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Trading Order Book (abbrev. OB)
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Basics of Order Book (OB)

Buyers/Sellers express their intent to trade by submitting bids/asks

These are Limit Orders (LO) with a price P and size N

Buy LO (P,N) states willingness to buy N shares at a price ≤ P

Sell LO (P,N) states willingness to sell N shares at a price ≥ P

Order Book aggregates order sizes for each unique price

So we can represent with two sorted lists of (Price, Size) pairs

Bids: [(P(b)i ,N
(b)
i ) ∣ 0 ≤ i < m],P(b)i > P

(b)
j for i < j

Asks: [(P(a)i ,N
(a)
i ) ∣ 0 ≤ i < n],P(a)i < P

(a)
j for i < j

We call P
(b)
0 as Best Bid, P

(a)
0 as Best Ask,

P
(a)
0 +P

(b)
0

2 as Mid

We call P
(a)
0 − P

(b)
0 as Spread, P

(a)
n−1 − P

(b)
m−1 as Market Depth

A Market Order (MO) states intent to buy/sell N shares at the best
possible price(s) available on the OB at the time of MO submission
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The class OrderBook

@ d a t a c l a s s ( f r o z e n=True )
c l a s s D o l l a r s A n d S h a r e s :

d o l l a r s : f l o a t
s h a r e s : i n t

P r i c e S i z e P a i r s = Sequence [ D o l l a r s A n d S h a r e s ]

@ d a t a c l a s s ( f r o z e n=True )
c l a s s OrderBook :

d e s c e n d i n g b i d s : P r i c e S i z e P a i r s
a s c e n d i n g a s k s : P r i c e S i z e P a i r s
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Order Book (OB) Activity

A new Sell LO (P,N) potentially removes best bid prices on the OB

Removal: [(P(b)i ,min(N(b)i ,max(0,N −
i−1

∑
j=0

N
(b)
j ))) ∣ (i ∶ P(b)i ≥ P)]

After this removal, it adds the following to the asks side of the OB

(P,max(0,N − ∑
i ∶P
(b)
i ≥P

N
(b)
i ))

A new Buy LO operates analogously (on the other side of the OB)
A Sell Market Order N will remove the best bid prices on the OB

Removal: [(P(b)i ,min(N(b)i ,max(0,N −
i−1

∑
j=0

N
(b)
j ))) ∣ 0 ≤ i < m]

A Buy Market Order N will remove the best ask prices on the OB

Removal: [(P(a)i ,min(N(a)i ,max(0,N −
i−1

∑
j=0

N
(a)
j ))) ∣ 0 ≤ i < n]
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OrderBook Activity methods

d e f e a t b o o k (
p s p a i r s : P r i c e S i z e P a i r s ,
s h a r e s : i n t

) −> Tuple [ D o l l a r s A n d S h a r e s , P r i c e S i z e P a i r s ] :

d e f s e l l l i m i t o r d e r (
s e l f ,
p r i c e : f l o a t ,
s h a r e s : i n t

) −> Tuple [ D o l l a r s A n d S h a r e s , OrderBook ] :

d e f s e l l m a r k e t o r d e r (
s e l f ,
s h a r e s : i n t

) −> Tuple [ D o l l a r s A n d S h a r e s , OrderBook ] :
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Price Impact and Order Book Dynamics

We focus on how a Market order (MO) alters the OB

A large-sized MO often results in a big Spread which could soon be
replenished by new LOs, potentially from either side

So a large-sized MO moves the Best Bid/Best Ask/Mid

This is known as the Price Impact of a Market Order

Subsequent Replenishment activity is part of OB Dynamics

Models for OB Dynamics can be quite complex

We will cover a few simple Models in this lecture

Models based on how a Sell MO will move the OB Best Bid Price

Models of Buy MO moving the OB Best Ask Price are analogous
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Optimal Trade Order Execution Problem

The task is to sell a large number N of shares

We are allowed to trade in T discrete time steps

We are only allowed to submit Market Orders

We consider both Temporary and Permanent Price Impact

For simplicity, we consider a model of just Best Bid Price Dynamics

Goal is to maximize Expected Total Utility of Sales Proceeds

By breaking N into appropriate chunks (timed appropriately)

If we sell too fast, we are likely to get poor prices

If we sell too slow, we risk running out of time

Selling slowly also leads to more uncertain proceeds (lower Utility)

This is a Dynamic Optimization problem

We can model this problem as a Markov Decision Process (MDP)
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Problem Notation

Time steps indexed by t = 0,1, . . . ,T

Pt denotes Best Bid Price at start of time step t

Nt denotes number of shares sold in time step t

Rt = N −∑t−1
i=0 Ni = shares remaining to be sold at start of time step t

Note that R0 = N,Rt+1 = Rt −Nt for all t < T ,NT−1 = RT−1 ⇒ RT = 0

Price Dynamics given by:

Pt+1 = ft(Pt ,Nt , εt)
where ft(⋅) is an arbitrary function incorporating:

Permanent Price Impact of selling Nt shares
Impact-independent market-movement of Best Bid Price for time step t
εt denotes source of randomness in Best Bid Price market-movement

Sales Proceeds in time step t defined as:

Nt ⋅Qt = Nt ⋅ (Pt − gt(Pt ,Nt))

where gt(⋅) is an arbitrary func representing Temporary Price Impact

Utility of Sales Proceeds function denoted as U(⋅)
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Markov Decision Process (MDP) Formulation

This is a discrete-time, finite-horizon MDP

MDP Horizon is time T , meaning all states at time T are terminal

Order of MDP activity in each time step 0 ≤ t < T :

Observe State st ∶= (Pt ,Rt) ∈ St
Perform Action at ∶= Nt ∈ At

Receive Reward rt+1 ∶= U(Nt ⋅Qt) = U(Nt ⋅ (Pt − gt(Pt ,Nt)))
Experience Price Dynamics Pt+1 = ft(Pt ,Nt , εt)

Goal is to find a Policy π∗t ((Pt ,Rt)) = N∗

t that maximizes:

E[
T−1

∑
t=0

γt ⋅U(Nt ⋅Qt)] where γ is MDP discount factor
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A Simple Linear Impact Model with No Risk-Aversion

We consider a simple model with Linear Price Impact

N,Nt ,Pt are all continuous-valued (∈ R)

Price Dynamics: Pt+1 = Pt − αNt + εt where α ∈ R
εt is i.i.d. with E[εt ∣Nt ,Pt] = 0

So, Permanent Price Impact is α ⋅Nt

Temporary Price Impact given by β ⋅Nt , so Qt = Pt − β ⋅Nt (β ∈ R≥0)

Utility function U(⋅) is the identity function, i.e., no Risk-Aversion

MDP Discount factor γ = 1

This is an unrealistic model, but solving this gives plenty of intuition

Approach: Define Optimal Value Function & invoke Bellman Equation
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Optimal Value Function and Bellman Equation

Denote Value Function for policy π as:

V π
t ((Pt ,Rt)) = Eπ[

T

∑
i=t

Ni(Pi − β ⋅Ni)∣(Pt ,Rt)]

Denote Optimal Value Function as V ∗

t ((Pt ,Rt)) = maxπV
π
t ((Pt ,Rt))

Optimal Value Function satisfies the Bellman Eqn (∀0 ≤ t < T − 1):

V ∗

t ((Pt ,Rt)) = max
Nt

{Nt ⋅ (Pt − β ⋅Nt) +E[V ∗

t+1((Pt+1,Rt+1))]}

V ∗

T−1((PT−1,RT−1)) = NT−1⋅(PT−1−β ⋅NT−1) = RT−1⋅(PT−1−β ⋅RT−1)

From the above, we can infer V ∗

T−2((PT−2,RT−2)) as:

max
NT−2

{NT−2(PT−2 − βNT−2) +E[RT−1(PT−1 − βRT−1)]}

= max
NT−2

{NT−2(PT−2−βNT−2)+E[(RT−2−NT−2)(PT−1−β(RT−2−NT−2))]}

= max
NT−2

{NT−2(PT−2−βNT−2)+(RT−2−NT−2)(PT−2−αNT−2−β(RT−2−NT−2))}
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Optimal Policy & Optimal Value Function for case α ≥ 2β

= max
NT−2

{RT−2PT−2 − βR2
T−2 + (α − 2β)(N2

T−2 −NT−2RT−2)}

For the case α ≥ 2β, we have the trivial solution: N∗

T−2 = 0 or RT−2

Substitute N∗

T−2 in the expression for V ∗

T−2((PT−2,RT−2)):

V ∗

T−2((PT−2,RT−2)) = RT−2(PT−2 − βRT−2)

Continuing backwards in time in this manner gives:

N∗

t = 0 or Rt

V ∗

t ((Pt ,Rt)) = Rt(Pt − βRt)

So the solution for the case α ≥ 2β is to sell all N shares at any one
of the time steps t = 0, . . . ,T − 1 (and none in the other time steps)
and the Optimal Expected Total Sale Proceeds = N(P0 − βN)
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Optimal Policy & Optimal Value Function for case α < 2β

For the case α < 2β, differentiating w.r.t. NT−2 and setting to 0 gives:

(α − 2β)(2N∗

T−2 − RT−2) = 0⇒ N∗

T−2 =
RT−2

2

Substitute N∗

T−2 in the expression for V ∗

T−2((PT−2,RT−2):

V ∗

T−2((PT−2,RT−2)) = RT−2PT−2 − R2
T−2(

α + 2β

4
)

Continuing backwards in time in this manner gives:

N∗

t = Rt

T − t

V ∗

t ((Pt ,Rt)) = RtPt −
R2
t

2
(2β + α(T − t − 1)

T − t
)
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Interpreting the solution for the case α < 2β

Rolling forward in time, we see that N∗

t = N
T , i.e., uniformly split

Hence, Optimal Policy is a constant (independent of State)

Uniform split makes intuitive sense because Price Impact and Market
Movement are both linear and additive, and don’t interact

Essentially equivalent to minimizing ∑T
t=1N

2
t with ∑T

t=1Nt = N

Optimal Expected Total Sale Proceeds = NP0 − N2

2 (α + 2β−α
T )

So, Implementation Shortfall from Price Impact is N2

2 (α + 2β−α
T )

Note that Implementation Shortfall is non-zero even if one had
infinite time available (T →∞) for the case of α > 0

If Price Impact were purely temporary (α = 0, i.e., Price fully snapped
back), Implementation Shortfall is zero with infinite time available
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Models in Bertsimas-Lo paper

Bertsimas-Lo was the first paper on Optimal Trade Order Execution

They assumed no risk-aversion, i.e. identity Utility function

The first model in their paper is a special case of our simple Linear
Impact model, with fully Permanent Impact (i.e., α = β)

Next, Betsimas-Lo extended the Linear Permanent Impact model

To include dependence on Serially-Correlated Variable Xt

Pt+1 = Pt − (βNt + θXt) + εt ,Xt+1 = ρXt + ηt ,Qt = Pt − (βNt + θXt)

εt and ηt are i.i.d. (and mutually independent) with mean zero

Xt can be thought of as market factor affecting Pt linearly

Bellman Equation on Optimal VF and same approach as before yields:

N∗

t = Rt

T − t
+ h(t, β, θ, ρ)Xt

V ∗

t ((Pt ,Rt ,Xt)) = RtPt − (quadratic in (Rt ,Xt) + constant)
Seral-correlation predictability (ρ ≠ 0) alters uniform-split strategy
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A more Realistic Model: LPT Price Impact

Next, Bertsimas-Lo present a more realistic model called “LPT”
Linear-Percentage Temporary Price Impact model features:

Geometric random walk: consistent with real data, & avoids prices ≤ 0

% Price Impact gt(Pt ,Nt)
Pt

doesn’t depend on Pt (validated by real data)
Purely Temporary Price Impact

Pt+1 = Pte
Zt ,Xt+1 = ρXt + ηt ,Qt = Pt(1 − βNt − θXt)

Zt is a random variable with mean µZ and variance σ2Z
With the same derivation as before, we get the solution:

N∗

t = c
(1)
t + c

(2)
t Rt + c

(3)
t Xt

V ∗

t ((Pt ,Rt ,Xt)) = eµZ+
σ2
Z
2 ⋅ Pt ⋅ (c(4)t + c

(5)
t Rt + c

(6)
t Xt

+ c
(7)
t R2

t + c
(8)
t X 2

t + c
(9)
t RtXt)

c
(k)
t ,1 ≤ k ≤ 9 are independent of Pt ,Rt ,Xt
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Incorporating Risk-Aversion/Utility of Proceeds

For analytical tractability, Bertsimas-Lo ignored Risk-Aversion

But one is typically wary of Risk of Uncertain Proceeds

We’d trade some (Expected) Proceeds for lower Variance of Proceeds

Almgren-Chriss work in this Risk-Aversion framework

They consider our simple linear model maximizing E [Y ] − λVar[Y ]
Where Y is the total (uncertain) proceeds ∑T−1

t=0 NtQt

λ controls the degree of risk-aversion and hence, the trajectory of N∗

t

λ = 0 leads to uniform split strategy N∗

t = N
T

The other extreme is to minimize Var[Y ] which yields N∗

0 = N

Almgren-Chriss derive Efficient Frontier and solutions for specific U(⋅)
Much like classical Portfolio Optimization problems
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Real-world Optimal Trade Order Execution (& Extensions)

Arbitrary Price Dynamics ft(⋅) and Temporary Price Impact gt(⋅)
Time-Heterogeneity/non-linear dynamics/impact ⇒ (Numerical) DP

Frictions: Discrete Prices/Sizes, Constraints on Prices/Sizes, Fees

Incorporating various markets factors in the State bloats State Space

We could also represent the entire OB within the State

Practical route is to develop a simulator capturing all of the above

Simulator is a Market-Data-learnt Sampling Model of OB Dynamics

In practice, we’d need to also capture Cross-Asset Market Impact

Using this simulator and neural-networks func approx, we can do RL

References: Nevmyvaka, Feng, Kearns; 2006 and Vyetrenko, Xu; 2019

Exciting area for Future Research as well as Engineering Design
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OB Dynamics and Market-Making

Modeling OB Dynamics involves predicting arrival of MOs and LOs

Market-makers are liquidity providers (providers of Buy and Sell LOs)

Other market participants are typically liquidity takers (MOs)

But there are also other market participants that trade with LOs

Complex interplay between market-makers & other mkt participants

Hence, OB Dynamics tend to be quite complex

We view the OB from the perspective of a single market-maker who
aims to gain with Buy/Sell LOs of appropriate width/size

By anticipating OB Dynamics & dynamically adjusting Buy/Sell LOs

Goal is to maximize Utility of Gains at the end of a suitable horizon

If Buy/Sell LOs are too narrow, more frequent but small gains

If Buy/Sell LOs are too wide, less frequent but large gains

Market-maker also needs to manage potential unfavorable inventory
(long or short) buildup and consequent unfavorable liquidation
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Notation for Optimal Market-Making Problem

We simplify the setting for ease of exposition

Assume finite time steps indexed by t = 0,1, . . . ,T

Denote Wt ∈ R as Market-maker’s trading account value at time t

Denote It ∈ Z as Market-maker’s inventory of shares at time t (I0 = 0)

St ∈ R+ is the OB Mid Price at time t (assume stochastic process)

P
(b)
t ∈ R+,N

(b)
t ∈ Z+ are market maker’s Bid Price, Bid Size at time t

P
(a)
t ∈ R+,N

(a)
t ∈ Z+ are market-maker’s Ask Price, Ask Size at time t

Assume market-maker can add or remove bids/asks costlessly

Denote δ
(b)
t = St − P

(b)
t as Bid Spread, δ

(a)
t = P

(a)
t − St as Ask Spread

Random var X
(b)
t ∈ Z≥0 denotes bid-shares “hit” up to time t

Random var X
(a)
t ∈ Z≥0 denotes ask-shares “lifted” up to time t

Wt+1 =Wt +P(a)t ⋅ (X (a)t+1−X
(a)
t )−P(b)t ⋅ (X (b)t+1 −X

(b)
t ) , It = X

(b)
t −X (a)t

Goal to maximize E[U(WT + IT ⋅ ST )] for appropriate concave U(⋅)
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Markov Decision Process (MDP) Formulation

Order of MDP activity in each time step 0 ≤ t ≤ T − 1:

Observe State ∶= (St ,Wt , It) ∈ St
Perform Action ∶= (P(b)t ,N

(b)
t ,P

(a)
t ,N

(a)
t ) ∈ At

Experience OB Dynamics resulting in:

random bid-shares hit = X (b)t+1 −X
(b)
t and ask-shares lifted = X (a)t+1 −X

(a)
t

update of Wt to Wt+1, update of It to It+1
stochastic evolution of St to St+1

Receive next-step (t + 1) Reward Rt+1

Rt+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

0 for 1 ≤ t + 1 ≤ T − 1

U(Wt+1 + It+1 ⋅ St+1) for t + 1 = T

Goal is to find an Optimal Policy π∗ = (π∗0 , π∗1 , . . . , π∗T−1):

π∗t ((St ,Wt , It)) = (P(b)t ,N
(b)
t ,P

(a)
t ,N

(a)
t ) that maximizes E[RT ]

Note: Discount Factor when aggregating Rewards in the MDP is 1
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Avellaneda-Stoikov Continuous Time Formulation

We go over the landmark paper by Avellaneda and Stoikov in 2006

They derive a simple, clean and intuitive solution

We adapt our discrete-time notation to their continuous-time setting

X
(b)
t ,X

(a)
t are Poisson processes with hit/lift-rate means λ

(b)
t , λ

(a)
t

dX
(b)
t ∼ Poisson(λ(b)t ⋅ dt) , dX

(a)
t ∼ Poisson(λ(a)t ⋅ dt)

λ
(b)
t = f (b)(δ(b)t ) , λ

(a)
t = f (a)(δ(a)t ) for decreasing functions f (b), f (a)

dWt = P
(a)
t ⋅ dX (a)t − P

(b)
t ⋅ dX (b)t , It = X

(b)
t −X

(a)
t (note: I0 = 0)

Since infinitesimal Poisson random variables dX
(b)
t (shares hit in time

dt) and dX
(a)
t (shares lifted in time dt) are Bernoulli (shares hit/lifted

in time dt are 0 or 1), N
(b)
t and N

(a)
t can be assumed to be 1

This simplifies the Action at time t to be just the pair: (δ(b)t , δ
(a)
t )

OB Mid Price Dynamics: dSt = σ ⋅ dzt (scaled brownian motion)

Utility function U(x) = −e−γx where γ > 0 is coeff. of risk-aversion
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Hamilton-Jacobi-Bellman (HJB) Equation

We denote the Optimal Value function as V ∗(t,St ,Wt , It)

V ∗(t,St ,Wt , It) = max
δ
(b)
u ,δ

(a)
u ∶t≤u<T

E[−e−γ⋅(WT+IT ⋅ST )]

V ∗(t,St ,Wt , It) satisfies a recursive formulation for 0 ≤ t < t1 < T :

V ∗(t,St ,Wt , It) = max
δ
(b)
u ,δ

(a)
u ∶t≤u<t1

E[V ∗(t1,St1 ,Wt1 , It1)]

Rewriting in stochastic differential form, we have the HJB Equation

max
δ
(b)
t ,δ

(a)
t

E[dV ∗(t,St ,Wt , It)] = 0 for t < T

V ∗(T ,ST ,WT , IT ) = −e−γ⋅(WT+IT ⋅ST )
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Converting HJB to a Partial Differential Equation

Change to V ∗(t,St ,Wt , It) is comprised of 3 components:

Due to pure movement in time t
Due to randomness in OB Mid-Price St
Due to randomness in hitting/lifting the Bid/Ask

With this, we can expand dV ∗(t,St ,Wt , It) and rewrite HJB as:

max
δ
(b)
t ,δ

(a)
t

{∂V
∗

∂t
dt +E[σ∂V

∗

∂St
dzt +

σ2

2

∂2V ∗

∂S2
t

(dzt)2]

+ λ(b)t ⋅ dt ⋅V ∗(t,St ,Wt − St + δ(b)t , It + 1)

+ λ(a)t ⋅ dt ⋅V ∗(t,St ,Wt + St + δ(a)t , It − 1)

+ (1 − λ(b)t ⋅ dt − λ(a)t ⋅ dt) ⋅V ∗(t,St ,Wt , It)
−V ∗(t,St ,Wt , It)} = 0
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Converting HJB to a Partial Differential Equation

We can simplify this equation with a few observations:

E[dzt] = 0

E[(dzt)2] = dt

Organize the terms involving λ
(b)
t and λ

(a)
t better with some algebra

Divide throughout by dt

max
δ
(b)
t ,δ

(a)
t

{∂V
∗

∂t
+ σ

2

2

∂2V ∗

∂S2
t

+ λ(b)t ⋅ (V ∗(t,St ,Wt − St + δ(b)t , It + 1) −V ∗(t,St ,Wt , It))

+ λ(a)t ⋅ (V ∗(t,St ,Wt + St + δ(a)t , It − 1) −V ∗(t,St ,Wt , It))} = 0
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Converting HJB to a Partial Differential Equation

Next, note that λ
(b)
t = f (b)(δ(b)t ) and λ

(a)
t = f (a)(δ(a)t ), and apply the max

only on the relevant terms

∂V ∗

∂t
+ σ

2

2

∂2V ∗

∂S2
t

+max
δ
(b)
t

{f (b)(δ(b)t ) ⋅ (V ∗(t,St ,Wt − St + δ(b)t , It + 1) −V ∗(t,St ,Wt , It))}

+max
δ
(a)
t

{f (a)(δ(a)t ) ⋅ (V ∗(t,St ,Wt + St + δ(a)t , It − 1) −V ∗(t,St ,Wt , It))} = 0

This combines with the boundary condition:

V ∗(T ,ST ,WT , IT ) = −e−γ⋅(WT+IT ⋅ST )
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Converting HJB to a Partial Differential Equation

We make an “educated guess” for the structure of V ∗(t,St ,Wt , It):

V ∗(t,St ,Wt , It) = −e−γ(Wt+θ(t,St ,It)) (1)

and reduce the problem to a PDE in terms of θ(t,St , It)
Substituting this into the above PDE for V ∗(t,St ,Wt , It) gives:

∂θ

∂t
+ σ

2

2
( ∂

2θ

∂S2
t

− γ( ∂θ
∂St

)2)

+max
δ
(b)
t

{ f
(b)(δ(b)t )
γ

⋅ (1 − e−γ(δ
(b)
t −St+θ(t,St ,It+1)−θ(t,St ,It)))}

+max
δ
(a)
t

{ f
(a)(δ(a)t )
γ

⋅ (1 − e−γ(δ
(a)
t +St+θ(t,St ,It−1)−θ(t,St ,It)))} = 0

The boundary condition is:

θ(T ,ST , IT ) = IT ⋅ ST
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Indifference Bid/Ask Price

It turns out that θ(t,St , It + 1) − θ(t,St , It) and
θ(t,St , It) − θ(t,St , It − 1) are equal to financially meaningful
quantities known as Indifference Bid and Ask Prices

Indifference Bid Price Q(b)(t,St , It) is defined as:

V ∗(t,St ,Wt −Q(b)(t,St , It), It + 1) = V ∗(t,St ,Wt , It) (2)

Q(b)(t,St , It) is the price to buy a share with guarantee of immediate
purchase that results in Optimum Expected Utility being unchanged

Likewise, Indifference Ask Price Q(a)(t,St , It) is defined as:

V ∗(t,St ,Wt +Q(a)(t,St , It), It − 1) = V ∗(t,St ,Wt , It) (3)

Q(a)(t,St , It) is the price to sell a share with guarantee of immediate
sale that results in Optimum Expected Utility being unchanged

We abbreviate Q(b)(t,St , It) as Q
(b)
t and Q(a)(t,St , It) as Q

(a)
t
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Indifference Bid/Ask Price in the PDE for θ

Express V ∗(t,St ,Wt −Q
(b)
t , It + 1) = V ∗(t,St ,Wt , It) in terms of θ:

−e−γ(Wt−Q
(b)
t +θ(t,St ,It+1)) = −e−γ(Wt+θ(t,St ,It))

⇒ Q
(b)
t = θ(t,St , It + 1) − θ(t,St , It) (4)

Likewise for Q
(a)
t , we get:

Q
(a)
t = θ(t,St , It) − θ(t,St , It − 1) (5)

Using equations (4) and (5), bring Q
(b)
t and Q

(a)
t in the PDE for θ

∂θ

∂t
+ σ

2

2
( ∂

2θ

∂S2
t

− γ( ∂θ
∂St

)2) +max
δ
(b)
t

g(δ(b)t ) +max
δ
(a)
t

h(δ(b)t ) = 0

where g(δ(b)t ) = f (b)(δ(b)t )
γ

⋅ (1 − e−γ(δ
(b)
t −St+Q

(b)
t ))

and h(δ(a)t ) = f (a)(δ(a)t )
γ

⋅ (1 − e−γ(δ
(a)
t +St−Q

(a)
t ))
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Optimal Bid Spread and Optimal Ask Spread

To maximize g(δ(b)t ), differentiate g with respect to δ
(b)
t and set to 0

e−γ(δ
(b)
t

∗

−St+Q
(b)
t ) ⋅ (γ ⋅ f (b)(δ(b)t

∗

) − ∂f
(b)

∂δ
(b)
t

(δ(b)t

∗

)) + ∂f
(b)

∂δ
(b)
t

(δ(b)t

∗

) = 0

⇒ δ
(b)
t

∗

= St −Q
(b)
t + 1

γ
⋅ ln (1 − γ ⋅ f

(b)(δ(b)t

∗

)
∂f (b)

∂δ
(b)
t

(δ(b)t

∗

)
) (6)

To maximize g(δ(a)t ), differentiate h with respect to δ
(a)
t and set to 0

e−γ(δ
(a)
t

∗

+St−Q
(a)
t ) ⋅ (γ ⋅ f (a)(δ(a)t

∗

) − ∂f
(a)

∂δ
(a)
t

(δ(a)t

∗

)) + ∂f
(a)

∂δ
(a)
t

(δ(a)t

∗

) = 0

⇒ δ
(a)
t

∗

= Q
(a)
t − St +

1

γ
⋅ ln (1 − γ ⋅ f

(a)(δ(a)t

∗

)
∂f (a)

∂δ
(a)
t

(δ(a)t

∗

)
) (7)

(6) and (7) are implicit equations for δ
(b)
t

∗

and δ
(a)
t

∗

respectively
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Solving for θ and for Optimal Bid/Ask Spreads

Let us write the PDE in terms of the Optimal Bid and Ask Spreads

∂θ

∂t
+ σ

2

2
( ∂

2θ

∂S2
t

− γ( ∂θ
∂St

)2)

+ f (b)(δ(b)t

∗

)
γ

⋅ (1 − e−γ(δ
(b)
t

∗

−St+θ(t,St ,It+1)−θ(t,St ,It)))

+ f (a)(δ(a)t

∗

)
γ

⋅ (1 − e−γ(δ
(a)
t

∗

+St+θ(t,St ,It−1)−θ(t,St ,It))) = 0

with boundary condition θ(T ,ST , IT ) = IT ⋅ ST

(8)

First we solve PDE (8) for θ in terms of δ
(b)
t

∗

and δ
(a)
t

∗

In general, this would be a numerical PDE solution

Using (4) and (5), we have Q
(b)
t and Q

(a)
t in terms of δ

(b)
t

∗

and δ
(a)
t

∗

Substitute above-obtained Q
(b)
t and Q

(a)
t in equations (6) and (7)

Solve implicit equations for δ
(b)
t

∗

and δ
(a)
t

∗

(in general, numerically)
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Building Intuition

Define Indifference Mid Price Q
(m)
t = Q

(b)
t +Q

(a)
t

2

To develop intuition for Indifference Prices, consider a simple case
where the market-maker doesn’t supply any bids or asks

V ∗(t,St ,Wt , It) = E[−e−γ(Wt+It ⋅ST )]

Combining this with the diffusion dSt = σ ⋅ dzt , we get:

V ∗(t,St ,Wt , It) = −e−γ(Wt+It ⋅St−
γ⋅I2t ⋅σ

2
(T−t)

2
)

Combining this with equations (2) and (3), we get:

Q
(b)
t = St − (2It + 1)γσ

2(T − t)
2

, Q
(a)
t = St − (2It − 1)γσ

2(T − t)
2

Q
(m)
t = St − Itγσ

2(T − t) , Q
(a)
t −Q

(b)
t = γσ2(T − t)

These results for the simple case of no-market-making serve as
approximations for our problem of optimal market-making
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Building Intuition

Think of Q
(m)
t as inventory-risk-adjusted mid-price (adjustment to St)

If market-maker is long inventory (It > 0), Q
(m)
t < St indicating

inclination to sell than buy, and if market-maker is short inventory,

Q
(m)
t > St indicating inclination to buy than sell

Armed with this intuition, we come back to optimal market-making,

observing from eqns (6) and (7): P
(b)
t

∗

< Q
(b)
t < Q

(m)
t < Q

(a)
t < P

(a)
t

∗

Think of [P(b)t

∗

,P
(a)
t

∗

] as “centered” at Q
(m)
t (rather than at St),

i.e., [P(b)t

∗

,P
(a)
t

∗

] will (together) move up/down in tandem with

Q
(m)
t moving up/down (as a function of inventory position It)

Q
(m)
t − P

(b)
t

∗

= Q
(a)
t −Q

(b)
t

2
+ 1

γ
⋅ ln (1 − γ ⋅ f

(b)(δ(b)t

∗

)
∂f (b)

∂δ
(b)
t

(δ(b)t

∗

)
) (9)

P
(a)
t

∗

−Q
(m)
t = Q

(a)
t −Q

(b)
t

2
+ 1

γ
⋅ ln (1 − γ ⋅ f

(a)(δ(a)t

∗

)
∂f (a)

∂δ
(a)
t

(δ(a)t

∗

)
) (10)
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Simple Functional Form for Hitting/Lifting Rate Means

The PDE for θ and the implicit equations for δ
(b)
t

∗

, δ
(a)
t

∗

are messy
We make some assumptions, simplify, derive analytical approximations
First we assume a fairly standard functional form for f (b) and f (a)

f (b)(δ) = f (a)(δ) = c ⋅ e−k ⋅δ

This reduces equations (6) and (7) to:

δ
(b)
t

∗

= St −Q
(b)
t + 1

γ
ln (1 + γ

k
) (11)

δ
(a)
t

∗

= Q
(a)
t − St +

1

γ
ln (1 + γ

k
) (12)

⇒ P
(b)
t

∗

and P
(a)
t

∗

are equidistant from Q
(m)
t

Substituting these simplified δ
(b)
t

∗

, δ
(a)
t

∗

in (8) reduces the PDE to:

∂θ

∂t
+ σ

2

2
( ∂

2θ

∂S2
t

− γ( ∂θ
∂St

)2) + c

k + γ
(e−k ⋅δ

(b)
t

∗

+ e−k ⋅δ
(a)
t

∗

) = 0

with boundary condition θ(T ,ST , IT ) = IT ⋅ ST
(13)
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Simplifying the PDE with Approximations

Note that this PDE (13) involves δ
(b)
t

∗

and δ
(a)
t

∗

However, equations (11), (12), (4), (5) enable expressing δ
(b)
t

∗

and

δ
(a)
t

∗

in terms of θ(t,St , It − 1), θ(t,St , It), θ(t,St , It + 1)
This would give us a PDE just in terms of θ

Solving that PDE for θ would not only give us V ∗(t,St ,Wt , It) but

also δ
(b)
t

∗

and δ
(a)
t

∗

(using equations (11), (12), (4), (5) )

To solve the PDE, we need to make a couple of approximations

First we make a linear approx for e−k ⋅δ
(b)
t

∗

and e−k ⋅δ
(a)
t

∗

in PDE (13):

∂θ

∂t
+ σ

2

2
( ∂

2θ

∂S2
t

−γ( ∂θ
∂St

)2)+ c

k + γ
(1− k ⋅ δ(b)t

∗

+ 1− k ⋅ δ(a)t

∗

) = 0 (14)

Equations (11), (12), (4), (5) tell us that:

δ
(b)
t

∗

+δ(a)t

∗

= 2

γ
ln (1 + γ

k
)+2θ(t,St , It)−θ(t,St , It +1)−θ(t,St , It −1)
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Asymptotic Expansion of θ in It

With this expression for δ
(b)
t

∗

+ δ(a)t

∗

, PDE (14) takes the form:

∂θ

∂t
+ σ

2

2
( ∂

2θ

∂S2
t

− γ( ∂θ
∂St

)2) + c

k + γ
(2 − 2k

γ
ln (1 + γ

k
)

− k(2θ(t,St , It) − θ(t,St , It + 1) − θ(t,St , It − 1))) = 0

(15)

To solve PDE (15), we consider this asymptotic expansion of θ in It :

θ(t,St , It) =
∞

∑
n=0

I nt
n!
⋅ θ(n)(t,St)

So we need to determine the functions θ(n)(t,St) for all n = 0,1,2, . . .

For tractability, we approximate this expansion to the first 3 terms:

θ(t,St , It) ≈ θ(0)(t,St) + It ⋅ θ(1)(t,St) +
I 2t
2
⋅ θ(2)(t,St)
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Approximation of the Expansion of θ in It

We note that the Optimal Value Function V ∗ can depend on St only
through the current Value of the Inventory (i.e., through It ⋅ St), i.e.,
it cannot depend on St in any other way

This means V ∗(t,St ,Wt ,0) = −e−γ(Wt+θ(0)(t,St)) is independent of St

This means θ(0)(t,St) is independent of St

So, we can write it as simply θ(0)(t), meaning ∂θ(0)

∂St
and ∂2θ(0)

∂S2
t

are 0

Therefore, we can write the approximate expansion for θ(t,St , It) as:

θ(t,St , It) = θ(0)(t) + It ⋅ θ(1)(t,St) +
I 2t
2
⋅ θ(2)(t,St) (16)
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Solving the PDE

Substitute this approximation (16) for θ(t,St , It) in PDE (15)

∂θ(0)

∂t
+ It

∂θ(1)

∂t
+ I 2t

2

∂θ(2)

∂t
+ σ

2

2
(It
∂2θ(1)

∂S2
t

+ I 2t
2

∂2θ(2)

∂S2
t

)

− γσ
2

2
(It
∂θ(1)

∂St
+ I 2t

2

∂θ(2)

∂St
)2 + c

k + γ
(2 − 2k

γ
ln (1 + γ

k
) + k ⋅ θ(2)) = 0

with boundary condition:

θ(0)(T ) + IT ⋅ θ(1)(T ,ST ) +
I 2T
2
⋅ θ(2)(T ,ST ) = IT ⋅ ST

(17)

We will separately collect terms involving specific powers of It , each
yielding a separate PDE:

Terms devoid of It (i.e., I 0t )
Terms involving It (i.e., I 1t )
Terms involving I 2t
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Solving the PDE

We start by collecting terms involving It

∂θ(1)

∂t
+ σ

2

2
⋅ ∂

2θ(1)

∂S2
t

= 0 with boundary condition θ(1)(T ,ST ) = ST

The solution to this PDE is:

θ(1)(t,St) = St (18)

Next, we collect terms involving I 2t

∂θ(2)

∂t
+ σ

2

2
⋅ ∂

2θ(2)

∂S2
t

−γσ2 ⋅ (∂θ
(1)

∂St
)2 = 0 with boundary θ(2)(T ,ST ) = 0

Noting that θ(1)(t,St) = St , we solve this PDE as:

θ(2)(t,St) = −γσ2(T − t) (19)
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Solving the PDE

Finally, we collect the terms devoid of It

∂θ(0)

∂t
+ c

k + γ
(2−2k

γ
ln (1 + γ

k
)+k ⋅θ(2)) = 0 with boundary θ(0)(T ) = 0

Noting that θ(2)(t,St) = −γσ2(T − t), we solve as:

θ(0)(t) = c

k + γ
((2 − 2k

γ
ln (1 + γ

k
))(T − t) − kγσ2

2
(T − t)2) (20)

This completes the PDE solution for θ(t,St , It) and hence, for
V ∗(t,St ,Wt , It)

Lastly, we derive formulas for Q
(b)
t ,Q

(a)
t ,Q

(m)
t , δ

(b)
t

∗

, δ
(a)
t

∗
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Formulas for Prices and Spreads

Using equations (4) and (5), we get:

Q
(b)
t = θ(1)(t,St)+(2It+1)⋅θ(2)(t,St) = St−(2It+1)γσ

2(T − t)
2

(21)

Q
(a)
t = θ(1)(t,St)+(2It−1)⋅θ(2)(t,St) = St−(2It−1)γσ

2(T − t)
2

(22)

Using equations (11) and (12), we get:

δ
(b)
t

∗

= (2It + 1)γσ2(T − t)
2

+ 1

γ
ln (1 + γ

k
) (23)

δ
(a)
t

∗

= (1 − 2It)γσ2(T − t)
2

+ 1

γ
ln (1 + γ

k
) (24)

Optimal Bid-Ask Spread δ
(b)
t

∗

+δ(a)t

∗

= γσ2(T −t)+ 2

γ
ln (1 + γ

k
) (25)

Optimal “Mid” Q
(m)
t = Q

(b)
t +Q

(a)
t

2
= P

(b)
t

∗

+ P
(a)
t

∗

2
= St−Itγσ2(T−t)

(26)
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Back to Intuition

Think of Q
(m)
t as inventory-risk-adjusted mid-price (adjustment to St)

If market-maker is long inventory (It > 0), Q
(m)
t < St indicating

inclination to sell than buy, and if market-maker is short inventory,

Q
(m)
t > St indicating inclination to buy than sell

Think of [P(b)t

∗

,P
(a)
t

∗

] as “centered” at Q
(m)
t (rather than at St),

i.e., [P(b)t

∗

,P
(a)
t

∗

] will (together) move up/down in tandem with

Q
(m)
t moving up/down (as a function of inventory position It)

Note from equation (25) that the Optimal Bid-Ask Spread

P
(a)
t

∗

− P
(b)
t

∗

is independent of inventory It

Useful view: P
(b)
t

∗

< Q
(b)
t < Q

(m)
t < Q

(a)
t < P

(a)
t

∗

, with these spreads:

Outer Spreads P
(a)
t

∗

−Q
(a)
t = Q

(b)
t − P

(b)
t

∗

= 1

γ
ln (1 + γ

k
)

Inner Spreads Q
(a)
t −Q

(m)
t = Q

(m)
t −Q

(b)
t = γσ

2(T − t)
2
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Real-world Market-Making and Reinforcement Learning

Real-world OB dynamics are time-heterogeneous, non-linear, complex

Frictions: Discrete Prices/Sizes, Constraints on Prices/Sizes, Fees

Need to capture various market factors in the State & OB Dynamics

This leads to Curse of Dimensionality and Curse of Modeling

The practical route is to develop a simulator capturing all of the above

Simulator is a Market-Data-learnt Sampling Model of OB Dynamics

Using this simulator and neural-networks func approx, we can do RL

References: 2018 Paper from University of Liverpool and
2019 Paper from JP Morgan Research

Exciting area for Future Research as well as Engineering Design
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