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Why do we care about Policy Gradient (PG)?

Let us review how we got here

We started with Markov Decision Processes and Bellman Equations
Next we studied several variants of DP and RL algorithms

We noted that the idea of Generalized Policy Iteration (GPI) is key
Policy Improvement step: 7(a|s) derived from argmax, Q(s, a)

How do we do argmax when action space is large or continuous?

Idea: Do Policy Improvement step with a Gradient Ascent instead
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“Policy Improvement with a Gradient Ascent??”

We want to find the Policy that fetches the “Best Expected Returns”
Gradient Ascent on “Expected Returns” w.r.t params of Policy func
So we need a func approx for (stochastic) Policy Func: 7(s, a; 6)

In addition to the usual func approx for Action Value Func: Q(s, a; w)
7(s, a; ) func approx called Actor, Q(s, a; w) func approx called Critic
Critic parameters w are optimized w.r.t Q(s, a; w) loss function min
Actor parameters 0 are optimized w.r.t Expected Returns max

We need to formally define “Expected Returns”

But we already see that this idea is appealing for continuous actions

GPI with Policy Improvement done as Policy Gradient (Ascent)

Ashwin Rao (Stanford) Policy Gradient Algorithms 4/33



Value Function-based and Policy-based RL

@ Value Function-based

e Learn Value Function (with a function approximation)

o Policy is implicit - readily derived from Value Function (eg: e-greedy)
@ Policy-based

e Learn Policy (with a function approximation)
o No need to learn a Value Function

@ Actor-Critic

o Learn Policy (Actor)
e Learn Value Function (Critic)
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Advantages and Disadvantages of Policy Gradient approach

Advantages:

e Finds the best Stochastic Policy (Optimal Deterministic Policy,
produced by other RL algorithms, can be unsuitable for POMDPs)

@ Naturally explores due to Stochastic Policy representation
o Effective in high-dimensional or continuous action spaces
@ Small changes in 8 = small changes in 7, and in state distribution
@ This avoids the convergence issues seen in argmax-based algorithms
Disadvantages:
@ Typically converge to a local optimum rather than a global optimum
@ Policy Evaluation is typically inefficient and has high variance

@ Policy Improvement happens in small steps = slow convergence
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@ Discount Factor ~

@ Assume episodic with 0 < v <1 or non-episodic with 0 <~ < 1
e States s; € S, Actions a; € A, Rewards r; € R, Vt € {0,1,2,...}
@ State Transition Probabilities P;S, = Pr(sty1 =5'|st = s,ar = a)
o Expected Rewards R2 = E[rt|s; = s,a; = 3]

e Initial State Probability Distribution py : S — [0, 1]

e Policy Func Approx 7(s, a;0) = Pr(a; = a|s; = s,0),0 € R¥

PG coverage will be quite similar for non-discounted non-episodic, by
considering average-reward objective (so we won't cover it)
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“Expected Returns” Objective

Now we formalize the "Expected Returns” Objective J(6)
J0) = B[ 7'
t=0
Value Function V7(s) and Action Value function Q™ (s, a) defined as:

VT (s) = Ex[> v* 'rlse = s],Vt € {0,1,2,...}
k=t

Q" (s,a) = E”[Z YK tr st =s,a; = a],Vt € {0,1,2,...}
k=t
Advantage Function A" (s,a) = Q™ (s,a) — V™ (s)

Also, p(s — s, t, ) will be a key function for us - it denotes the

probability of going from state s to s’ in t steps by following policy 7
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Discounted-Aggregate State-Visitation Measure

0) = ET([Z ’Ytrt] = ZﬂytEﬂ[rt]
t=0 t=0
:Z //poso) p(so—>st7r)-dso)/Aﬂ(s,a;H)-Ri-da-ds

//Z’Y po(so) - p(so — s, t, ) - dso)/ m(s,a;0)-R2-da-ds

Definition

5(0) = /S 7 (s) /A w(s,2:0) - R2 - da- ds

where p™(s) = [ 37207 - po(s0) - p(so — s, t,7) - dsp is the key function
(for PG) we'll refer to as Discounted-Aggregate State-Visitation Measure.
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Policy Gradient Theorem (PGT)

VoJ(6) = /S 7 (s) /A Vr(s, 2:0) - Q7(s,a) - da- ds

Note: p”(s) depends on 6, but there's no Vyp™(s) term in VJ(0)

So we can simply sample simulation paths, and at each time step, we
calculate (Vg log (s, a; 0)) - Q" (s, a) (probabilities implicit in paths)

Note: Vglog(s,a;0) is Score function (Gradient of log-likelihood)
We will estimate Q™ (s, a) with a function approximation Q(s, a; w)
We will later show how to avoid the estimate bias of Q(s, a; w)

This numerical estimate of VJ(6) enables Policy Gradient Ascent

Let us look at the score function of some canonical 7 (s, a; 6)
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Canonical 7(s, a; #) for finite action spaces

@ For finite action spaces, we often use Softmax Policy
e 0 is an n-vector (61,...,0,)
@ Features vector ¢(s, a) = (p1(s,a),...,Pn(s,a)) foralls€ S,ac A
@ Weight actions using linear combinations of features: 87 - ¢(s, a)
@ Action probabilities proportional to exponentiated weights:
eOT‘(b(s?a)

7(s,a;0) = W forallse S,ac A

@ The score function is:
Vo logn(s,a;0) Z 7(s, b; 0)-¢(s, b) = ¢(s,a)—E[4(s, )]
b
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Canonical 7 (s, a; #) for continuous action spaces

@ For continuous action spaces, we often use Gaussian Policy

e 0 is an n-vector (61,...,0,)

e State features vector ¢(s) = (¢1(S),...,¢n(s)) forallse S

o Gaussian Mean is a linear combination of state features 87 - ¢(s)
@ Variance may be fixed o2, or can also be parameterized

e Policy is Gaussian, a ~ N(07 - ¢(s),02) forall s € S

@ The score function is:

(a—07 - ¢(s)) - ¢(s)

o2

Vologn(s,a;0) =
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Proof of Policy Gradient Theorem

We begin the proof by noting that:
5(6) = /Spo(so)-wf(so)-ds0 - /Spo(so) /Aﬂ(so, 20:0)- Q" (50, 20)- dao- s
Calculate VyJ(0) by parts 7(sp, ap; #) and Q™ (so, ao)

VoJ(0) = /Spo(so) /AV(;W(SO, ao; 0) - Q" (s0, a0) - dag - dsp

+/Spo(50)/A7r(50,ao;9)-VoQ“(SO,ao)-dao-dSo
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Proof of Policy Gradient Theorem

Now expand Q7 (so, a0) as RL + [s7 - PL,, - V™(s1) - ds; (Bellman)

= /SPO(SO)/AVGW(SOaao;H)‘QW(50730)'d30'd50
+/P0(So)/ m(s0,a0;0) - Vo(Re + / “Pgs, - VT(s1) - ds1) - dag - dso
S A

Note: VoRZ = 0, so remove that term

:/SPO(SO)/ Vor(so, ao; 0) - Q" (s0, a) - dag - dso
JF/PO(SO)/ (0, a0; 0) Va(/ P2, - V7(s1) - dsy) - dag - dsp
S
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Proof of Policy Gradient Theorem

Now bring the V inside the [s to apply only on V™(s;)

= /Spo(so)/AVM(So,ao;G) - Q" (s0,a) - dag - dsp

+ / po(So)/ATr(So, ao; 9)/ - 7):00,51 -VoV7™(s1) - dsy - dag - dso
S S

Now bring the outside [ and [, inside the inner [

:/SPO(SO)/AVOW(SO,QO;G)'QW(SOaQO)'dQO‘dSO

+ /S(/S"}/ . po(So) /ATI'(SQ, do, 9) . 'P;;OO’SI . da() . dSo) . VQ Vﬂ(sl) . d51
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Policy Gradient Theorem

Note that [, m(so, a0;6) - P2, - dap = p(so — s1,1,7)

:/Spo(so)/A'VM(So’ao;G)-Q”(So,ao)'dat)'dso

+/(/’Y'po(50)-p(50—)Sl,].,ﬂ')-dSo)-VgVW(Sl)-dsl
S JS

Now expand V7™ (s1) to fA 7(s1,a1;0) - Q"(s1,a1) - day
= /SPO(SO)/A'VGW(SO,QO;G) - Q" (s0,a0) - da- dsp

+ /S(/S’y - po(so)p(so — s1,1,m)dsp) - Vg(/A m(s1,a1;0)Q™ (s1, a1)day)ds;
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Proof of Policy Gradient Theorem

We are now back to when we started calculating gradient of fA7r - Q™ - da.

Follow the same process of splitting 7 - @™, then Bellman-expanding Q™
(to calculate its gradient), and iterate.

= /SPO(SO) /A -Vor(so, ao; 0) - Q" (s0, a0) - dag - dsp

+ / / vpo(so)p(so — s1, 1,7T)d50(/A Vor(s1,a1;0)Q"(s1,a1)dar + ...)ds;
sJs

This iterative process leads us to:

0o
= Z//’Yt.PO(SO)-p(So — St, t,ﬂ')-dso/ VOW(St,3t;9)'Q”(St,at)-dat-dst
t=0 §JS A

Ashwin Rao (Stanford) Policy Gradient Algorithms

17/33



Proof of Policy Gradient Theorem

Bring 3,2, inside the two [s, and note that
fA Vor(st, at; 0) - Q" (st, at) - day is independent of t.

= / / th-po(so)-p(so — s, t,m)- dso/ Vor(s,a;0)-Q"(s,a)-da-ds
stsi=g A
Reminder that [¢>720~" - po(s0) - p(so — s, t,7) - dso o p”(s). So,

Vo J(0) = /S 7 (s) /A Vor(s, a:0) - Q7(s,a) - da- ds

Q.E.D.
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Monte-Carlo Policy Gradient (REINFORCE Algorithm)

@ Update 6 by stochastic gradient ascent using PGT
@ Using G; = Z,Ltvk_t - rx as an unbiased sample of Q7 (s, ar)

Aat = Q- "}/t . V@ |0g 7T(St, dt, 0) . Gt

Algorithm 4.1: REINFORCE(:)

Initialize 0 arbitrarily
for each episode {sy, ao, ro,...,st,ar, rr} ~m(-, - 60)
fort<O0to T
do do {G < Zszt Y
0+ 0+ a- -yt Vylogn(st,ar; 0)- G
return (0)
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Reducing Variance using a Critic

@ Monte Carlo Policy Gradient has high variance
@ We use a Critic Q(s, a; w) to estimate Q7 (s, a)
@ Actor-Critic algorithms maintain two sets of parameters:

o Critic updates parameters w to approximate Q-function for policy 7
o Critic could use any of the algorithms we learnt earlier:

@ Monte Carlo policy evaluation

o Temporal-Difference Learning

@ TD()) based on Eligibility Traces

@ Could even use LSTD (if critic function approximation is linear)
o Actor updates policy parameters 6 in direction suggested by Critic
e This is Approximate Policy Gradient due to Bias of Critic

VJ(0) / / Vor(s,a;0)- Q(s,a;w)-da-ds
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So what does the algorithm look like?

Generate a sufficient set of simulation paths sy, ag, ro, s1, a1, 11, - - -
so is sampled from the distribution py(+)
a¢ is sampled from m(st, -; 0)

St+1 sampled from transition probs and r:;1 from reward func

At each time step t, update w proportional to gradient of appropriate
(MC or TD-based) loss function of Q(s, a; w)

Sum ' - Vylog 7(st, ar; 0) - Q(st, ar; w) over t and over paths
e Update 6 using this (biased) estimate of VyJ(0)

@ |terate with a new set of simulation paths ...
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Reducing Variance with a Baseline

@ We can reduce variance by subtracting a baseline function B(s) from
Q(s, a; w) in the Policy Gradient estimate

@ This means at each time step, we replace

vt Vo log m(st, a; 0) - Q(st, ar; w) with

vt Vo log m(st, at; 0) - (Q(st, ar; w) — B(s))
@ Note that Baseline function B(s) is only a function of s (and not a)
@ This ensures that subtracting Baseline B(s) does not add bias

/ /Vgﬂsaﬁ B(s)-da-ds

=/Sp(s) B(s)- W(/A #(s,30) - da) - ds = 0
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Using State Value function as Baseline

@ A good baseline B(s) is state value function V(s; v)

@ Rewrite Policy Gradient algorithm using advantage function estimate
A(s,a;w,v) = Q(s,a;w) — V(s;v)

o Now the estimate of VyJ(0) is given by:

/Sp”(s) /AVQW(S, a;0)-A(s,a;w,v)-da-ds

@ At each time step, we update both sets of parameters w and v
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TD Error as estimate of Advantage Function

e Consider TD error 0™ for the true Value Function V7 (s)
8T =r+VT(s') = VT(s)
@ 0™ is an unbiased estimate of Advantage function A" (s, a)
E.[07|s,a] = Ex[r+yV™(s')|s,a]— V7 (s) = Q@"(s,a)—V™(s) = A™(s, a)

@ So we can write Policy Gradient in terms of E.[07|s, ]

Vod(0) = / p”(s)/ Vor(s,a;0)-Er[0"|s, a] - da- ds
S A
@ In practice, we can use func approx for TD error (and sample):
5(s,r,s’;v)=r+~V(s;v)— V(s;v)

@ This approach requires only one set of critic parameters v
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TD Error can be used by both Actor and Critic

Algorithm 4.2: ACTOR-CRITIC-TD-ERROR(")

Initialize Policy params 6 € R™ and State VF params v € R" arbitrarily
for each episode

do

Initialize s (first state of episode)

P<+1

while s is not terminal

a~m(s,-0)

Take action a, observe r, s’

0+ r+~V(s;v)— V(s v)

do Svev+a,-d-V,V(sv)

0« 0+ap-P-0-Vyglogn(s,a;0)
P <« ~P

L s s
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Using Eligibility Traces for both Actor and Critic

Algorithm 4.3: ACTOR-CRITIC-ELIGIBILITY-TRACES(:)

Initialize Policy params # € R™ and State VF params v € R" arbitrarily
for each episode

Initialize s (first state of episode)
zp,2, < 0 (m and n components eligibility trace vectors)
P+1
while s is not terminal

a~m(s,-0)

Take action a, observe r, s’

§<«—r+~V(siv)— V(s v)

z, 7 Az, +V, V(s v)

Zg <y -Ng-2z9g+ P-Vyglogn(s,a;0)
Viv+ta, -0z,

O+ 0+ap-0-z
(P <+ yP,s <+ ¢

do

do
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Overcoming Bias

We've learnt a few ways of how to reduce variance

But we haven't discussed how to overcome bias

All of the following substitutes for Q™ (s, a) in PG have bias:
o Q(s,aw)
o A(s,a; w,v)
o i(s,s',r;v)

Turns out there is indeed a way to overcome bias

It is called the Compatible Function Approximation Theorem
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Compatible Function Approximation Theorem

If the following two conditions are satisfied:

© Ciritic gradient is compatible with the Actor score function

VwQ(s,a;w) = Vylogn(s,a;0)

@ Critic parameters w minimize the following mean-squared error:

€= / p’r(s)/ (s, a;0)(Q™(s,a) — Q(s,a;w))? - da- ds
S A

Then the Policy Gradient using critic Q(s, a; w) is exact:

VoJ(0) = / / Vor(s,a;0) - Q(s,a;w) - da-ds
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Proof of Compatible Function Approximation Theorem

For w that minimizes

e—/pﬂ(s)/ (s,3:0) - (Q7(5,3) — Q(s, 2 w))? - da - ds,
S A

/pﬂ(s)/ 7(s,2:0) - (Q™(s,3) — Q(s, 2 W)) - Vo Q(s, @ w) - da - ds = 0
S A

But since V,, Q(s, a; w) = Vylog 7 (s, a; §), we have:

/ p”(s)/ 7(s,a;0)-(Q"(s,a) — Q(s,a;w))-Vylogn(s,a;0)-da-ds =0
S A

Therefore, / p”(s)/ 7(s,a;6)- Q"(s,a) - Vglogm(s,a;f)-da-ds
S A

:/ p”(s)/ 7(s,a;0) - Q(s,a;w) - Vylogn(s,a;f)-da-ds
S A
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Proof of Compatible Function Approximation Theorem

But Vo J(0) = /

p”(s)/ m(s,a;0)- Q"(s,a) - Vglogm(s,a;f)-da-ds
S A

So, VyJ(0) = / p”(s)/ m(s,a;0) - Q(s,a;w) - Vyglogn(s,a;0)-da-ds

S A
= /Sp”(s)/Aer(s, a;0)- Q(s,a;w)-da-ds

Q.ED.

This means with conditions (1) and (2) of Compatible Function
Approximation Theorem, we can use the critic func approx
Q(s, a; w) and still have the exact Policy Gradient.
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How to enable Compatible Function Approximation

A simple way to enable Compatible Function Approximation
0Q(s,a;w) __ __ Olog 7(s,a;0)

o a6, Vi is to set Q(s,a; w) to be linear in its features.
n
Ologm(s,a; d)
(s,a; w) Zgb,sa) W,—ZT~W,‘
1

i=1

We note below that a compatible Q(s, a; w) serves as an approximation of
the advantage function.

_ _ B _ ° Ologm(s,a; ) .
/Aw(s,a,e)‘Q(s,a, w) - da= /Aﬂ(s,aﬁ)-(;% - w;) - da

B 87r(sa(9 ) da 87r(sa€ da) - we
= [ 22D Z(/ )-w

i=1

01
_280/ (s,a;0) - da)-w, —i:18—0i-w,-—0
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Fisher Information Matrix

Denoting [ak’%ﬁaﬂ)],i =1,...,n as the score column vector SC(s, a; )

and assuming compatible linear-approx critic:

Vo J(0 / (s) /

(s,
= Egpr an|SC(s,2;0) - SC(s,2,0)T] - w
= FIMy= (0) - w

s,a;0) - (SC(s,a;0)-SC(s,a;0)" -w)-da-ds

where FIM,_(0) is the Fisher Information Matrix w.r.t. s ~ p™,a ~ 7.
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Natural Policy Gradient

Recall the idea of Natural Gradient from Numerical Optimization
Natural gradient V2*J(0) is the direction of optimal § movement

In terms of the KL-divergence metric (versus plain Euclidean norm)

Natural gradient yields better convergence (we won't cover proof)

Formally defined as: VoJ(0) = FIM,_ () -V§**J(6)

Therefore, V' J(0) = w

This compact result is great for our algorithm:

e Update Critic params w with the critic loss gradient (at step t) as:
’)/t . (I’t + v SC(St+1, dt+1, 9) W — SC(St, at, 0) . W) . SC(St, dt, 0)
@ Update Actor params 6 in the direction equal to value of w
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