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Abstract. DNA self-assembly is emerging as a key paradigm for nano-technology, nano-computation,
and several related disciplines. In nature, DNA self-assembly is often equipped with explicit mechanisms
for both error prevention and error correction. For artificial self-assembly, these problems are even more
important since we are interested in assembling large systems with great precision.

We present an error-correction scheme, called snaked proof-reading, which can correct both growth
and nucleation errors in a self-assembling system. This builds upon an earlier construction of Winfree and
Bekbolatov [13], which could correct a limited class of growth errors. Like their construction, our system
also replaces each tile in the system by a k × k block of tiles, and does not require changing the basic tile
assembly model proposed by Rothemund and Winfree [10].

We perform a theoretical analysis of our system under fairly general assumptions, tiles can both attach
and fall off depending on the thermodynamic rate parameters which also govern the error rate. We prove
that with appropriate values of the block size, a seed row of N tiles can be extended into an N ×N square of
tiles without errors in expected time Õ(N), and further, this square remains stable for an expected time of
Ω̃(N). This is the first error-correction system for DNA self-assembly that has provably good assembly time
(close to linear) and provable error-correction. The assembly time is the same, up to logarithmic factors, as
the time for an irreversible, error-free assembly. We also did a preliminary simulation study of our scheme.
In simulations, our scheme performs much better (in terms of error-correction) than the earlier scheme of
Winfree and Bekbolatov, and also much better than the unaltered tile system.

1 Introduction

Self-assembly is the ubiquitous process by which objects autonomously assemble into complexes. Na-
ture provides many examples: Atoms react to form molecules. Molecules react to form crystals and
supramolecules. Cells sometimes coalesce to form organisms. It is widely believed that self-assembly
will ultimately become an important technology, enabling the fabrication of great quantities of small com-
plex objects such as computer circuits. DNA has emerged as an important component to use in artifi-
cial self-assembly of nano-scale systems due to its small size, its incredible versatility, and the prece-
dent set by the abundant use of DNA self-assembly in nature. Accordingly, DNA self-assembly has re-
ceived significant attention over the last few years, both by practitioners [15, 17, 12, 13], and by theoreti-
cians [7, 8, 14, 1, 9, 10, 2, 3, 6, 5, 4]. The theoretical results have focused on efficiently assembling structures
of a controlled size (the canonical example being assembly of n × n squares) and shape. In this paper, we
are interested in simultaneously achieving robustness and efficiency.
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The Tile Assembly Model, originally proposed by Rothemund and Winfree [10], and later extended by
Adleman et al. [2], provides a useful framework to study the efficiency (as opposed to robustness) of DNA
self-assembly. In this model, a square tile is the basic unit of an assembly. Each tile has a glue on each side;
each glue has a label and a strength (typically 1 or 2). A tile can attach to a position in an existing assembly
if at all the edges where this tile “abuts” the assembly, the glues on the tile and the assembly are the same,
and the total strength of these glues is at least equal to a system parameter called the temperature (typically
2). Assembly starts from a single seed crystal and proceeds by repeated accretion of single tiles. The speed
of an addition (and hence the time for the entire process to complete) is determined by the concentrations of
different tiles in the system. Details are in Section 2.

Rothemund and Winfree [10] gave an elegant self-assembling system for constructing squares by self-
assembly in this model. Their construction of n × n squares requires time Θ(n log n) and program size
Θ(log n). Adleman et al. [2] presented a new construction for assembling n×n squares which uses optimal
time Θ(n) and optimal program size Θ( log n

log log n
). Both constructions first assemble a roughly log n × n

rectangle (at temperature 2) by simulating a binary counter, and then complete the rectangle into a square.
Later, Adleman et al. [3] studied several combinatorial optimization problems related to self-assembly.
Together, the above results are a comprehensive treatment of the efficiency of self-assembly, but they do not
address robustness.

In nature, DNA self-assembly is often equipped with explicit mechanisms for both error prevention and
error correction. For artificial self-assembly, these problems are even more important since we are interested
in assembling large systems with great precision. In reality, several effects are observed which lead to a loss
of robustness compared to the model. The assembly tends to be reversible, i.e., tiles can fall away from an
existing assembly. Also, incorrect tiles sometimes get incorporated and locked into a growing assembly,
much like defects in a crystal. However, for sophisticated combinatorial assemblies like counters, which
form the basis for controlling the size of a structure, a single error can lead to assemblies drastically larger
or smaller (or different in other ways) than the intended structure. Finally, the temperature of the system can
be controlled only imperfectly. Experimental studies of algorithmic self-assembly have observed error rates
of 1% to 10% [13].

The work towards robustness has focused so far on two broad approaches. The first approach is to iden-
tify mechanisms used by nature for error-correction and error-prevention in DNA self-assembly and study
how they can be leveraged in an algorithmic setting. One example of this approach is strand invasion [6].
The other approach is to design more combinatorial error-correction mechanisms. This is closest in spirit
to the field of coding theory. One example of this approach, due to Winfree and Bekbolatov [13], is proof-
reading tiles. They suggest replacing each tile in the original system with a k × k block. This provides
some redundancy in the system (hence the loose analogy with coding theory). Their approach can correct
growth errors, which result from an incorrect tile attaching at a correct location, i.e., a location where some
other tile could have correctly attached. However, their approach does not reliably correct nucleation errors,
which result from a tile (correct or incorrect) attaching at a site which is not yet active. Their proof-reading
scheme is explained in section 3, along with the difference between growth and nucleation errors.

We present a modified proof-reading system which can correct both kinds of errors; we call it a snaked
proof-reading system. Our scheme provably (under some mild assumptions) results in error-free assembly
of an n × n square in time Õ(n) with high probability (whp). Further, our system results in the final
assembly remaining stable for an Ω(n) duration whp. Hence, there is a large window during which there is
a high probability of finding complete assemblies. The best-possible assembly time for an n×n structure is
linear even without errors and even in the irreversible model. Thus, our system guarantees close to optimum
speed. To the best of our knowledge, this is the first result which simultaneously achieves both robustness
and efficiency.

Our snaked system is explained informally in section 3 using an illustrative example. We prove that the



error-rate in this illustrative example is much better for our system than for that of Winfree and Bekbolatov.
We give a formal description of our system in section 4 and prove the properties of error-correction and
efficiency. Section 4 also provides simulation evidence with both our illustrative example and the Sierpinski
tile system [12]; in both cases, we demonstrate that our system resulted in a significant reduction in errors.

Our analysis uses the thermodynamic model of Winfree [12]. We assume that the forward and reverse
rates as well as the error-rates are governed by underlying thermodynamic parameters. We first analyze the
performance of k × k proof-reading blocks in terms of the error-rate and efficiency, and then let k grow
to O(log n). Our Õ notation hides polynomials in log n. We believe that our analysis is slack, and can be
significantly improved in terms of the dependence on k. We make some simplifying assumptions to allow
our proofs to go through; our analysis indicates that these assumptions are just an artifact of our analysis
and not really necessary.

Our basic construction and analysis applies to all rectilinear tile systems (where growth happens from
south to north and west to east). These systems include the Sierpinski tile system, the square-completion tile
system, and the block cellular automata for simulating Turing machines. It also applies to counters, a basic
primitive in many self-assembly constructions and computations, but we omit the discussion about counters
from this paper.

2 Tile Assembly model

The Combinatorial Tile Assembly Model The tile assembly model was originally proposed by Rothe-
mund and Winfree[10, 2]. It extends the theoretical model of tiling by Wang [11] to include a mechanism
for growth based on the physics of molecular self-assembly. Informally, each tile of an assembly is a square
with glues of various types on each edge. Two tiles will stick to each other if they have compatible glues.
We will present a succinct definition, with minor modifications for ease of explanation.

A tile is an oriented unit square with the north, east, south and west edges labeled from some alphabet Σ
of glues. For each tile t, the labels of its four edges are denoted σN (t), σE(t), σS(t), and σW (t). Sometimes
we will describe a tile t as the quadruple (σN (t), σE(t), σS(t), σW (t)). Consider the triple < T, g, τ >

where T is a finite set of tiles, τ ∈ Z>0 is the temperature, and g is the glue strength function from Σ×Σ to
Z≥0, where Σ is the set of glues. It is assumed that for all x, y ∈ Σ, (x 6= y) implies g(x, y) = 0 and there’s
a glue null ∈ Σ, such that g(null, x) = 0 for all x ∈ Σ. A configuration is a map from Z2 to T

⋃
empty.

Let C and D be two configurations. Suppose there exist some t ∈ T and some (x, y) ∈ Z2 such that
D = C except at (x, y), C(x, y) = null and D(x, y) = t. Let fN,C,t(x, y) = g(σN (t), σS(C(x, y + 1)).
Informally fN,C,t(x, y) is the strength of the bond at the north side of t under configuration C. Define
fS,C,t(x, y), fE,C,t(x, y) and fW,C,t(x, y) similarly. Then we say that tile t is attachable to C at position
(x, y) iff fN,C,t(x, y)+ fS,C,t(x, y)+ fE,C,t(x, y)+ fW,C,t(x, y) ≥ τ , and we write C →T D to denote the
transition from C to D in attaching a tile to C at position (x, y). Informally, C →T D iff D can be obtained
from C by adding a tile t such that the total strength of interaction between t and C is at least τ .

A tile system is a quadruple T =< T, s, g, τ >, where T, g, τ are as above and s ∈ T is a special tile
called the “seed”. We define the notion of a derived supertile of a tile system T =< T, s, g, τ > recursively
as follows:

1. The configuration Γ such that Γ(x, y) = empty except when (x, y) = (0, 0) and Γ(0, 0) = s is a
derived supertile of T, and

2. if C →T D and C is a supertile of T, then D is also a derived supertile of T.

Informally, a derived supertile is either just the seed (condition 1 above), or obtained by legal addition of
a single tile to another derived supertile (condition 2). We will often omit the word “derived” in the rest of



the paper, and use the terms “seed supertile” or just “seed” or s to denote the special supertile in condition
1.

A terminal supertile of the tile system T is a derived supertile A such that there is no supertile B for
which A →T B. If there is a terminal supertile A such that for any derived supertile B, B →∗

T
A, we say

that the tile system uniquely produces A. Given a tile system T which uniquely produces a supertile, we say
that the program size complexity of the system is |T | i.e. the number of tile types.

The Kinetic Model: Rates and Free Energy Adleman et al. presented a model for running time of
reversible self-assemblies [2]. In this paper, we use a kinetic model proposed by Winfree which computes the
forward and reversed rate as functions of thermodynamic parameters [12]. It has the following assumptions:

1. Tile concentrations are held constant throughout the self-assembly process.

2. Supertiles do not interact with each other. The only two reactions allowed are addition of a tile to a
supertile, and the dissociation of a tile from a supertile.

3. The forward rate constants for all tiles are identical.

4. The reverse rate depends exponentially on the number of base-pair bonds which must be broken, and
the mismatched sticky ends make no base-pair bonds.

There are two free parameters in this model, both of which are dimensionless free energies: Gmc > 0
measures the entropic cost of putting a tile at a binding site and depends on the tile concentration, Gse > 0
measures the free energy cost of breaking a single strength-1 bond. See [12] for a detailed explanation.
Under this model, we can approximate the forward and reverse rates for each of the tile-supertile reactions
in the process of self-assembly of DNA tiles as follows:

The rate of addition of a tile to a supertile, f , is pe−Gmc .
The rate of dissociation of a tile from a supertile, rb, is pe−bGse , where b is the strength with which the

tile is attached to the supertiles.
The parameter p simply gives us the time scale for the self-assembly.
Winfree suggests using Gmc just a little smaller than 2Gse for self-assembly at temperature two. We use

the same operating region.

3 An Illustrative example

While the ideas that we develop in this section are applicable to general self-assemblies, a simple one
dimensional example will be used for illustrative purposes. The tile system is one that can compute the
parity of a bit string and we will refer to it as the parity system. The tiles are essentially a simplification
of the tiles in the Sierpinski tile system [12] and are obtained by making the top side of each tile in the
Sierpinski system inert. The tiles for the parity system are illustrated below in figure 1(a). The temperature
is 2. The “input” will consist of a structure of n+2 tiles. The “input” tiles are assumed to be arranged in two
rows. The bottom row has n+1 tiles. The rightmost tile on the bottom row is inert on the right, the leftmost
is inert on the left, and they are all inert on the bottom. Each tile in the bottom row except the leftmost has
a glue labeled either 0 or 1 on the top. The second row has just one input tile, sitting on top of the leftmost
tile in the bottom row. This second row tile is inert on the left and the top, and has a glue labeled 0 on the
right. Thus the input codes a string of n bits. With this input, the tiles in the parity system will form a layer
covering the n exposed glues in the bottom row. Further, the rightmost tile in the top row will leave a glue
labeled 0 on the right if the parity of the bit string is 0 (i.e. the number of ones is even) and 1 otherwise.



Figure 1(b) illustrates this construction for n = 4 and the input string 1111. The glues are written on the
edges of the tiles and the input tiles are shaded. In this setting, tiles in the top row attach from left to right,
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Figure 1: (a) The parity tile system. (b) Illustrating the action of the parity tile system on the ”input” string
1111. The arrow at the top represents the order in which tiles must attach in the absence of errors.

if there are no errors. Hence, in the absence of errors, there is always a correct “next” position

Growth Errors and the Winfree-Bekbolatov proof-reading system An error is said to be a “growth” [13]
error if an incorrect tile attaches in the next position. The proof-reading approach of Winfree and Bekbola-
tov [13] can correct such errors by using redundancy. They replace each tile in the system with four tiles,
arranged in a 2 × 2 block. Figure 2(b) depicts the four tiles that replace a 10 tile. The glues internal to the
block are all unique. This added redundancy results in resilience to growth errors. The details are described
in their paper.
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Figure 2: (a) The original 10 tile. (b) The four proof-reading tiles for the 10 tile, using the construction
of Winfree and Bekbolatov [13]. (c) The snaked proof-reading tiles for the parity tile system. The internal
glues are all unique to the 2 × 2 block corresponding to the 10 tile. Notice that there is no glue on the right
side of 10A or the left side of 10C and that the glue between the top two tiles is of strength 2. This means
that the assembly process doubles or “snakes” back onto itself, as demonstrated by the arrow.



Nucleation Errors and improved proof-reading However, there is another, more insidious kind of error
that can happen. A tile may attach at a position other than the correct “next” position using just a strength
one glue. This would be the incorrect tile, and hence an error with probability 50%, and such an error will
propagate to the right ad infinitum even if we are using the proof-reading tile set of Winfree and Bekbolatov.
We call such errors “nucleation” errors1. In more complicated systems, these errors can also happen on the
boundary of a completed assembly, making it very hard to precisely control the size of an assembly. Both
growth errors and nucleation errors are caused by what we term an insufficient attachment – the attachment
of a tile to an existing assembly using a total glue strength of only 1 (even though the temperature is 2)
and then being “stabilized” (i.e. held by strength 2) by another tile attaching in the vicinity. Insufficient
attachments are unlikely at any given site (say they happen with probability x) but over the course of n

attachments, the probability of getting at least one insufficient attachment may become as large as O(nx).
We will now show a design that requires two insufficient attachments in close proximity to have an error
that can propagate, and significantly reduces the chances of getting an error (either growth or nucleation).
Figure 2(c) shows the 2 × 2 block that replaces a single tile (say tile 10), and the arrow shows the order in
which the sub-tiles attach at a site when there have been no insufficient attachments. Notice that there is no
glue between tiles 10A and 10C . This is what prevents nucleation errors from propagating without another
insufficient attachment. We call this the “snaked” proof-reading system, since the assembly process for a
block doubles back on itself.

It is easy to show that the above approach can be extended to arbitrary k×k sized blocks, to get lower and
lower error rates. The above idea can also be extended to Sierpinski tile systems [12] and counters [10, 2],
though for technical reasons, a 3 × 3 block is needed at a minimum to take care of nucleation errors in
these more complicated systems. Detailed analysis is given in section 4. However, the following lemmas
are useful to illustrate the kind of improvements we can expect to get. The quantities f , r and Gse are as
defined in section 2. An insufficient attachment at temperature two is the process that a tile attaches with
strength one, but, before it falls off, another tile attaches right next to it and both tiles are held by strength at
least two.

Lemma 3.1 The rate at which an insufficient attachment happens at any location in a growing assembly is
f2

r
e−Gse = O(e−3Gse).

Proof: The rate of an insufficient attachment can be modeled as the Markov Chain shown in figure 3.
For a nucleation error to happen, first a single tile must attach (at rate f). The fall-off rate of the first tile
is reGse and the rate at which a second tile can come and attach to the first tile is f. After the second
tile attaches, an insufficient attachment has happened. So the overall rate of an insufficient attachment is
f ∗ f

f+reGse
≈ f2

r
e−Gse 2

C C C C C C

E E

p

qeGse

p
error propagates

C C C C CC C C C C C C

E

Figure 3: The C tiles represent the existing assembly, and the E tiles are new erroneous tiles.

Without proof-reading, or even using the proof-reading system of Winfree and Bekbolatov, a single
insufficient attachment can cause a nucleation error, and hence the rate of nucleation error at any location is

1Winfree and Bekbolatov call these facet roughening errors and reserve the term nucleation errors for another phenomenon.



also O(e−3Gse). The next lemma shows the improvement obtained using our snaked proof-reading system.
The difference is even more pronounced if we compare the nucleation error rate to the growth rate, which is a
natural measurement unit in this system. The ratio of the nucleation error rate to the growth rate is O(e−Gse)
in the original proof-reading system, whereas it is O(e−2Gse) in our system, a quadratic improvement.

Lemma 3.2 The rate at which a nucleation error takes place in our snaked proof-reading system is O(e−4Gse).

Proof: In the snaked system, two insufficient attachments need to happen next to each other for a nucleation
error to occur. According to lemma 3.1, the first insufficient attachment happens at rate O(e−3Gse). After
the first insufficient attachment, the error will eventually be corrected unless another insufficient attachment
happens next to the first. The second insufficient attachment happens at rate O(e−3Gse); but the earlier
insufficient attachment gets “corrected” at rate O(e−2Gse) (remember that a ≈ 1 and hence a tile attached
with strength 2 falls off at roughly the growth rate). Hence, the probability of another insufficient attachment
taking place before the previous insufficient attachment gets reversed is O(e−Gse), bringing the nucleation
error rate down to O(e−4Gse). 2

For growth errors, the proof-reading system of Winfree and Bekbolatov achieves a reduced error rate of
O(e−4Gse), a property preserved by our modification.

4 The General Snaked Proofreading System

The system shown in the previous section only works for prevention of nucleation errors in one direction
(west to east). The system we describe in this section can improve any rectilinear tile system 2 and prevents
nucleation errors in both growth directions.

First, we look at rectilinear systems in which all glues have strength 1. To improve this kind of system,
each tile T in the original system is replaced by a 2k × 2k block (k ≥ 2) T1,1, T1,2, . . . , T2k,2k. Each glue
Gi in the original system is replaced by 2k glues Gi,1, Gi,2, . . . , Gi,2k with strength 1 on the corresponding
boundary of the block. All glues internal to the block have strength 1 except the following:

1. The east sides of tiles T1,2i−1 are inert, as well as the west sides of tiles T1,2i for i = 1, 2, . . . , k − 1.

2. The north sides of tiles T2i,1 are inert, as well as the south sides of tiles T1,2i+1 for i = 1, 2, . . . , k−1.

3. The glues on the north sides of tiles T2i,2i+1 have strength 2, as well as the glues on the south sides of
tiles T2i+1,2i+1 for i = 1, 2, . . . , k − 1.

4. The glues on the east sides of tiles T2i,2i−1 have strength 2, as well as the glues on the west sides of
tiles T2i,2i for i = 1, 2, . . . , k.

5. The east side of the tile T2k−2,2k−1 is inert, as well as the west side of the tile T2k−2,2k.

6. The glue on the north side of the tile T2k−2,2k has strength 2, as well as the south side of the tile
T2k−1,2k.

The glues internal to the block are unique to that block and don’t appear on any other blocks. Informally,
the blocks attach to each other using the same logic as the original system.

An illustrative example with k = 2 is shown in figure 4(a). The numbering of the tiles in figure 4(b)
denotes the sequence of the tile attachment in the assembly process. It is worth noticing that all the tiles on
the northern and eastern side of the block are held by strength at least 3. So whenever all the tiles on a block
are attached, it is unlikely for them to fall off.

2A rectilinear tile system is one where growth occurs in a rectilinear fashion - from south to north and from west to east.
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Figure 4: (a) The structure of 4x4 block. (b) The order of the growth.

Recall that f denoted the forward rate of a tile attaching, and r denotes the backward rate of a tile held
by strength 2 falling off. In the rest of the section, we assume that f = r and tiles held by strength three
do not fall off. We need to make this assumption for our proof to go through, but we don’t believe they are
necessary.

Here are some definitions we will use in this section: a k-bottleneck is a connected structure which
requires at least k insufficient attachments to form. A block error occurs if all the tiles in a block have
attached and are all incorrect (compared to perfect growth).It is easy to prove that a block error is just an
example of a k-bottleneck.

We are going to consider an idealized system where the south and west boundary is already assembled
and the tiles in the square are going to assemble in a rectilinear fashion. The following theorems represent
our main analytical result:

Theorem 4.1 With a 2k× 2k snaked tile system (for some fixed k), assuming we can set eGse to be Ω(N
2

k ),

an N × N square of blocks can be assembled in time O(N 1+ 4

k ) and with high probability, no block errors

happen Ω(N 1+ 4

k ) time after that.

Theorem 4.2 With a 2k×2k snaked tile system, k = Ω(log N), assuming that we can set eGse to be Ω(k6),
an N × N square of blocks can be assembled in time Õ(N) and with high probability, no block errors
happen for Ω̃(N) time after that.

Here, the Õ and the Ω̃ notation hides factors which are polynomial in k and log N . Informally, Theorems
1 and 2 say that snaked proofreading results in tile systems which assembly quickly and remain stable for a
long time.

In fact, we believe that our scheme achieves good performance without having to set eGse to be as high
as O(k6) and the ratio between forward and backward rate can be set to some constant for getting a good
performance. The simulation results are described at the end of this section confirm our intuition.

4.1 Proof of the main result

Since all tiles in a correctly attached block are held by strength three, once a correct block attaches at a
location, none of its tiles ever fall off. So, it suffices to only consider the perimeter of the supertile. For ease
of exposition, we are going to focus on errors that happen on the east edge of the assembly.



The following five lemmas are properties for 2k by 2k snaked tile system that are essential to our proof
of robustness. We will first show the result for tile attachments on the east side from Lemma 4.3 to 4.6.

Lemma 4.3 If the width of a structure X before an insufficient attachment happen is w, then after that
insufficient attachment happen, the width of X can be at most w + 2.

Proof: Suppose 2i − 2 ≤ w < 2i, for some integer i. Immediately after the insufficient attachment, the
width is at most w + 1 ≤ 2i. Since there is no strength two bond between the 2i-th and (2i + 1)-th column
of a block, the width cannot be larger than 2i (i.e. w + 2) without another insufficient attachment. 2

From Lemma 4.3, we know that a block error for a 2k by 2k snaked tile system is an example of a
k-bottleneck.

Definition 4.1 A starting site on the east boundary consists of the bottom two rows of a block.

Lemma 4.4 Any connected structure X that is not a k-bottleneck will span at most two blocks. Furthermore,
if X has tiles in two different blocks, then the bottom block will not have any strength two glues in its interior.

Proof: The case k ≤ 2 is trivial. We will assume k > 2. Let B1, B2, B3 be three consecutive blocks from
north to south, S1, S2, S3 be their starting sites. Assume that X has tiles in the starting site S2. Let the width
of X be w. By Lemma 4.3, w is at most 2k − 2.

Assume that X has tiles residing in the (2dw
2
e)-th row of block B3. For 1 ≤ r ≤ k − bw

2
c − 1, consider

the region defined by the (2k − 2r)-th and (2k − 2r − 1)-th rows of B3. All the tiles in X in this region
have strength one glues on their four sides except the two tiles on column one, which have inert edges
facing outside of this region. Hence, the tiles of X in this region will not attach unless one insufficient
attachment has happened in this region. Consider the first insufficient attachment happening in each of these
regions. Since all the glues in this region have strength one or zero, this insufficient attachment cannot
increase the width if the width is at least one before this insufficient attachment takes place. Also, one
insufficient attachment is needed for tiles to attach to the south of the (2dw

2
e)-th row of block B3, another

insufficient attachment is needed for tiles to attach to the north of the (2k − 2)-th row of B3. The first
insufficient attachment happening in these regions cannot increase the width if the width is at least two
before this insufficient attachment takes place. Recall that X is not a k-bottleneck means that there are
at most k − 1 insufficient attachments happen before all the tiles in X attach. Besides the k − bw

2
c + 1

insufficient attachments mentioned above, there are at most dw
2
e − 2 other insufficient attachments. By

Lemma 4.3, these dw
2
e − 2 insufficient attachments can only increase the width by at most w − 4. So the

total width will be at most w − 2, a contradiction. So, X does not have tiles residing in the (2dw
2
e)-th row

of block B3, and hence X does not have any tiles in S3, and hence X does not have any tiles in S3. Exactly
the same proof will show that X does not have tiles residing in S1. 2

An (x, y)-partial-rectangle is a sequence of x integers (i1, i2, . . . , ix) such that 0 ≤ i1 ≤ i2 ≤ . . . ix ≤
y. One (x, y)-partial-rectangle R1 is included in another x, y partial rectangle R2 iff each element in R1

is smaller or equal to the corresponding element in R2. Two (x, y)-partial-rectangles R1, R2 are said to be
next to each other if R1 is included in R2 and ‖R1‖1 = ‖R2‖1−1 or vice versa. A random (x, y)-walk with
rate r is a random walk defined on the space of all (x, y)-partial-rectangles. At a state R1, you can move to
any state R2 which is next to it with rate r. The hitting time for a random (x, y)-walk is the expected time
for a random (x, y)-walk starting at (0, 0, . . . , 0) to reach (y, y, . . . , y). The hitting time for a random (x,
y)-walk for general x, y remains open. It is worth noticing that the hitting time for a random (x, y)-walk is
the expected time for a x × y rectangle to grow or fall off completely if the forward rate is the same as the
backward rate.



Lemma 4.5 The hitting time for a random (2, k)-walk is O( k4

r
), where r is the rate of the random (2,

k)-walk.

Proof: Consider a random walk W1 on all grid points (i, j), 0 < i, j < k. If i 6= j, this random walk can
move from (i, j) to its four neighboring points (i−1, j), (i+1, j), (i, j−1), (i, j +1) with rates r. If i = j,
it can only move from (i, j) to its neighboring point with rates r

2
. A simple coupling argument shows that

the hitting time for a random (2, k)-walk is the same as the expected time for the random walk W1 to move
from (0, 0) to (k, k). Consider another random walk W2 on all grid points (i, j), 0 < i, j < k. It can move
from (i, j) to all of its neighboring points with the same rate r

2
. Clearly, the expected time for W1 to move

from (0, 0) to (k, k) is smaller than the expected time for W2 to move from (0, 0) to (k, k). But for W2, the
movement in the two dimension can be separated, and hence the expected time to go from (0, 0) to (k, k) is
O(k4

r
). 2

Lemma 4.6 Recall that the forward rate f is the same as the backward rate r. Consider a connected
structure X on the east side that is not a k-bottleneck. Without any new insufficient attachments happening
on X or on neighboring blocks, X will fall off in expected time O( k5

r
), where r is the fall-off rate.

Proof: Let the width of X be w. By Lemma 4.3, w ≤ 2k − 2. By Lemma 4.4, X can span at most two
blocks B2 and B3. Also, it cannot have tiles residing in the 2dw

2
e-th row of B3, hence the tiles in X can

only occupy the top 2k−w rows of B3. We can partition the tiles of X in B3 into 2k−w
2

parts, each part is a
2 (row) × w (column) rectangle. These rectangles can fall off sequentially from bottom to top, and after one
rectangle fall off completely, no tiles will attach again in this rectangle without an insufficient attachment.
The time required for a 2 × k rectangle to fall off completely is the hitting time for a random (2, k)-walk.
So, according to Lemma 4.5, each rectangle will fall off in expected time O(w4

r
). So, all the tiles in the

bottom 2k − 2 rows of the bottom block will fall off in expected time O( kw4

r
). After these tiles fall off

completely, the rest of the tiles form a chain that can only attach/fall off sequentially, and hence will also
fall off in expected time O(k4

r
) since there are only O(k2) tiles left. 2

Lemma 4.7 Consider a connected structure X that is not a k-bottleneck. Without any new insufficient
attachments happening on X or on neighboring blocks, X will fall off in expected time O( k5

r
), where r is

the fall-off rate.

Proof: We already proved the case where X is on the east side of the boundary. We can prove the same
lemma as Lem 4.7 on the north side. For any erroneous structure X on convex corners, without any insuffi-
cient attachments happening on X or on neighboring blocks, all the tiles in blocks to the east of the corner
will fall off in O(k5

r
) time. After all of these tiles fall off, none of them will be able to attach again and thus

the rest of the tiles will fall off in expected O( k5

r
) time. 2

Theorem 4.8 Assume that we use a 2k × 2k snaked tile system and Gmc = 2Gse. Then the probabil-
ity that no k-bottleneck will happen at a specific location within time t is at least e−tRE , where RE =

fe−Gse( e−Gse

e−Gse+ 1

ck6

)
k−1

, c is a constant independent of n, k and Gse.

Proof: By definition, k insufficient attachments are required before a k-bottleneck happens. After i < k−1
insufficient attachments take place, one of the following is going to happen:

• One more insufficient attachment: Consider any maximal structure X caused by i insufficient attach-
ments. By Lemma 4.7, the size of X cannot exceed two blocks, hence the number of insufficient
attachment locations that can cause this structure to grow larger is at most 6k. So, the rate of the
(i + 1)-th insufficient attachment happening is at most 6kfe−Gse .



• All the attached tiles fall off: By Lemma 4.7, the expected time for all the attached tiles to fall off is
c1

k5

r
, for some constant c independent of k.

So, after i insufficient attachments happen, the probability of the (i+1)-th insufficient attachment happening

before all tiles fall off is kfe−Gse

kfe−Gse+ r

ck5

= e−Gse

e−Gse+ 1

ck6

. So, after the first insufficient attachment takes place,

the probability of a k-bottleneck happening before all the attached tiles fall off is ( e−Gse

e−Gse+ 1

ck6

)
k−1

. As

shown in Lemma 3.1, the expected rate for the first insufficient attachment is fe−Gse . We are doing a
pessimistic analysis that if an insufficient attachment is going to become a block error, then we assume
that a block error happen immediately after that insufficient attachment happen. With this assumption, the
process of a block error happening at a certain location will have exponential distribution with average rate

fe−Gse( e−Gse

e−Gse+ 1

ck6

)
k−1

. 2

Theorem 4.9 If we assume there are no k-bottlenecks, and the rate of insufficient attachments is at most
O( f

k6 ), then an N × N square of 2k × 2k snaked tile blocks can be assembled in expected time O( k5N
f

).

Proof: With the snaked tile system, after all the tiles in a block attach, all the tiles are held by strength at
least 3 and will never fall off. Using the running time analysis technique of Adleman et al. [2], the system
finishes in expected time O(N × TB), where n is the size of the terminal shape and TB is the expected
time for a block to assemble. Without presence of k-bottlenecks, when we want to assemble a block, the
erroneous tiles that currently occupy that block are formed by at most k − 1 insufficient attachments. By
Lemma 4.7, without any further insufficient attachments happening, the erroneous tiles will fall off in time
O(k5

f
) and the correct block can attach within time O( k4

f
). By assumption, the rate of insufficient attachment

happening is at most O( f
k6 ), and there are at most O(k) locations for insufficient attachments to happen and

affect this process. So, there’s a constant probability that no insufficient attachments will happen during the
whole process and thus the time required to assemble a block, TB , is at most O(k5

f
). 2

Theorems 4.1 and 4.2 can be derived from the above two theroems. The details are omitted in this
version of the paper.

4.2 Simulation results

We use the simulation program xgrow written by Winfree et al. [16].
We first use three different systems to build a square of 20 × 20 blocks with the Sierpinski pattern [12].

The column “snaked” refers to the system described in this paper; the column “proofreading” corresponds
to the original proofreading system described by Winfree and Bekbolatov; the column “original” refers to
the system without any error correction. The results are summarized in table 1. The block size for our
snaked system as well as the original proofreading system is 4 × 4. Similar results were observed for a
wide range of simulation scenarios. As is clear, our snaked tile system has a much lower error rate, has a
much higher stability time, and is only two-three times slower than the proofreading system of Winfree and
Bekbolatov [13]. The original system needs to assemble a much smaller structure (since it uses a 1 × 1
block); hence the “reversal” in the error-rates for the original and the proofreading system in the second
simulation.

Also, for the 2 × 2 snaked tile system and the original proofreading system, we took a straight line
boundary of 200 tiles and tested the average time (in seconds; virtual time) for a block error to happen
under different Gse’s. Here, 2Gse − Gmc is set to be 0.2. Theoretically, the expected time for a block error
to happen in the snaked tile system is O(e4Gse), and the expected time for a block error to happen in the
proofreading system is O(e3Gse). The result is shown in figure 5(a); the y-axis uses a log-scale. Clearly,



Gmc = 15, Gse = 7.8 Gmc = 15, Gse = 8.0

Original Proofreading Snaked Original Proofreading Snaked
Time to assemble (seconds) 550 2230 6020 350 1750 3780

Error Probability 52% 24% 0% 63% 75% 0%
Time it remains stable 0 0 >400000 0 0 5700

(seconds) after completion

Table 1: Assembling a 20× 20 Sierpinski block. A stability time of 0 indicates that the final square became
unstable (i.e., an extra block of tiles attached on the periphery of the desired supertile) even before the
complete supertile formed. We only simulated our system for 400,000 seconds (virtual time). The values
represent averages over 100 runs.

the slope of the curve for the snaked tile system confirms our analysis – the slope is very close to 4, and
significantly more than the slope for the original proofreading system. For the larger values of Gse, we could
only plot the results for the original proof-reading system, since the simulator did not report any errors with
the snaked tile system for the time scales over which we conducted the simulation.

We also tested the error rate for parity systems of different seed lengths. We called an experiment
an error if the final supertile was different from the one we expect in the absence of errors. We used
Gse = 7.0, Gmc = 13.6. The result is shown in figure 5(b); again, a significant reduction in error rate
is observed. For both figures 5(a) and 5(b), qualitatively similar results were observed for widely varying
simulation parameters.

Our simulation results show that our analysis is very close to reality even without idealized parameter
conditions. For example, we did not use Gmc = 2Gse but instead used Gmc slightly smaller than 2Gse as
suggested by Winfree [12]. Also, the simulator allows tiles held by strength 3 to fall off, contrary to our
assumption. Thus, we believe that our snaked system works much better (and under a much wider set of
conditions) than we have been able to formally prove.

5 Future Directions

It would be interesting to extend our analysis to remove some of our assumptions. Also, we believe that
the total assembly time for our system should just be O(k2n) for assembling an n × n square using k × k

snaked blocks. One of the biggest bottlenecks in proving this bound is an analysis of the assembly time of an
n×n square assuming that there are no errors but that the system is reversible, i.e., tiles can both attach and
detach. We believe that the assembly time for this system should be O(n) along the lines of the irreversible
system [2], but have been unable to prove it.
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