Call g1, g2, . . . , gr the glues in GS and call 1, 2, . . . , k the
glues in GW . Note that k ≤ n because there are n tiles
and, therefore, there are at most n glues in GW .

In this case, we can build our system in a way
similar to the Sierpinski tile system. The construction is
shown in Figure 6. We call macro-blocks the structures
we will use to simulate tiles in the SW-system . In each
macro-block, there are blog kc+ 1 blocks. Each block is
a 3×3 square that has the same structure as the blocks
described in the proof of Lemma 5.1. Consider a tile
t in the SW-system with glue gi on its south side and
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Figure 5: Blocks to simulate the Sierpinski tile system.

glue j on its west side. Conceptually, the corresponding
macro-block will read j in binary from the west and
gi from its south side. The macro block will output
N(gi, j) on its north side and E(gi, j) on its east side,
also in binary. The east-most column of the macro-block
will be the last to be assembled.

Neglecting the east-most column, the blocks are
built from south to north. Consider the assembly
of the mth block counting from the south. Assume
j = (j1j2 . . . jblog kc+1)2. As in the Sierpinski triangle
invadable system, position (1, 1) or (2, 2) will be filled
with a tile that will trigger the assembly of the bound-
aries of the block. Call Ti,j1j2...jm

the tile that attaches
at position (1, 1) or (2, 2) in the block we are consid-
ering. Ti,j1j2...jm

attaches at (1, 1) iff jm is zero, while
it attaches at (2, 2) iff jm is 1. The blocks will con-
tain a hole, as before. Conceptually, Ti,j1j2...jm

repre-
sents a partial computation of N(gi, j) and E(gi, j), af-
ter reading m bits of j. In the north-most block, the tile
Ti,j1j2...jb log kc+1 will be attached and force the output
to be N(gi, j) and trigger the construction of the east-
most column in the macro-block representing E(gi, j).

There are n possible macro-blocks, and each macro-
block is of size O(log k) = O(log n). So, the system we
constructed uses O(n log n) tiles. 2

Theorem 5.2. There exists a τ = 2 invadable system
T that can perform universal computation.

Proof Outline: Winfree[12] defined a self assem-
bly tile system that simulates a block cellular automata
(and hence a Turing machine). His construction uses a
rectilinear tile system. Invoking theorem 5.1, it is im-
mediate that a Turing machine can be simulated by an
invadable tile system. 2

Acknowledgement

We would like to thank Len Adleman for useful discus-
sions.

� � � �	 	 	


 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �


 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

outputi, first m−1 bits of j

i, first m bits of j

m

logk + 1

i

1

2
j j

j

j

...

� � �� � �� � �� � �

� � �� � �� � �� � �

� � � �� � � �� � � �� � � �

� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �
� � �� � �� � �

         
! ! !! ! !! ! !

" " "" " "" " "
# # ## # ## # #

$ $ $ $$ $ $ $$ $ $ $
% % %% % %% % %

& & && & && & &
' ' '' ' '' ' '

( ( (( ( (( ( (( ( (

) ) )) ) )) ) )) ) )

* * ** * ** * ** * *

+ + ++ + ++ + ++ + +

, , ,, , ,, , ,, , ,

- - -- - -- - -- - -

. . . .. . . .. . . .. . . .

/ / // / // / // / /

0 0 00 0 00 0 00 0 0

1 1 11 1 11 1 11 1 1

2 2 22 2 22 2 22 2 2

3 3 33 3 33 3 33 3 3

Figure 6: Making a general rectilinear system invadable.

References

[1] L. Adleman. Towards a mathematical theory of self-
assembly. Technical Report 00-722, Department of
Computer Science, University of Southern California,
2000.

[2] L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang.
Running time and program size for self-assembled
squares. In Proceedings of the thirty-third annual ACM

symposium on Theory of computing, pages 740–748.
ACM Press, 2001.

[3] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang,
D. Kempe, P. Moisset de Espans, and P. Rothemund.
Combinatorial optimization problems in self-assembly.
In Proceedings of the thiry-fourth annual ACM sym-

posium on Theory of computing, pages 23–32. ACM
Press, 2002.

[4] Q. Cheng and P. Moisset de Espanes. Resolving two
open problems in the self-assembly of squares. Techni-
cal Report 03-793, University of Southern California,
2003.

[5] M. Lagoudakis and T. LaBean. 2d dna self-assembly
for satisfiability. In Proceedings of the 5th DIMACS

Workshop on DNA Based Computers in DIMACS Se-



ries in Discrete Mathematics and Theoretical Com-

puter Science, volume 54. MIT: Cambridge, 1999.
[6] J. Reif. Local parallel biomolecular computation. In

H. Rubin, editor, Third Annual DIMACS Workshop on

DNA Based Computers, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 1998.
[7] P. Rothemund. Theory and Experiments in Algorith-

mic Self-Assembly. PhD thesis, University of Southern
California, 2001.

[8] P. Rothemund and E. Winfree. The program-size com-
plexity of self-assembled squares (extended abstract).
In Proceedings of the thirty-second annual ACM sym-

posium on Theory of computing, pages 459–468. ACM
Press, 2000.

[9] H. Wang. Proving theorems by pattern recognition ii.
Bell Systems Technical Journal, 1961. 40:1-42.

[10] E. Winfree. Personal communication.
[11] E. Winfree. Algorithmic Self-Assembly of DNA. PhD

thesis, California Institute of Technology, Pasadena,
1998.

[12] E. Winfree, F. Liu, L. Wenzler, and N. Seeman. Design
and self-assembly of two-dimensional dna crystals, 6
pages. Nature, (394):539–544, Aug 1998.

[13] E. Winfree, X. Yang, and N. Seeman. Universal com-
putation via self-assembly of dna: Some theory and ex-
periments. In Proceedings of the Second Annual Meet-

ing on DNA Based Computers. Princeton University,
June 1996.

[14] B. Yurke, A. Turberfield, A. Mills Jr, F. Simmel, and
J. Neumann. A dna-fuelled molecular machine made
of dna. Nature, (406):605–608, Aug 2000.


