
A Simple and Intuitive Coverage of
The Fundamental Theorems of Asset Pricing

Ashwin Rao

ICME, Stanford University

January 24, 2020

Ashwin Rao (Stanford) Fundamental Theorems of Asset Pricing January 24, 2020 1 / 38



Overview

1 Simple Setting for Intuitive Understanding

2 Portfolios, Arbitrage and Risk-Neutral Measure

3 First Fundamental Theorem of Asset Pricing

4 Derivatives, Replicating Portfolios and Hedges

5 Second Fundamental Theorem of Asset Pricing

6 Derivatives Pricing

7 Examples

8 Summary and General Theory

Ashwin Rao (Stanford) Fundamental Theorems of Asset Pricing January 24, 2020 2 / 38



Simple Setting for Intuitive Understanding

Single-period setting (two time points t = 0 and t = 1)

t = 0 has a single state (we’ll call it “Spot” state)

t = 1 has n random states represented by Ω = {ω1, . . . , ωn}
With probability distribution µ : Ω→ [0, 1], i.e,

∑n
i=1 µ(ωi ) = 1

m + 1 fundamental assets A0,A1, . . . ,Am

Spot Price (at t = 0) of Aj denoted S
(0)
j for all j = 0, 1, . . . ,m

Price of Aj in state ωi denoted S
(i)
j for all j = 0, . . . ,m, i = 1, . . . , n

All asset prices are assumed to be real numbers, i.e. in R
A0 is a special asset known as risk-free asset with S

(0)
0 normalized to 1

S
(i)
0 = er for all i = 1, . . . , n where r is the constant risk-free rate

e−r is the risk-free discount factor to represent “time value of money”
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Portfolios

A portfolio is a vector θ = (θ0, θ1, . . . , θm) ∈ Rm+1

θj is the number of units held in asset Aj for all j = 0, 1, . . . ,m

Spot Value (at t = 0) of portfolio θ denoted V
(0)
θ is:

V
(0)
θ =

m∑
j=0

θj · S
(0)
j

Value of portfolio θ in state ωi (at t = 1) denoted V
(i)
θ is:

V
(i)
θ =

m∑
j=0

θj · S
(i)
j for all i = 1, . . . , n
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Arbitrage Portfolio

An Arbitrage Portfolio θ is one that “makes money from nothing”

Formally, a portfolio θ such that:

V
(0)
θ ≤ 0

V
(i)
θ ≥ 0 for all i = 1, . . . , n

∃i in 1, . . . , n such that µ(ωi ) > 0 and V
(i)
θ > 0

So we never end with less value than what we start with and we end
with expected value greater than what we start with

Arbitrage allows market participants to make infinite returns

In an efficient market, arbitrage disappears as participants exploit it

Hence, Finance Theory typically assumes “arbitrage-free” markets
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Risk-Neutral Probability Measure

Consider a Probability Distribution π : Ω→ [0, 1] such that

π(ωi ) = 0 if and only if µ(ωi ) = 0 for all i = 1, . . . , n

Then, π is a Risk-Neutral Probability Measure if:

S
(0)
j = e−r ·

n∑
i=1

π(ωi ) · S
(i)
j for all j = 0, 1, . . . ,m (1)

So for each of the m + 1 assets, the asset spot price (at t = 0) is the
discounted expectation (under π) of the asset price at t = 1

π is an artificial construct to connect expectation of asset prices at
t = 1 to their spot prices by the risk-free discount factor e−r

Ashwin Rao (Stanford) Fundamental Theorems of Asset Pricing January 24, 2020 6 / 38



1st Fundamental Theorem of Asset Pricing (1st FTAP)

Theorem

1st FTAP: Our simple setting will not admit arbitrage portfolios if and
only if there exists a Risk-Neutral Probability Measure.

First we prove the easy implication:
Existence of Risk-Neutral Measure ⇒ Arbitrage-free

Assume there is a risk-neutral measure π

Then, for each portfolio θ = (θ0, θ1, . . . , θm),

V
(0)
θ =

m∑
j=0

θj · S
(0)
j =

m∑
j=0

θj · e−r ·
n∑

i=1

π(ωi ) · S
(i)
j

= e−r ·
n∑

i=1

π(ωi ) ·
m∑
j=0

θj · S
(i)
j = e−r ·

n∑
i=1

π(ωi ) · V
(i)
θ
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1st Fundamental Theorem of Asset Pricing (1st FTAP)

So the portfolio spot value is the discounted expectation (under π) of
the portfolio value at t = 1

For any portfolio θ, if the following two conditions are satisfied:

V
(i)
θ ≥ 0 for all i = 1, . . . , n

∃i in 1, . . . , n such that µ(ωi ) > 0(⇒ π(ωi ) > 0) and V
(i)
θ > 0

Then,

V
(0)
θ = e−r ·

n∑
i=1

π(ωi ) · V
(i)
θ > 0

This eliminates the the possibility of arbitrage for any portfolio θ

The other implication (Arbitrage-free ⇒ Existence of Risk-Neutral
Measure) is harder to prove and covered in Appendix 1
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Derivatives, Replicating Portfolios and Hedges

A Derivative D (in this simple setting) is a vector payoff at t = 1:

(V
(1)
D ,V

(2)
D , . . . ,V

(n)
D )

where V
(i)
D is the payoff of the derivative in state ωi for all i = 1, . . . , n

Portfolio θ ∈ Rm+1 is a Replicating Portfolio for derivative D if:

V
(i)
D =

m∑
j=0

θj · S
(i)
j for all i = 1, . . . , n (2)

The negatives of the components (θ0, θ1, . . . , θm) are known as the
hedges for D since they can be used to offset the risk in the payoff of
D at t = 1
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2nd Fundamental Theorem of Asset Pricing (2nd FTAP)

An arbitrage-free market is said to be Complete if every derivative in the
market has a replicating portfolio.

Theorem

2nd FTAP: A market is Complete in our simple setting if and only if there
is a unique risk-neutral probability measure.

Proof in Appendix 2. Together, the FTAPs classify markets into:

1 Complete (arbitrage-free) market ⇔ Unique risk-neutral measure

2 Market with arbitrage ⇔ No risk-neutral measure

3 Incomplete (arbitrage-free) market ⇔ Multiple risk-neutral measures

The next topic is derivatives pricing that is based on the concepts of
replication of derivatives and risk-neutral measures, and so is tied to the
concepts of arbitrage and completeness.
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Positions involving a Derivative

Before getting into Derivatives Pricing, we need to define a Position

We define a Position involving a derivative D as the combination of
holding some units in D and some units in A0,A1, . . . ,Am

Position is an extension of the Portfolio concept including a derivative

Formally denoted as γD = (α, θ0, θ1, . . . , θm) ∈ Rm+2

α is the units held in derivative D

θj is the units held in Aj for all j = 0, 1, . . . ,m

Extend the definition of Portfolio Value to Position Value

Extend the definition of Arbitrage Portfolio to Arbitrage Position
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Derivatives Pricing: Elimination of candidate prices

We will consider candidate prices (at t = 0) for a derivative D

Let θ = (θ0, θ1, . . . , θm) be a replicating portfolio for D

Consider the candidate price
∑m

j=0 θj · S
(0)
j − x for D for any x > 0

Position (1,−θ0 + x ,−θ1, . . . ,−θm) has value x · er > 0 in each of
the states at t = 1

But this position has spot (t = 0) value of 0, which means this is an
Arbitrage Position, rendering this candidate price invalid

Consider the candidate price
∑m

j=0 θj · S
(0)
j + x for D for any x > 0

Position (−1, θ0 + x , θ1, . . . , θm) has value x · er > 0 in each of the
states at t = 1

But this position has spot (t = 0) value of 0, which means this is an
Arbitrage Position, rendering this candidate price invalid

So every candidate price for D other than
∑m

j=0 θj · S
(0)
j is invalid
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Derivatives Pricing: Remaining candidate price

Having eliminated various candidate prices for D, we now aim to
establish the remaining candidate price:

V
(0)
D =

m∑
j=0

θj · S
(0)
j (3)

where θ = (θ0, θ1, . . . , θm) is a replicating portfolio for D

To eliminate prices, our only assumption was that D can be replicated

This can happen in a complete market or in an arbitrage market

To establish remaining candidate price V
(0)
D , we need to assume

market is complete, i.e., there is a unique risk-neutral measure π

Candidate price V
(0)
D can be expressed as the discounted expectation

(under π) of the payoff of D at t = 1, i.e.,

V
(0)
D =

m∑
j=0

θj · e−r ·
n∑

i=1

π(ωi ) · S
(i)
j = e−r ·

n∑
i=1

π(ωi ) · V
(i)
D (4)
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Derivatives Pricing: Establishing remaining candidate price

Now consider an arbitrary portfolio β = (β0, β1, . . . , βm)

Define a position γD = (α, β0, β1, . . . , βm)

Spot Value (at t = 0) of position γD denoted V
(0)
γD is:

V (0)
γD

= α · V (0)
D +

m∑
j=0

βj · S
(0)
j (5)

where V
(0)
D is the remaining candidate price

Value of position γD in state ωi (at t = 1), denoted V
(i)
γD , is:

V (i)
γD

= α · V (i)
D +

m∑
j=0

βj · S
(i)
j for all i = 1, . . . , n (6)

Combining the linearity in equations (1), (4), (5), (6), we get:

V (0)
γD

= e−r ·
n∑

i=1

π(ωi ) · V (i)
γD

(7)
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Derivatives Pricing: Establishing remaining candidate price

So the position spot value is the discounted expectation (under π) of
the position value at t = 1

For any γD (containing any arbitrary portfolio β) and with V
(0)
D as the

candidate price for D, if the following two conditions are satisfied:

V
(i)
γD ≥ 0 for all i = 1, . . . , n

∃i in 1, . . . , n such that µ(ωi ) > 0(⇒ π(ωi ) > 0) and V
(i)
γD > 0

Then,

V (0)
γD

= e−r ·
n∑

i=1

π(ωi ) · V (i)
γD

> 0

This eliminates arbitrage possibility for remaining candidate price V
(0)
D

So we have eliminated all prices other than V
(0)
D , and we have

established the price V
(0)
D , proving that it should be the price of D

The above arguments assumed a complete market, but what about an
incomplete market or a market with arbitrage?
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Incomplete Market (Multiple Risk-Neutral Measures)

Recall: Incomplete market means some derivatives can’t be replicated

Absence of replicating portfolio precludes usual arbitrage arguments

2nd FTAP says there are multiple risk-neutral measures

So, multiple derivative prices (each consistent with no-arbitrage)

Superhedging (outline in Appendix 3) provides bounds for the prices

But often these bounds are not tight and so, not useful in practice

The alternative approach is to identify hedges that maximize
Expected Utility of the derivative together with the hedges

For an appropriately chosen market/trader Utility function

Utility function is a specification of reward-versus-risk preference that
effectively chooses the risk-neutral measure and (hence, Price)

We outline the Expected Utility approach in Appendix 4
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Multiple Replicating Portfolios (Arbitrage Market)

Assume there are replicating portfolios α and β for D with

m∑
j=0

αj · S
(0)
j −

m∑
j=0

βj · S
(0)
j = x > 0

Consider portfolio θ = (β0 − α0 + x , β1 − α1, . . . , βm − αm)

V
(0)
θ =

m∑
j=0

(βj − αj) · S
(0)
j + x · S (0)

0 = −x + x = 0

V
(i)
θ =

m∑
j=0

(βj − αj) · S
(i)
j + x · S (i)

0 = x · er > 0 for all i = 1, . . . , n

So θ is an Arbitrage Portfolio ⇒ market with no risk-neutral measure

Also note from previous elimination argument that every candidate

price other than
∑m

j=0 αj · S
(0)
j is invalid and every candidate price

other than
∑m

j=0 βj · S
(0)
j is invalid, so D has no valid price at all
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Market with 2 states and 1 Risky Asset

Consider a market with m = 1 and n = 2

Assume S
(1)
1 < S

(2)
1

No-arbitrage requires S
(1)
1 ≤ S

(0)
1 · er ≤ S

(2)
1

Assuming absence of arbitrage and invoking 1st FTAP, there exists a
risk-neutral probability measure π such that:

S
(0)
1 = e−r · (π(ω1) · S (1)

1 + π(ω2) · S (2)
1 )

π(ω1) + π(ω2) = 1

This implies:

π(ω1) =
S
(2)
1 − S

(0)
1 · er

S
(2)
1 − S

(1)
1

π(ω2) =
S
(0)
1 · er − S

(1)
1

S
(2)
1 − S

(1)
1
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Market with 2 states and 1 Risky Asset (continued)

We can use these probabilities to price a derivative D as:

V
(0)
D = e−r · (π(ω1) · V (1)

D + π(ω2) · V (2)
D )

Now let us try to form a replicating portfolio (θ0, θ1) for D

V
(1)
D = θ0 · er + θ1 · S (1)

1

V
(2)
D = θ0 · er + θ1 · S (2)

1

Solving this yields Replicating Portfolio (θ0, θ1) as follows:

θ0 = e−r ·
V

(1)
D · S (2)

1 − V
(2)
D · S (1)

1

S
(2)
1 − S

(1)
1

and θ1 =
V

(2)
D − V

(1)
D

S
(2)
1 − S

(1)
1

This means this is a Complete Market

Note that the derivative price can also be expressed as:

V
(0)
D = θ0 + θ1 · S (0)

1
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Market with 3 states and 1 Risky Asset

Consider a market with m = 1 and n = 3

Assume S
(1)
1 < S

(2)
1 < S

(3)
1

No-arbitrage requires S
(1)
1 ≤ S

(0)
1 · er ≤ S

(3)
1

Assuming absence of arbitrage and invoking 1st FTAP, there exists a
risk-neutral probability measure π such that:

S
(0)
1 = e−r · (π(ω1) · S (1)

1 + π(ω2) · S (2)
1 + π(ω3) · S (3)

1 )

π(ω1) + π(ω2) + π(ω3) = 1

2 equations & 3 variables ⇒ multiple solutions for π

Each of these solutions for π provides a valid price for a derivative D

V
(0)
D = e−r · (π(ω1) · V (1)

D + π(ω2) · V (2)
D + π(ω3) · V (3)

D )
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Market with 3 states and 1 Risky Asset (continued)

Now let us try to form a replicating portfolio (θ0, θ1) for D

V
(1)
D = θ0 · er + θ1 · S (1)

1

V
(2)
D = θ0 · er + θ1 · S (2)

1

V
(3)
D = θ0 · er + θ1 · S (3)

1

3 equations & 2 variables ⇒ no replication for some D

This means this is an Incomplete Market

Don’t forget that we have multiple risk-neutral probability measures

Meaning we have multiple valid prices for derivatives
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Market with 2 states and 2 Risky Assets

Consider a market with m = 2 and n = 3

Assume S
(1)
1 < S

(2)
1 and S

(1)
2 < S

(2)
2

Let us try to determine a risk-neutral probability measure π:

S
(0)
1 = e−r · (π(ω1) · S (1)

1 + π(ω2) · S (2)
1 )

S
(0)
2 = e−r · (π(ω1) · S (1)

2 + π(ω2) · S (2)
2 )

π(ω1) + π(ω2) = 1

3 equations & 2 variables ⇒ no risk-neutral measure π

Let’s try to form a replicating portfolio (θ0, θ1, θ2) for a derivative D

V
(1)
D = θ0 · er + θ1 · S (1)

1 + θ2 · S (1)
2

V
(2)
D = θ0 · er + θ1 · S (2)

1 + θ2 · S (2)
2
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Market with 2 states and 2 Risky Assets (continued)

2 equations & 3 variables ⇒ multiple replicating portfolios

Each such replicating portfolio yields a price for D as:

V
(0)
D = θ0 + θ1 · S (0)

1 + θ2 · S (0)
2

Select two such replicating portfolios with different V
(0)
D

Combination of these replicating portfolios is an Arbitrage Portfolio

They cancel off each other’s price in each t = 1 states
They have a combined negative price at t = 0

So this is a market that admits arbitrage (no risk-neutral measure)
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Summary

3 cases:
1 Complete market

Unique replicating portfolio for derivatives
Unique risk-neutral measure, meaning we have unique derivatives prices

2 Arbitrage-free but incomplete market

Not all derivatives can be replicated
Multiple risk-neutral measures, meaning we can have multiple valid
prices for derivatives

3 Market with Arbitrage

Derivatives have multiple replicating portfolios (that when combined
causes arbitrage)
No risk-neutral measure, meaning derivatives cannot be priced
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General Theory for Derivatives Pricing

The theory for our simple setting extends nicely to the general setting

Instead of t = 0, 1, we consider t = 0, 1, . . . ,T

The model is a “recombining tree” of state transitions across time

The idea of Arbitrage applies over multiple time periods

Risk-neutral measure for each state at each time period

Over multiple time periods, we need a Dynamic Replicating Portfolio
to rebalance asset holdings (“self-financing trading strategy”)

We obtain prices and replicating portfolio at each time in each state

By making time period smaller and smaller, the model turns into a
stochastic process (in continuous time)

Classical Financial Math theory based on stochastic calculus but has
essentially the same ideas we developed for our simple setting
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Appendix 1: Arbitrage-free ⇒ ∃ a risk-neutral measure

We will prove that if a risk-neutral probability measure doesn’t exist,
there exists an arbitrage portfolio

Let V ⊂ Rm be the set of vectors (s1, . . . , sm) such that

sj = e−r ·
n∑

i=1

µ(ωi ) · S
(i)
j for all j = 1, . . . ,m

spanning over all possible probability distributions µ : Ω→ [0, 1]

V is a bounded, closed, convex polytope in Rm

If a risk-neutral measure doesn’t exist, (S
(0)
1 , . . . ,S

(0)
m ) 6∈ V

Hyperplane Separation Theorem implies that there exists a non-zero
vector (θ1, . . . , θm) such that for any v = (v1, . . . , vm) ∈ V,

m∑
j=1

θj · vj >
m∑
j=1

θj · S
(0)
j
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Appendix 1: Arbitrage-free ⇒ ∃ a risk-neutral measure

In particular, consider vectors v corresponding to the corners of V,
those for which the full probability mass is on a particular ωi ∈ Ω, i.e.,

m∑
j=1

θj · (e−r · S
(i)
j ) >

m∑
j=1

θj · S
(0)
j for all i = 1, . . . , n

Choose a θ0 ∈ R such that:

m∑
j=1

θj · (e−r · S
(i)
j ) > −θ0 >

m∑
j=1

θj · S
(0)
j for all i = 1, . . . , n

Therefore,

e−r ·
m∑
j=0

θj · S
(i)
j > 0 >

m∑
j=0

θj · S
(0)
j for all i = 1, . . . , n

This means (θ0, θ1, . . . , θm) is an arbitrage portfolio
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Appendix 2: Proof of 2nd FTAP

We will first prove that in an arbitrage-free market, if every derivative
has a replicating portfolio, there is a unique risk-neutral measure π

We define n special derivatives (known as Arrow-Debreu securities),
one for each random state in Ω at t = 1

We define the time t = 1 payoff of Arrow-Debreu security Dk (for
each of k = 1, . . . , n) in state ωi as Ii=k for all i = 1, . . . , n.

Since each derivative has a replicating portfolio, let

θ(k) = (θ
(k)
0 , θ

(j)
1 , . . . , θ

(k)
m ) be the replicating portfolio for Dk .

With usual no-arbitrage argument, the price (at t = 0) of Dk is

m∑
j=0

θ
(k)
j · S

(0)
j for all k = 1, . . . , n
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Appendix 2: Proof of 2nd FTAP

Now let us try to solve for an unknown risk-neutral probability
measure π : Ω→ [0, 1], given the above prices for Dk , k = 1, . . . , n

e−r ·
n∑

i=1

π(ωi ) · Ii=k = e−r ·π(ωk) =
m∑
j=0

θ
(k)
j ·S

(0)
j for all k = 1, . . . , n

⇒ π(ωk) = er ·
m∑
j=0

θ
(k)
j · S

(0)
j for all k = 1, . . . , n

This yields a unique solution for the risk-neutral probability measure π

Next, we prove the other direction of the 2nd FTAP

To prove: if there exists a risk-neutral measure π and if there exists a
derivative D with no replicating portfolio, we can construct a
risk-neutral measure different than π
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Appendix 2: Proof of 2nd FTAP

Consider the following vectors in the vector space Rn

v = (V
(1)
D , . . . ,V

(n)
D ) and sj = (S

(1)
j , . . . ,S

(n)
j ) for all j = 0, 1, . . . ,m

Since D does not have a replicating portfolio, v is not in the span of
s0, s1, . . . , sm, which means s0, s1, . . . , sm do not span Rn

Hence ∃ a non-zero vector u = (u1, . . . , un) ∈ Rn orthogonal to each
of s0, s1, . . . , sm, i.e.,

n∑
i=1

ui · S
(i)
j = 0 for all j = 0, 1, . . . , n (8)

Note that S
(i)
0 = er for all i = 1, . . . , n and so,

n∑
i=1

ui = 0 (9)
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Appendix 2: Proof of 2nd FTAP

Define π′ : Ω→ R as follows (for some ε > 0 ∈ R):

π′(ωi ) = π(ωi ) + ε · ui for all i = 1, . . . , n (10)

To establish π′ as a risk-neutral measure different than π, note:

Since
∑n

i=1 π(ωi ) = 1 and since
∑n

i=1 ui = 0,
∑n

i=1 π
′(ωi ) = 1

Construct π′(ωi ) > 0 for each i where π(ωi ) > 0 by making ε > 0
sufficiently small, and set π′(ωi ) = 0 for each i where π(ωi ) = 0
From Eq (8) and Eq (10), we derive:

n∑
i=1

π′(ωi ) · S (i)
j =

n∑
i=1

π(ωi ) · S (i)
j = er · S (0)

j for all j = 0, 1, . . . ,m
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Appendix 3: Superhedging

Superhedging is a technique to price in incomplete markets

Where one cannot replicate & there are multiple risk-neutral measures

The idea is to create a portfolio of fundamental assets whose Value
dominates the derivative payoff in all states at t = 1

Superhedge Price is the smallest possible Portfolio Spot (t = 0) Value
among all such Derivative-Payoff-Dominating portfolios

This is a constrained linear optimization problem:

min
θ

m∑
j=0

θj ·S
(0)
j such that

m∑
j=0

θj ·S
(i)
j ≥ V

(i)
D for all i = 1, . . . , n (11)

Let θ∗ = (θ∗0, θ
∗
1, . . . , θ

∗
m) be the solution to Equation (11)

Let SP be the Superhedge Price
∑m

j=0 θ
∗
j · S

(0)
j
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Appendix 3: Superhedging

Establish feasibility and define Lagrangian J(θ, λ)

J(θ, λ) =
m∑
j=0

θj · S
(0)
j +

n∑
i=1

λi · (V
(i)
D −

m∑
j=0

θj · S
(i)
j )

So there exists λ = (λ1, . . . , λn) that satisfy these KKT conditions:

λi ≥ 0 for all i = 1, . . . , n

λi ·(V
(i)
D −

m∑
j=0

θ∗j ·S
(i)
j ) for all i = 1, . . . , n (Complementary Slackness)

∇θJ(θ∗, λ) = 0⇒ S
(0)
j =

n∑
i=1

λi · S
(i)
j for all j = 0, 1, . . . ,m
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Appendix 3: Superhedging

This implies λi = e−r · π(ωi ) for all i = 1, . . . , n for a risk-neutral
probability measure π : Ω→ [0, 1] (λ is “discounted probabilities”)

Define Lagrangian Dual L(λ) = infθ J(θ, λ). Then, Superhedge Price

SP =
m∑
j=0

θ∗j · S
(0)
j = sup

λ
L(λ) = sup

λ
inf
θ
J(θ, λ)

Complementary Slackness and some linear algebra over the space of
risk-neutral measures π : Ω→ [0, 1] enables us to argue that:

SP = sup
π

n∑
i=1

π(ωi ) · V
(i)
D
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Appendix 3: Superhedging

Likewise, the Subhedging price SB is defined as:

max
θ

m∑
j=0

θj ·S
(0)
j such that

m∑
j=0

θj ·S
(i)
j ≤ V

(i)
D for all i = 1, . . . , n (12)

Likewise arguments enable us to establish:

SB = inf
π

n∑
i=1

π(ωi ) · V
(i)
D

This gives a lower bound of SB and an upper bound of SP, meaning:

A price outside these bounds leads to an arbitrage
Valid prices must be established within these bounds
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Appendix 4: Maximization of Expected Utility

Maximization of Expected Utility is a technique to establish pricing
and hedging in incomplete markets

Based on a concave Utility function U : R→ R applied to the Value
in each state ωi , i = 1, . . . n, at t = 1

An example: U(x) = −e−ax

a where a ∈ R is the degree of risk-aversion

Let the real-world probabilities be given by µ : Ω→ [0, 1]

Denote VD = (V
(1)
D , . . . ,V

(n)
D ) as the payoff of Derivative D at t = 1

Let x be the candidate price for D, which means receiving cash of −x
(at t = 0) as compensation for taking position D

We refer to the candidate hedge by Portfolio θ = (θ0, θ1, . . . , θm) as
the holdings in the fundamental assets

Our goal is to solve for the appropriate values of x and θ
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Appendix 4: Maximization of Expected Utility

Consider Utility of the combination of D,−x , θ in state i at t = 1:

U(V
(i)
D − x +

m∑
j=0

θj · (S
(i)
j − S

(0)
j ))

So, the Expected Utility f (VD , x , θ) at t = 1 is given by:

f (VD , x , θ) =
n∑

i=1

µ(ωi ) · U(V
(i)
D − x +

m∑
j=0

θj · (S
(i)
j − S

(0)
j ))

Find θ that maximizes f (VD , x , θ) with balance constraint at t = 0

max
θ

f (VD , x , θ) such that x = −
m∑
j=0

θj · S
(0)
j
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Appendix 4: Maximization of Expected Utility

Re-write as unconstrained optimization (over θ′ = (θ1, . . . , θm))

max
θ′

g(VD , x , θ
′)

where g(VD , x , θ
′) =

n∑
i=1

µ(ωi )·U(V
(i)
D −x ·e

r +
m∑
j=1

θj ·(S
(i)
j −e

r ·S (0)
j ))

Price of D is defined as the “breakeven value” z such that:

sup
θ′

g(VD , z , θ
′) = sup

θ′
g(0, 0, θ′)

Principle: Introducing a position of VD together with a cash receipt
of −z keeps the Maximum Expected Utility unchanged

(θ∗1, . . . , θ
∗
m) that achieves supθ′ g(VD , z , θ

′) and

θ∗0 = −(z +
∑m

j=1 θ
∗
j · S

(0)
j ) are the associated hedges

Note that the Price of VD will NOT be the negative of the Price of
−VD , hence these prices serve as bounds/bid-ask prices
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