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Abstract—Multi-modal imaging via thermoacoustic (TA) ap-
proaches provides contrast mechanisms differing from conven-
tional ultrasound (US) imaging – opening up new applications
like non-invasive, non-contact below-ground sensing. Due to the
high correlation between soil moisture content and speed-of-
sound (SoS), knowledge about the SoS in soil can be utilized to
improve below-ground image reconstruction and soil moisture
mapping at depth. In this work, we present multi-task deep
learning networks to accurately predict arbitrarily varying SoS
distributions in soil while concurrently reconstructing high-
fidelity TA images of root structures. We deploy multi-task U-Net
based fully convolutional neural networks trained using US data
generated through TA simulations on a wheat root dataset. A
multi-input, multi-output architecture performed best – achieving
the highest root image contrast-to-noise ratio and lowest SoS
mean absolute error.

Index Terms—capacitive micromachined ultrasonic transducer,
CMUT, deep learning, thermoacoustics, photoacoustics, ultra-
sound, speed-of-sound, U-Net, non-contact, soil moisture

I. INTRODUCTION

Intelligent agriculture through the deployment of sophisti-

cated sensors has allowed plant biologists, geneticists, breed-

ers, and farmers to make data-driven decisions – providing

benefits like efficient resource usage, improved crop yield, and

identification of better plant cultivars. However, while above-

ground phenotyping tools have been successfully deployed at

scale, most approaches for below-ground sensing today are

either high-resolution, lab-based systems that do not translate

well to field settings or field-based techniques that are de-

structive and invasive as well as labor, cost, and infrastructure

intensive [1].

A system that enables non-invasive, high-throughput, dy-

namic measurements of below-ground traits could prove to be

the next big advance in plant phenotyping [2]. Large volumes

of high fidelity images of root-system architectures could

facilitate the development of new root-focused cultivars that

can be designed to withstand increasing environmental stresses

due to climate change as well as help in carbon sequestration

efforts to combat global warming [3]. In addition, field-

scale monitoring of the spatial profile of the water content

in soil could provide actionable insights for many precision

agriculture and resource management applications.

This work was supported by Advanced Research Projects Agency-Energy
Grant DE-AR0000825. Code is available at https://github.com/maxlwang/mtl-
sos-recon.git.
∗A. Singhvi, M. L. Wang and A. Fitzpatrick contributed equally to this work.

Towards that end, we present a non-contact, multi-physics

based imaging system that leverages the thermoacoustic (TA)

effect to provide high resolution below-ground information at

scale [4]–[6]. A conceptual view of the operation of the pro-

posed system is shown in Fig. 1, wherein a hybrid microwave

excitation and ultrasound detection approach provides good

imaging contrast as well as high resolution. However, the rhi-

zosphere is a highly heterogeneous environment making high-

fidelity below-ground TA imaging challenging. One such cause

of heterogeneity is the varying below-ground soil moisture

distribution which results in spatially varying speed-of-sound

(SoS) profiles [7], [8].

Previously, we’ve developed an iterative SoS reconstruction

algorithm for TA sensing systems in [6], but unlike tomo-

graphic SoS reconstruction approaches in biomedical imaging

[9], the inverse problem formulated in [6] is ill-posed because

all below-ground targets emit ultrasound (US) simultaneously.

Thus, the algorithm proposed in [6] used known reference

targets and did not capture lateral variations in the SoS. To

overcome these limitations, in this work we design deep learn-

ing networks that can achieve better accuracy and robustness

in reconstructing arbitrary SoS distributions for precise soil

moisture mapping and concurrently enable high-fidelity below-

ground image reconstruction.

II. DEEP LEARNING IN ULTRASOUND IMAGING

Deep learning techniques have been implemented in a wide

range of ultrasound imaging applications [10]. For example,

the U-Net architecture has proved effective in image segmenta-

tion and denoising applications [11], [12]. More recently, [13]–

[15] have demonstrated that encoder-decoder models using raw

Fig. 1. Conceptual view of the non-contact thermoacoustic system for soil
moisture sensing and below-ground imaging in heterogeneous underground
environments.
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Fig. 2. Dataset generation and processing pipeline using the k-Wave toolbox with example components of the dataset displayed for each stage.

received US signals as image inputs can be deployed directly

for biomedical SoS and US image reconstruction.

In [13] and [14], the authors use US imaging signals from

a synthetic dataset containing ellipsoid targets with different

SoS corresponding to different organs. These signals are fed

into a U-Net based architecture and trained to reconstruct the

SoS map. Note that although the inputs here are US signals,

conventional US involves two-way propagation with US waves

reflecting off of interfaces with different SoS while TA imag-

ing involves one-way propagation of US waves emanating

from regions with dielectric contrast and traveling through

a heterogeneous SoS medium. As a result, in conventional

US imaging, the existence of reflected US signals is highly

correlated with changes in the SoS, whereas in TA imaging,

the SoS only affects the variation in US time-of-flight across

different receivers of the array, making it a more challenging

inverse problem.

To increase segmentation accuracy and provide more in-

formation, [15] used a multi-task learning (MTL) network to

output both a reconstructed US image as well as a segmenta-

tion mask from received US signals. By combining the image

reconstruction and segmentation into an MTL network, the

mutual information can help to improve both segmentation

and image reconstruction accuracy. In a similar vein, here, we

explore how MTL networks for simultaneous SoS mapping

and TA image reconstruction can increase accuracy in both

tasks compared to a conventional U-Net architecture, with

details about specific architectures discussed in Section IV.

III. CUSTOM DATASET GENERATION

While datasets for SoS reconstruction using tomographic

and pulse-echo approaches for biomedical imaging are readily

available, given the novelty of the proposed application, large

volumes of US data in soil and soil moisture maps do not

currently exist. Thus, we synthesize a custom dataset that

models realistic scenarios in order to train and test the neural

networks we explore in this work. We use the k-Wave toolbox

[16] to perform end-to-end acoustic simulations in MATLAB.

For our k-Wave setup, we assume an imaging area of 45

cm × 45 cm. Within this region, as illustrated in Fig. 1, we

insert a root structure to act as an in-soil TA source. We use

online root image datasets [17], specifically choosing 2,000

wheat root images captured from wheat grown in an artificial

growth medium [18], and photographed as seen in Fig. 2(a).

These images are passed through a data processing pipeline

to crop, resize, and binarize them to fit in a 45 cm × 45

cm window. The resulting image is shown in Fig. 2(b), with

the white pixels acting as in-soil TA sources in the k-Wave

simulation. Each source is driven with a coded pulse excitation

similar to [19]. Five different arbitrary SoS distributions with

SoS ranging from 500 m/s to 800 m/s (Fig. 2(c)) are generated

for each of the 2,000 root structures, resulting in an augmented

dataset containing 10,000 samples in total.

The capacitive micromachined ultrasonic transducer

(CMUT) sensor array, shown in Fig. 1, is modeled to

have 256 receive elements, placed at a 5 cm standoff in

air, operating at a 100 kHz US frequency with a 20 kHz

bandwidth [20]. A-Scan data from the k-Wave simulation is

captured by each of the 256 CMUTs after which Gaussian

white noise is added such that the SNR is 20 dB. The A-Scan

data is then time-gain compensated and then stacked together

to form a 2D image as shown in Fig. 2(d). Finally, the

A-Scan data along with the SoS map is used to reconstruct a

ground-truth image of the root structure as shown in Fig. 2(f).

As an additional part of our data processing pipeline, we also

generate a set of reconstructed root images assuming various

constant underground SoS, as shown in Fig. 2(e) which

are then stacked to form a multi-channel image. The image

reconstruction for both Fig. 2(e),(f) is done using an efficient

Fast Marching Method based delay-and-sum algorithm [6].

Next, the reconstructed images, SoS maps as well as A-

Scan data are further cropped to a 30 cm × 30 cm window

to avoid large anomalies present at the simulation boundaries
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Fig. 3. U-Net architecture used as a baseline for comparison, either with SoS
map output (top) or root image output (bottom).

and to make the inverse problem more tractable. Before

it is entered into the neural network, the A-Scan data is

normalized and down-sampled to a sampling frequency of

≈ 250 kHz, resulting in a 256 × 256 A-Scan image. The

outputs of the neural network include a normalized SoS map

and reconstructed image of the root target, both of which are

also 256 × 256 images corresponding to a pixel size of ≈ 1.5

mm2.

IV. NETWORK ARCHITECTURES

A. Baseline

As a baseline for comparison, we use the basic U-Net

architecture shown in Fig. 3. An image representation of

the raw A-Scan data is input to an encoder which consists

of multiple 3×3 convolutional layers, batch normalization,

and 2×2 max pooling layers for downsampling. After the

encoder, a decoder which consists of multiple 2×2 upsampling

convolutional layers and skip connection concatenations from

the encoder, outputs either a SoS map or a predicted root

image (Fig. 3). For an additional comparison to the predicted

image, the A-Scan data and predicted SoS map can be input

to a delay-and-sum beamformer to generate a reconstructed

root image using a more conventional reconstruction pipeline.

B. Single-Input, Multi-Output Network

Due to the relationship between SoS and image reconstruc-

tion, we hypothesized that simultaneously predicting the SoS

and image could benefit both tasks. To modify the U-Net

architecture for multi-task learning, the decoder is duplicated

such that one decoder output is the predicted SoS map and

the other is the predicted root image. Skip connections from

the encoder layers are added to both SoS and image decoder

layers. This single-input, multi-output (SIMO) network is

depicted in Fig. 4.

C. Multi-Input, Multi-Output Network

While image reconstruction assuming a constant SoS in

the soil results in poor quality root images, the variations

in these images for different constant SoS values encode

Fig. 4. SIMO U-Net architecture for simultaneous SoS map and root image
outputs.

Fig. 5. MIMO U-Net architecture using both A-Scan data and assumed
constant SoS root images for simultaneous SoS map and root image outputs.

information about both the true SoS profile and root structure.

To provide this additional information to the network, we use

a multi-input, multi-output (MIMO) network which includes

an auxiliary encoder branch (Fig. 5). This additional branch

takes in a three-channel image, where each channel is a

reconstructed image assuming a different constant SoS (500,

650, and 800 m/s). The auxiliary encoder branch uses 2

downsampling steps before being concatenated with the main

encoder branch. The skip connections are only taken from the

main encoder branch.

D. Training

The 10,000 simulation results were divided into train, val-

idation, and test datasets with 9,000, 500, and 500 samples

respectively. The networks were all trained using the Adam

optimizer [21] and mean square error (MSE) loss function

over 100 epochs. Training was run on a system with an Intel

Xeon E5 processor and an Nvidia Tesla V100 GPU with 16

GB VRAM. For the SIMO and MIMO networks, the total loss

was the equally-weighted average of the SoS and image MSE

losses. After each training epoch, the validation set was used

to evaluate the degree of overfitting in the network. The final

evaluation of the models was run on the test set using the

weights from the epoch with the lowest validation loss.
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Fig. 6. Qualitative performance comparison of SoS and root image prediction across network architectures.

V. RESULTS

To evaluate the performance of the above network archi-

tectures, we qualitatively comment on example predictions as

well as quantitatively benchmark key metrics across the entire

test set. Fig. 6 displays example predictions from the three

network architectures. In comparison to the baseline U-Net

architecture, it is clear that SoS prediction is enhanced by

the SIMO U-Net. Whereas the baseline U-Nets individually

predict SoS and root image from the TA measurements, ex-

ploiting the co-dependence of the two desired outputs through

a shared encoder branch provides the network with additional

context and reduces the ill-posed nature of SoS prediction.

That being said, performance on root image prediction was

largely unimproved using the SIMO network.

We hypothesized that while the co-dependent outputs assist

the network in learning a better feature extraction from the

TA measurement data, it is possible that this resource sharing

between the two tasks ultimately was a bottleneck for further

performance enhancement. This hypothesis led to a third

architecture: the MIMO U-Net. As seen in Fig. 6, the MIMO

U-Net significantly improves performance both on SoS and

root image prediction – even when there are large spatial

variations in the SoS distribution.

To quantify the relative performance of these three ar-

chitectures, we analyze the mean absolute error (MAE) of

the predicted SoS distributions and the contrast-to-noise ratio

(CNR) of the predicted root images:

MAE =
1

N

N∑

i=1

|SoSpred − SoStruth|, (1)

CNR =
µroot − µbackground

σbackground

, (2)

where SoSpred and SoStruth are the predicted and ground-

truth SoS maps, N is the number of pixels in the SoS map,

µroot is the mean value of the root pixels in the images,

and µbackground and σbackground are the mean and standard

deviation of the background pixels in the images. Root versus

background pixels were differentiated by using the root binary

masks (Fig. 2(c)); the background is considered all pixels in

an image that are not within the root mask.

The MAE and CNR of each model is summarized in Table I

as mean ± standard deviation. For all metrics contained within,

the MIMO U-Net model performs the best. In fact, the MIMO

U-Net even predicts root images with higher average CNR

than the ground-truth reconstructed images (2.40 ± 0.54); this

is a result of the artifact suppression in the predicted images

that is most easily noted in the second row of Fig. 6. Column

(4) notes what percentage of predicted root images in the

test set have higher CNR (CNRpred) than the CNR of the

image reconstructed (CNRconst) if we assume the soil has a

constant SoS of 650 m/s. This metric demonstrates the value of

our proposed approach for reconstructing higher quality root

images from the TA measurements. Column (5) notes what

percentage of predicted root images in the test set have higher

CNR than the CNR of the image reconstructed (CNRrecon)
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TABLE I
COMPARISON OF PERFORMANCE METRICS FOR THE U-NET, SIMO, AND MIMO ARCHITECTURES

(1) (2) (3) (4) (5)

Average MAE (m/s) Average CNRpred Average CNRrecon CNRpred > CNRconst CNRpred > CNRrecon

U-Net 15.02 ± 6.00 2.30 ± 0.43 2.13 ± 0.43 97% 73%

SIMO 14.68 ± 5.93 2.39 ± 0.60 2.16 ± 0.48 98% 78%

MIMO 13.94 ± 5.76 2.43 ± 0.43 2.15 ± 0.40 99% 92%

Fig. 7. Averaged spatial MAE across predicted SoS maps by the MIMO
U-Net on the test set.

if we use the predicted SoS as input to the delay-and-sum

algorithm. This metric demonstrates the value of the multi-

task learning for simultaneous image reconstruction and SoS

mapping rather than simply SoS mapping with subsequent

conventional image reconstruction techniques.

VI. CONCLUSION

We have developed two MTL networks based on the U-

Net architecture for predicting below-ground SoS maps and

root images using TA imaging. Comparisons of the different

networks showed that the MIMO U-Net performed consis-

tently well for both tasks. Fundamentally, the more acoustic

paths that intersect a region of the soil, the more information

about the SoS at that location that is embedded in the TA

measurements. While the MIMO network achieved reasonable

accuracy, Fig. 7 shows that most of the SoS errors were

concentrated towards the bottom of the imaging window

corresponding to a region with the fewest acoustic paths due to

the sparsity of root structures at depth. Since the relationship

between soil moisture content and SoS is soil-type dependent,

soil characterization and calibration could be performed for

converting SoS to soil moisture in the field. Future work

includes training the network on a variety of root types and

experimentally validating network performance in the field for

non-invasive, high-throughput soil moisture mapping and root

biomass sensing applications.
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