A Simple and Intuitive Coverage of The Fundamental Theorems of Asset Pricing

Ashwin Rao

ICME, Stanford University

January 24, 2020

Ashwin Rao (Stanford) **[Fundamental Theorems of Asset Pricing](#page-24-0)** January 24, 2020 1/38

 Ω

Overview

- [Simple Setting for Intuitive Understanding](#page-2-0)
- [Portfolios, Arbitrage and Risk-Neutral Measure](#page-3-0)
- [First Fundamental Theorem of Asset Pricing](#page-6-0)
- [Derivatives, Replicating Portfolios and Hedges](#page-8-0)
- [Second Fundamental Theorem of Asset Pricing](#page-9-0)
- [Derivatives Pricing](#page-10-0)
	- **[Examples](#page-17-0)**
- [Summary and General Theory](#page-23-0)

重目 のへぐ

Simple Setting for Intuitive Understanding

- Single-period setting (two time points $t = 0$ and $t = 1$)
- \bullet $t = 0$ has a single state (we'll call it "Spot" state)
- $t = 1$ has *n* random states represented by $\Omega = {\omega_1, \ldots, \omega_n}$
- With probability distribution $\mu: \Omega \rightarrow [0,1]$, i.e, $\sum_{i=1}^n \mu(\omega_i) = 1$
- $m + 1$ fundamental assets A_0, A_1, \ldots, A_m
- Spot Price (at $t=0$) of A_j denoted $S_j^{(0)}$ $j_j^{(0)}$ for all $j=0,1,\ldots,m$
- Price of A_j in state ω_i denoted $S_i^{(i)}$ $j_j^{(i')}$ for all $j=0,\ldots,m,$ $i=1,\ldots,n$
- All asset prices are assumed to be real numbers, i.e. in $\mathbb R$
- A_0 is a special asset known as risk-free asset with $S_0^{\rm (0)}$ $n_0^{(0)}$ normalized to 1 $S_0^{(i)}=e^r$ for all $i=1,\ldots,n$ where r is the constant risk-free rate
- e^{-r} is the risk-free discount factor to represent "time value of money"

ा⊟ **∽**ा

Portfolios

- A portfolio is a vector $\theta = (\theta_0, \theta_1, \ldots, \theta_m) \in \mathbb{R}^{m+1}$
- θ_j is the number of units held in asset A_j for all $j=0,1,\ldots,m$
- Spot Value (at $t=0)$ of portfolio θ denoted $V^{(0)}_\theta$ $\hat{\theta}^{\left(\nu\right) }$ is:

$$
V_{\theta}^{(0)} = \sum_{j=0}^{m} \theta_j \cdot S_j^{(0)}
$$

Value of portfolio θ in state ω_i (at $t=1)$ denoted $V_{\theta}^{(i)}$ $\theta^{(1)}$ is:

$$
V_{\theta}^{(i)} = \sum_{j=0}^{m} \theta_j \cdot S_j^{(i)}
$$
 for all $i = 1, \ldots, n$

ミミ りょい

- An Arbitrage Portfolio θ is one that "makes money from nothing"
- Formally, a portfolio θ such that:
	- $V^{(0)}_{\theta} \leq 0$
	- $V_{\theta}^{(i)} \geq 0$ for all $i = 1, \ldots, n$
	- $\exists i$ in $1,\ldots,n$ such that $\mu(\omega_i)>0$ and $V_{\theta}^{(i)}>0$
- So we never end with less value than what we start with and we end with expected value greater than what we start with
- Arbitrage allows market participants to make infinite returns
- In an efficient market, arbitrage disappears as participants exploit it
- Hence, Finance Theory typically assumes "arbitrage-free" markets

 $=$ 920

• Consider a Probability Distribution $\pi : \Omega \to [0,1]$ such that

$$
\pi(\omega_i)=0 \text{ if and only if } \mu(\omega_i)=0 \text{ for all } i=1,\ldots,n
$$

• Then, π is a Risk-Neutral Probability Measure if:

$$
S_j^{(0)} = e^{-r} \cdot \sum_{i=1}^n \pi(\omega_i) \cdot S_j^{(i)} \text{ for all } j = 0, 1, ..., m
$$
 (1)

- So for each of the $m + 1$ assets, the asset spot price (at $t = 0$) is the discounted expectation (under π) of the asset price at $t=1$
- $\bullet \pi$ is an artificial construct to connect expectation of asset prices at $t = 1$ to their spot prices by the risk-free discount factor e^{-t}

്റാ

Theorem

1st FTAP: Our simple setting will not admit arbitrage portfolios if and only if there exists a Risk-Neutral Probability Measure.

- First we prove the easy implication: Existence of Risk-Neutral Measure \Rightarrow Arbitrage-free
- **•** Assume there is a risk-neutral measure π
- Then, for each portfolio $\theta = (\theta_0, \theta_1, \dots, \theta_m)$,

$$
V_{\theta}^{(0)} = \sum_{j=0}^{m} \theta_{j} \cdot S_{j}^{(0)} = \sum_{j=0}^{m} \theta_{j} \cdot e^{-r} \cdot \sum_{i=1}^{n} \pi(\omega_{i}) \cdot S_{j}^{(i)}
$$

= $e^{-r} \cdot \sum_{i=1}^{n} \pi(\omega_{i}) \cdot \sum_{j=0}^{m} \theta_{j} \cdot S_{j}^{(i)} = e^{-r} \cdot \sum_{i=1}^{n} \pi(\omega_{i}) \cdot V_{\theta}^{(i)}$

1st Fundamental Theorem of Asset Pricing (1st FTAP)

- \bullet So the portfolio spot value is the discounted expectation (under π) of the portfolio value at $t = 1$
- For any portfolio θ , if the following two conditions are satisfied:

•
$$
V_{\theta}^{(i)} \ge 0
$$
 for all $i = 1, ..., n$

 $\exists i$ in $1,\ldots,n$ such that $\mu(\omega_i)>0 (\Rightarrow \pi(\omega_i)>0)$ and $V_{\theta}^{(i)}>0$

Then,

$$
V_{\theta}^{(0)} = e^{-r} \cdot \sum_{i=1}^{n} \pi(\omega_i) \cdot V_{\theta}^{(i)} > 0
$$

- This eliminates the the possibility of arbitrage for any portfolio θ
- The other implication (Arbitrage-free \Rightarrow Existence of Risk-Neutral Measure) is harder to prove and covered in Appendix 1

通信 めなめ

• A Derivative D (in this simple setting) is a vector payoff at $t = 1$:

$$
(V_D^{(1)}, V_D^{(2)}, \ldots, V_D^{(n)})
$$

where $V_D^{(i)}$ $D_D^{(V)}$ is the payoff of the derivative in state ω_i for all $i=1,\ldots,n$ Portfolio $\theta \in \mathbb{R}^{m+1}$ is a Replicating Portfolio for derivative D if:

$$
V_D^{(i)} = \sum_{j=0}^m \theta_j \cdot S_j^{(i)}
$$
 for all $i = 1, ..., n$ (2)

• The negatives of the components $(\theta_0, \theta_1, \dots, \theta_m)$ are known as the hedges for D since they can be used to offset the risk in the payoff of D at $t = 1$

An arbitrage-free market is said to be Complete if every derivative in the market has a replicating portfolio.

Theorem

2nd FTAP: A market is Complete in our simple setting if and only if there is a unique risk-neutral probability measure.

Proof in Appendix 2. Together, the FTAPs classify markets into:

- ¹ Complete (arbitrage-free) market ⇔ Unique risk-neutral measure
- **2** Market with arbitrage \Leftrightarrow No risk-neutral measure
- ³ Incomplete (arbitrage-free) market ⇔ Multiple risk-neutral measures

The next topic is derivatives pricing that is based on the concepts of replication of derivatives and risk-neutral measures, and so is tied to the concepts of arbitrage and completeness.

 $E|E \cap Q$

- • Before getting into Derivatives Pricing, we need to define a *Position*
- We define a *Position* involving a derivative D as the combination of holding some units in D and some units in A_0, A_1, \ldots, A_m
- Position is an extension of the Portfolio concept including a derivative
- Formally denoted as $\gamma_D = (\alpha, \theta_0, \theta_1, \ldots, \theta_m) \in \mathbb{R}^{m+2}$
- \bullet α is the units held in derivative D
- θ_j is the units held in A_j for all $j=0,1,\ldots,m$
- Extend the definition of Portfolio Value to Position Value
- Extend the definition of Arbitrage Portfolio to Arbitrage Position

通信 めなめ

Derivatives Pricing: Elimination of candidate prices

- We will consider candidate prices (at $t = 0$) for a derivative D
- Let $\theta = (\theta_0, \theta_1, \dots, \theta_m)$ be a replicating portfolio for D
- Consider the candidate price $\sum_{j=0}^m \theta_j \cdot \mathcal{S}^{(0)}_j \mathcal{x}$ for D for any $\mathcal{x} > 0$
- Position $(1, -\theta_0 + x, -\theta_1, \dots, -\theta_m)$ has value $x \cdot e^r > 0$ in each of the states at $t = 1$
- But this position has spot ($t = 0$) value of 0, which means this is an Arbitrage Position, rendering this candidate price invalid
- Consider the candidate price $\sum_{j=0}^m \theta_j \cdot S_j^{(\mathsf{0})} + \times$ for D for any $x > 0$
- Position $(-1, \theta_0 + x, \theta_1, \dots, \theta_m)$ has value $x \cdot e^r > 0$ in each of the states at $t = 1$
- But this position has spot ($t = 0$) value of 0, which means this is an Arbitrage Position, rendering this candidate price invalid

So every candidate price for D other than $\sum_{j=0}^m \theta_j \cdot \mathcal{S}^{(0)}_j$ $j^{(0)}$ is invalid

 $F = \Omega Q$

Derivatives Pricing: Remaining candidate price

 \bullet Having eliminated various candidate prices for D, we now aim to establish the remaining candidate price:

$$
V_D^{(0)} = \sum_{j=0}^m \theta_j \cdot S_j^{(0)}
$$
 (3)

where $\theta = (\theta_0, \theta_1, \dots, \theta_m)$ is a replicating portfolio for D

- \bullet To eliminate prices, our only assumption was that D can be replicated
- This can happen in a complete market or in an arbitrage market
- To establish remaining candidate price $V_{D}^{(0)}$ $D^{(0)}$, we need to assume market is complete, i.e., there is a unique risk-neutral measure π
- Candidate price $V^{(0)}_D$ $D^{(\nu)}_{D}$ can be expressed as the discounted expectation (under π) of the payoff of D at $t = 1$, i.e.,

$$
V_D^{(0)} = \sum_{j=0}^m \theta_j \cdot e^{-r} \cdot \sum_{i=1}^n \pi(\omega_i) \cdot S_j^{(i)} = e^{-r} \cdot \sum_{i=1}^n \pi(\omega_i) \cdot V_D^{(i)} \qquad (4)
$$

Derivatives Pricing: Establishing remaining candidate price

- Now consider an *arbitrary portfolio* $\beta = (\beta_0, \beta_1, \dots, \beta_m)$
- Define a position $\gamma_D = (\alpha, \beta_0, \beta_1, \dots, \beta_m)$
- Spot Value (at $t=0)$ of position γ_D denoted $V_{\gamma_D}^{(0)}$ is:

$$
V_{\gamma_D}^{(0)} = \alpha \cdot V_D^{(0)} + \sum_{j=0}^{m} \beta_j \cdot S_j^{(0)}
$$
(5)

where $V^{(0)}_D$ $\overline{D}^{(0)}$ is the remaining candidate price

Value of position γ_D in state ω_i (at $t=1)$, denoted $\mathcal{V}_{\gamma_D}^{(i)}$, is:

$$
V_{\gamma_D}^{(i)} = \alpha \cdot V_D^{(i)} + \sum_{j=0}^{m} \beta_j \cdot S_j^{(i)} \text{ for all } i = 1, ..., n
$$
 (6)

• Combining the linearity in equations (1) , (4) , (5) , (6) , we get:

$$
V_{\gamma_D}^{(0)} = e^{-r} \cdot \sum_{i=1}^n \pi(\omega_i) \cdot V_{\gamma_D}^{(i)}
$$
(7)

Derivatives Pricing: Establishing remaining candidate price

- \bullet So the position spot value is the discounted expectation (under π) of the position value at $t = 1$
- For any γ_D (containing any arbitrary portfolio $\beta)$ and with $V^{(0)}_D$ $\mathcal{D}_{\mathcal{L}}^{(0)}$ as the candidate price for D , if the following two conditions are satisfied:

•
$$
V_{\gamma_D}^{(i)} \geq 0
$$
 for all $i = 1, ..., n$

 $\exists i$ in $1,\ldots,n$ such that $\mu(\omega_i)>0 (\Rightarrow \pi(\omega_i)>0)$ and $V_{\gamma_D}^{(i)}>0$ Then,

$$
V_{\gamma_D}^{(0)} = e^{-r} \cdot \sum_{i=1}^n \pi(\omega_i) \cdot V_{\gamma_D}^{(i)} > 0
$$

- This eliminates arbitrage possibility for remaining candidate price $\mathcal{V}_{D}^{(0)}$ D
- So we have eliminated all prices other than $V_{D}^{(0)}$ $\mathcal{L}_{D}^{(0)}$, and we have established the price $V_{D}^{(0)}$ $D^{(0)}$, proving that it should be *the* price of D
- The above arguments assumed a complete market, but what about an incomplete market or a market with arbitra[ge?](#page-13-2)

Incomplete Market (Multiple Risk-Neutral Measures)

- Recall: Incomplete market means some derivatives can't be replicated
- Absence of replicating portfolio precludes usual arbitrage arguments
- 2nd FTAP says there are multiple risk-neutral measures
- So, multiple derivative prices (each consistent with no-arbitrage)
- Superhedging (outline in Appendix 3) provides bounds for the prices
- But often these bounds are not tight and so, not useful in practice
- The alternative approach is to identify hedges that maximize Expected Utility of the derivative together with the hedges
- For an appropriately chosen market/trader [Utility function](https://github.com/coverdrive/technical-documents/blob/master/finance/cme241/UtilityTheoryForRisk.pdf)
- Utility function is a specification of reward-versus-risk preference that effectively chooses the risk-neutral measure and (hence, Price)
- We outline the Expected Utility approach in Appendix 4

 $A \equiv A \equiv 1 \equiv 0.00$

Multiple Replicating Portfolios (Arbitrage Market)

• Assume there are replicating portfolios α and β for D with

$$
\sum_{j=0}^{m} \alpha_j \cdot S_j^{(0)} - \sum_{j=0}^{m} \beta_j \cdot S_j^{(0)} = x > 0
$$

• Consider portfolio $\theta = (\beta_0 - \alpha_0 + x, \beta_1 - \alpha_1, \dots, \beta_m - \alpha_m)$

$$
V_{\theta}^{(0)} = \sum_{j=0}^{m} (\beta_j - \alpha_j) \cdot S_j^{(0)} + x \cdot S_0^{(0)} = -x + x = 0
$$

$$
V_{\theta}^{(i)} = \sum_{j=0}^{m} (\beta_j - \alpha_j) \cdot S_j^{(i)} + x \cdot S_0^{(i)} = x \cdot e^r > 0 \text{ for all } i = 1, ..., n
$$

 \bullet So θ is an Arbitrage Portfolio \Rightarrow market with no risk-neutral measure Also note from previous elimination argument that every candidate price other than $\sum_{j=0}^m \alpha_j \cdot S_j^{(0)}$ $j_{j}^{(\mathsf{U})}$ is invalid and every candidate price other than $\sum_{j=0}^m \beta_j \cdot S_j^{(0)}$ $j_j^{(0)}$ is inv[al](#page-16-0)[id](#page-17-0),so D h[as](#page-15-0) [no](#page-17-0) [v](#page-15-0)alid [p](#page-10-0)[r](#page-16-0)[ic](#page-17-0)[e](#page-9-0) [a](#page-16-0)[t](#page-17-0) [a](#page-0-0)[ll](#page-24-0) 重目 のへぐ

Market with 2 states and 1 Risky Asset

- Consider a market with $m = 1$ and $n = 2$
- Assume $S_1^{(1)} < S_1^{(2)}$ 1
- No-arbitrage requires $S_1^{(1)} \leq S_1^{(0)}$ $\zeta_1^{(0)}\cdot e^r\leq \mathcal{S}_1^{(2)}$ 1
- Assuming absence of arbitrage and invoking 1st FTAP, there exists a risk-neutral probability measure π such that:

$$
S_1^{(0)} = e^{-r} \cdot (\pi(\omega_1) \cdot S_1^{(1)} + \pi(\omega_2) \cdot S_1^{(2)})
$$

$$
\pi(\omega_1) + \pi(\omega_2) = 1
$$

• This implies:

$$
\pi(\omega_1) = \frac{S_1^{(2)} - S_1^{(0)} \cdot e^r}{S_1^{(2)} - S_1^{(1)}}
$$

$$
\pi(\omega_2) = \frac{S_1^{(0)} \cdot e^r - S_1^{(1)}}{S_1^{(2)} - S_1^{(1)}}
$$

 $E \cap Q$

Market with 2 states and 1 Risky Asset (continued)

 \bullet We can use these probabilities to price a derivative D as:

$$
V_D^{(0)} = e^{-r} \cdot (\pi(\omega_1) \cdot V_D^{(1)} + \pi(\omega_2) \cdot V_D^{(2)})
$$

• Now let us try to form a replicating portfolio (θ_0, θ_1) for D

$$
V_D^{(1)} = \theta_0 \cdot e^r + \theta_1 \cdot S_1^{(1)}
$$

$$
V_D^{(2)} = \theta_0 \cdot e^r + \theta_1 \cdot S_1^{(2)}
$$

• Solving this yields Replicating Portfolio (θ_0, θ_1) as follows:

$$
\theta_0 = e^{-r} \cdot \frac{V_D^{(1)} \cdot S_1^{(2)} - V_D^{(2)} \cdot S_1^{(1)}}{S_1^{(2)} - S_1^{(1)}} \text{ and } \theta_1 = \frac{V_D^{(2)} - V_D^{(1)}}{S_1^{(2)} - S_1^{(1)}}
$$

- This means this is a Complete Market
- Note that the derivative price can also be expressed as:

$$
V_D^{(0)} = \theta_0 + \theta_1 \cdot S_1^{(0)}
$$

Market with 3 states and 1 Risky Asset

- Consider a market with $m = 1$ and $n = 3$
- Assume $S_1^{(1)} < S_1^{(2)} < S_1^{(3)}$ 1
- No-arbitrage requires $S_1^{(1)} \leq S_1^{(0)}$ $\epsilon_1^{(0)}\cdot e^r\leq \mathcal{S}^{(3)}_1$ 1
- Assuming absence of arbitrage and invoking 1st FTAP, there exists a risk-neutral probability measure π such that:

$$
S_1^{(0)} = e^{-r} \cdot (\pi(\omega_1) \cdot S_1^{(1)} + \pi(\omega_2) \cdot S_1^{(2)} + \pi(\omega_3) \cdot S_1^{(3)})
$$

$$
\pi(\omega_1) + \pi(\omega_2) + \pi(\omega_3) = 1
$$

- 2 equations & 3 variables \Rightarrow multiple solutions for π
- **Each of these solutions for** π **provides a valid price for a derivative D**

$$
V_D^{(0)} = e^{-r} \cdot (\pi(\omega_1) \cdot V_D^{(1)} + \pi(\omega_2) \cdot V_D^{(2)} + \pi(\omega_3) \cdot V_D^{(3)})
$$

• Now let us try to form a replicating portfolio (θ_0, θ_1) for D

$$
V_D^{(1)} = \theta_0 \cdot e^r + \theta_1 \cdot S_1^{(1)}
$$

$$
V_D^{(2)} = \theta_0 \cdot e^r + \theta_1 \cdot S_1^{(2)}
$$

$$
V_D^{(3)} = \theta_0 \cdot e^r + \theta_1 \cdot S_1^{(3)}
$$

- 3 equations & 2 variables \Rightarrow no replication for some D
- This means this is an Incomplete Market
- Don't forget that we have multiple risk-neutral probability measures
- Meaning we have multiple valid prices for derivatives

E VOQ

Market with 2 states and 2 Risky Assets

- Consider a market with $m = 2$ and $n = 3$
- Assume $S_1^{(1)} < S_1^{(2)}$ $S_1^{(2)}$ and $S_2^{(1)} < S_2^{(2)}$ 2
- Let us try to determine a risk-neutral probability measure π :

$$
S_1^{(0)} = e^{-r} \cdot (\pi(\omega_1) \cdot S_1^{(1)} + \pi(\omega_2) \cdot S_1^{(2)})
$$

$$
S_2^{(0)} = e^{-r} \cdot (\pi(\omega_1) \cdot S_2^{(1)} + \pi(\omega_2) \cdot S_2^{(2)})
$$

$$
\pi(\omega_1) + \pi(\omega_2) = 1
$$

- 3 equations & 2 variables \Rightarrow no risk-neutral measure π
- Let's try to form a replicating portfolio $(\theta_0, \theta_1, \theta_2)$ for a derivative D

$$
V^{(1)}_D = \theta_0 \cdot e^r + \theta_1 \cdot S^{(1)}_1 + \theta_2 \cdot S^{(1)}_2
$$

$$
V_D^{(2)} = \theta_0 \cdot e^r + \theta_1 \cdot S_1^{(2)} + \theta_2 \cdot S_2^{(2)}
$$

- 2 equations & 3 variables \Rightarrow multiple replicating portfolios
- \bullet Each such replicating portfolio yields a price for D as:

$$
V_D^{(0)} = \theta_0 + \theta_1 \cdot S_1^{(0)} + \theta_2 \cdot S_2^{(0)}
$$

- Select two such replicating portfolios with different $V_{D}^{(0)}$ D
- Combination of these replicating portfolios is an Arbitrage Portfolio
	- They cancel off each other's price in each $t = 1$ states
	- They have a combined negative price at $t = 0$
- So this is a market that admits arbitrage (no risk-neutral measure)

3 cases:

- **1** Complete market
	- Unique replicating portfolio for derivatives
	- Unique risk-neutral measure, meaning we have unique derivatives prices
- 2 Arbitrage-free but incomplete market
	- Not all derivatives can be replicated
	- Multiple risk-neutral measures, meaning we can have multiple valid prices for derivatives

3 Market with Arbitrage

- Derivatives have multiple replicating portfolios (that when combined causes arbitrage)
- No risk-neutral measure, meaning derivatives cannot be priced

通信 めなめ

General Theory for Derivatives Pricing

- The theory for our simple setting extends nicely to the general setting
- Instead of $t = 0, 1$, we consider $t = 0, 1, \ldots, T$
- The model is a "recombining tree" of state transitions across time
- The idea of Arbitrage applies over multiple time periods
- Risk-neutral measure for each state at each time period
- Over multiple time periods, we need a *Dynamic Replicating Portfolio* to rebalance asset holdings ("self-financing trading strategy")
- We obtain prices and replicating portfolio at each time in each state
- By making time period smaller and smaller, the model turns into a stochastic process (in continuous time)
- Classical Financial Math theory based on stochastic calculus but has essentially the same ideas we developed for our simple setting

Appendix 1: Arbitrage-free $\Rightarrow \exists$ a risk-neutral measure

- We will prove that if a risk-neutral probability measure doesn't exist, there exists an arbitrage portfolio
- Let $\mathbb{V} \subset \mathbb{R}^m$ be the set of vectors (s_1, \ldots, s_m) such that

$$
s_j = e^{-r} \cdot \sum_{i=1}^n \mu(\omega_i) \cdot S_j^{(i)}
$$
 for all $j = 1, \ldots, m$

spanning over all possible probability distributions $\mu : \Omega \to [0,1]$

- $\mathbb {V}$ is a bounded, closed, convex polytope in $\mathbb {R}^m$
- If a risk-neutral measure doesn't exist, $(S_{1}^{(0)})$ $\mathcal{S}_1^{(0)},\ldots,\mathcal{S}_m^{(0)})\not\in\mathbb{V}$
- Hyperplane Separation Theorem implies that there exists a non-zero vector $(\theta_1, \ldots, \theta_m)$ such that for any $v = (v_1, \ldots, v_m) \in V$,

$$
\sum_{j=1}^m \theta_j \cdot \mathbf{v}_j > \sum_{j=1}^m \theta_j \cdot S_j^{(0)}
$$

ा⊟ **∽**ा

Appendix 1: Arbitrage-free $\Rightarrow \exists$ a risk-neutral measure

• In particular, consider vectors v corresponding to the corners of V , those for which the full probability mass is on a particular $\omega_i \in \Omega$, i.e.,

$$
\sum_{j=1}^{m} \theta_j \cdot (e^{-r} \cdot S_j^{(i)}) > \sum_{j=1}^{m} \theta_j \cdot S_j^{(0)} \text{ for all } i = 1, ..., n
$$

• Choose a $\theta_0 \in \mathbb{R}$ such that:

$$
\sum_{j=1}^{m} \theta_j \cdot (e^{-r} \cdot S_j^{(i)}) > -\theta_0 > \sum_{j=1}^{m} \theta_j \cdot S_j^{(0)} \text{ for all } i = 1, ..., n
$$

• Therefore,

$$
e^{-r} \cdot \sum_{j=0}^{m} \theta_j \cdot S_j^{(i)} > 0 > \sum_{j=0}^{m} \theta_j \cdot S_j^{(0)}
$$
 for all $i = 1, ..., n$

• This means $(\theta_0, \theta_1, \ldots, \theta_m)$ is an arbitrage [po](#page-25-0)r[tf](#page-27-0)[ol](#page-25-0)[io](#page-26-0)

- We will first prove that in an arbitrage-free market, if every derivative has a replicating portfolio, there is a unique risk-neutral measure π
- We define *n* special derivatives (known as *Arrow-Debreu securities*), one for each random state in Ω at $t = 1$
- We define the time $t = 1$ payoff of Arrow-Debreu security D_k (for each of $k = 1, \ldots, n$ in state ω_i as $\mathbb{I}_{i=k}$ for all $i = 1, \ldots, n$.
- Since each derivative has a replicating portfolio, let $\theta^{(k)} = (\theta_0^{(k)})$ $\theta_0^{(k)}, \theta_1^{(j)}, \ldots, \theta_m^{(k)})$ be the replicating portfolio for $D_k.$
- With usual no-arbitrage argument, the price (at $t = 0$) of D_k is

$$
\sum_{j=0}^{m} \theta_j^{(k)} \cdot S_j^{(0)}
$$
 for all $k = 1, \ldots, n$

→ ∃l≡ ЮQ Թ

Appendix 2: Proof of 2nd FTAP

Now let us try to solve for an unknown risk-neutral probability measure $\pi : \Omega \to [0, 1]$, given the above prices for $D_k, k = 1, \ldots, n$

$$
e^{-r} \cdot \sum_{i=1}^{n} \pi(\omega_i) \cdot \mathbb{I}_{i=k} = e^{-r} \cdot \pi(\omega_k) = \sum_{j=0}^{m} \theta_j^{(k)} \cdot S_j^{(0)}
$$
 for all $k = 1, ..., n$

$$
\Rightarrow \pi(\omega_k) = e^r \cdot \sum_{j=0}^m \theta_j^{(k)} \cdot S_j^{(0)} \text{ for all } k = 1, \ldots, n
$$

- **•** This yields a unique solution for the risk-neutral probability measure π
- Next, we prove the other direction of the 2nd FTAP
- **To prove:** if there exists a risk-neutral measure π and if there exists a derivative D with no replicating portfolio, we can construct a risk-neutral measure different than π

通信 めなめ

Appendix 2: Proof of 2nd FTAP

Consider the following vectors in the vector space \mathbb{R}^n

$$
v=(V_D^{(1)},\ldots,V_D^{(n)}) \text{ and } s_j=(S_j^{(1)},\ldots,S_j^{(n)}) \text{ for all } j=0,1,\ldots,m
$$

- \bullet Since D does not have a replicating portfolio, v is not in the span of s_0, s_1, \ldots, s_m , which means s_0, s_1, \ldots, s_m do not span \mathbb{R}^n
- Hence \exists a non-zero vector $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$ orthogonal to each of s_0, s_1, \ldots, s_m , i.e.,

$$
\sum_{i=1}^{n} u_i \cdot S_j^{(i)} = 0 \text{ for all } j = 0, 1, ..., n
$$
 (8)

Note that $S_0^{(i)} = e^r$ for all $i = 1, \ldots, n$ and so,

$$
\sum_{i=1}^n u_i = 0 \tag{9}
$$

Define $\pi': \Omega \to \mathbb{R}$ as follows (for some $\epsilon > 0 \in \mathbb{R}$):

$$
\pi'(\omega_i) = \pi(\omega_i) + \epsilon \cdot u_i \text{ for all } i = 1,\ldots,n \tag{10}
$$

To establish π' as a risk-neutral measure different than π , note:

- Since $\sum_{i=1}^{n} \pi(\omega_i) = 1$ and since $\sum_{i=1}^{n} u_i = 0$, $\sum_{i=1}^{n} \pi'(\omega_i) = 1$
- Construct $\pi'(\omega_i) > 0$ for each i where $\pi(\omega_i) > 0$ by making $\epsilon > 0$ sufficiently small, and set $\pi'(\omega_i)=0$ for each i where $\pi(\omega_i)=0$
- \bullet From Eq [\(8\)](#page-29-0) and Eq [\(10\)](#page-30-0), we derive:

$$
\sum_{i=1}^{n} \pi'(\omega_i) \cdot S_j^{(i)} = \sum_{i=1}^{n} \pi(\omega_i) \cdot S_j^{(i)} = e^r \cdot S_j^{(0)} \text{ for all } j = 0, 1, ..., m
$$

ミミ りょい

- Superhedging is a technique to price in incomplete markets
- Where one cannot replicate & there are multiple risk-neutral measures
- The idea is to create a portfolio of fundamental assets whose Value dominates the derivative payoff in all states at $t = 1$
- Superhedge Price is the smallest possible Portfolio Spot $(t = 0)$ Value among all such Derivative-Payoff-Dominating portfolios
- This is a constrained linear optimization problem:

$$
\min_{\theta} \sum_{j=0}^{m} \theta_j \cdot S_j^{(0)} \text{ such that } \sum_{j=0}^{m} \theta_j \cdot S_j^{(i)} \ge V_D^{(i)} \text{ for all } i = 1, \dots, n \text{ (11)}
$$

Let $\theta^* = (\theta_0^*, \theta_1^*, \dots, \theta_m^*)$ be the solution to Equation [\(11\)](#page-31-0)

Let SP be the Superhedge Price $\sum_{j=0}^m \theta_j^* \cdot S_j^{(0)}$ j

 $F = \Omega$

Appendix 3: Superhedging

• Establish feasibility and define Lagrangian $J(\theta, \lambda)$

$$
J(\theta, \lambda) = \sum_{j=0}^{m} \theta_j \cdot S_j^{(0)} + \sum_{i=1}^{n} \lambda_i \cdot (V_D^{(i)} - \sum_{j=0}^{m} \theta_j \cdot S_j^{(i)})
$$

• So there exists $\lambda = (\lambda_1, \ldots, \lambda_n)$ that satisfy these KKT conditions:

$$
\lambda_i \geq 0 \text{ for all } i=1,\ldots,n
$$

 $\lambda_i \cdot (V_D^{(i)} - \sum^m)$ $j=0$ $\theta_j^* \cdot S_j^{(i)}$ $j^{(1)}$) for all $i = 1, \ldots, n$ (Complementary Slackness)

$$
\nabla_{\theta} J(\theta^*, \lambda) = 0 \Rightarrow S_j^{(0)} = \sum_{i=1}^n \lambda_i \cdot S_j^{(i)}
$$
 for all $j = 0, 1, ..., m$

→ ∃l≡ ЮQ Թ

Appendix 3: Superhedging

- This implies $\lambda_i = e^{-r}\cdot \pi(\omega_i)$ for all $i=1,\ldots,n$ for a risk-neutral probability measure $\pi : \Omega \to [0,1]$ (λ is "discounted probabilities")
- Define Lagrangian Dual $L(\lambda) = \inf_{\theta} J(\theta, \lambda)$. Then, Superhedge Price

$$
SP = \sum_{j=0}^{m} \theta_j^* \cdot S_j^{(0)} = \sup_{\lambda} L(\lambda) = \sup_{\lambda} \inf_{\theta} J(\theta, \lambda)
$$

Complementary Slackness and some linear algebra over the space of risk-neutral measures $\pi : \Omega \to [0,1]$ enables us to argue that:

$$
SP = \sup_{\pi} \sum_{i=1}^{n} \pi(\omega_i) \cdot V_D^{(i)}
$$

通信 めなめ

• Likewise, the *Subhedging* price *SB* is defined as:

$$
\max_{\theta} \sum_{j=0}^{m} \theta_j \cdot S_j^{(0)} \text{ such that } \sum_{j=0}^{m} \theta_j \cdot S_j^{(i)} \le V_D^{(i)} \text{ for all } i = 1, \dots, n \text{ (12)}
$$

• Likewise arguments enable us to establish:

$$
SB = \inf_{\pi} \sum_{i=1}^{n} \pi(\omega_i) \cdot V_D^{(i)}
$$

 \bullet This gives a lower bound of SB and an upper bound of SP, meaning:

- A price outside these bounds leads to an arbitrage
- Valid prices must be established within these bounds

 Ω

Appendix 4: Maximization of Expected Utility

- Maximization of Expected Utility is a technique to establish pricing and hedging in incomplete markets
- \bullet Based on a concave Utility function $U: \mathbb{R} \to \mathbb{R}$ applied to the Value in each state $\omega_i, i=1,\ldots n$, at $t=1$
- An example: $U(x) = \frac{-e^{-ax}}{a}$ where $a \in \mathbb{R}$ is the degree of risk-aversion
- Let the real-world probabilities be given by $\mu : \Omega \to [0,1]$
- Denote $V_D = (V_D^{(1)}$ $V_D^{(1)}, \ldots, V_D^{(n)}$ $D_D^{(N)}$) as the payoff of Derivative D at $t=1$
- Let x be the candidate price for D, which means receiving cash of $-x$ (at $t = 0$) as compensation for taking position D
- We refer to the candidate hedge by Portfolio $\theta = (\theta_0, \theta_1, \dots, \theta_m)$ as the holdings in the fundamental assets
- Our goal is to solve for the appropriate values of x and θ

KAD → KED KED ELE VOO

Appendix 4: Maximization of Expected Utility

• Consider Utility of the combination of $D, -x, \theta$ in state *i* at $t = 1$:

$$
U(V_D^{(i)} - x + \sum_{j=0}^m \theta_j \cdot (S_j^{(i)} - S_j^{(0)}))
$$

• So, the Expected Utility $f(V_D, x, \theta)$ at $t = 1$ is given by:

$$
f(V_D, x, \theta) = \sum_{i=1}^n \mu(\omega_i) \cdot U(V_D^{(i)} - x + \sum_{j=0}^m \theta_j \cdot (S_j^{(i)} - S_j^{(0)}))
$$

• Find θ that maximizes $f(V_D, x, \theta)$ with balance constraint at $t = 0$

$$
\max_{\theta} f(V_D, x, \theta) \text{ such that } x = -\sum_{j=0}^{m} \theta_j \cdot S_j^{(0)}
$$

 $= \Omega Q$

Appendix 4: Maximization of Expected Utility

Re-write as unconstrained optimization (over $\theta' = (\theta_1, \ldots, \theta_m))$ $\max_{\theta'} g(V_D, x, \theta')$

where
$$
g(V_D, x, \theta') = \sum_{i=1}^n \mu(\omega_i) \cdot U(V_D^{(i)} - x \cdot e^r + \sum_{j=1}^m \theta_j \cdot (S_j^{(i)} - e^r \cdot S_j^{(0)}))
$$

 \bullet Price of D is defined as the "breakeven value" z such that:

$$
\sup_{\theta'} g(V_D, z, \theta') = \sup_{\theta'} g(0, 0, \theta')
$$

- Principle: Introducing a position of V_D together with a cash receipt of $-z$ keeps the Maximum Expected Utility unchanged
- $(\theta_1^*,\ldots,\theta_m^*)$ that achieves sup $_{\theta'}$ $g(\mathcal{V}_D, z, \theta')$ and $\theta^*_0 = -(z + \sum_{j=1}^m \theta^*_j \cdot \textit{S}^{(0)}_j)$ $j^{(0)}_j$) are the associated hedges
- Note that the Price of V_D will NOT be the negative of the Price of $-V_D$, hence these prices serve as bounds/b[id-](#page-36-0)[as](#page-37-0)[k](#page-36-0) [pric](#page-37-0)[e](#page-24-0)[s](#page-25-0)