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Abstract—Sensing of soil water content is useful in many
precision agriculture and resource management applications,
particularly if the sensing technique permits frequent field-
scale measurements at depth. To date, soil moisture sensing
technologies have a trade-off between point based measurements
at depth or rapid, remote measurements of water content near
the surface. In this paper, we propose a non-contact thermoa-
coustic soil moisture sensing modality which could permit high-
resolution, high-throughput mapping of water content at depth.
Within, we develop an algorithm for reconstructing the speed-
of-sound in soil, which is known to be highly correlated with the
soil moisture content. Through verification in simulation, our
algorithm demonstrates high fidelity – reconstructing speed-of-
sound profiles that match well with the ground-truth.

Index Terms—below-ground sensing, capacitive microma-
chined ultrasonic transducer, CMUT, soil moisture, speed-of-
sound reconstruction, thermoacoustics, ultrasound

I. INTRODUCTION

Soil moisture sensing has numerous applications due to its
influence on hydrological, geological, biological, ecological,
and agronomic functions of the soil mass [1]. Point based, in-
situ soil moisture sensors [2]–[5] provide accurate information
across depths but are limited by their spatial coverage. Remote
sensing has enabled non-destructive mapping of soil moisture
near the surface on a continental scale [6], but does not provide
information about moisture content deeper in the soil.

There is a dearth of tools that provide soil moisture informa-
tion at depth, while being deployed on an intermediate spatial
scale [7] in a non-invasive fashion. Such tools could provide
measurements of heterogeneity in soil moisture profiles across
field sites and be useful for many precision agriculture and re-
source management applications. These soil moisture profiles
could also be used as indicators of root presence and root water
uptake [8], and be deployed to study root hydrotropism [9] and
hydropatterning [10] responses. Thus, in addition to existing
applications, such a technology also addresses challenges of
studying the interaction between the root-system architecture
and the rhizosphere in field conditions by providing large
quantities of relevant data over time [11].

Ground Penetrating Radar (GPR) [12], [13] has been pro-
posed as a viable approach for such soil moisture mapping, but
GPR systems have a fundamental tradeoff between resolution
and penetration depth through the GPR frequency, and can
only operate reliably in regions with electrically resistive soil
[14].
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Fig. 1. Conceptual view of proposed non-contact thermoacoustic soil moisture
sensing system

To overcome these challenges, we propose a non-contact
thermoacoustic (NCTA) soil moisture sensing modality that
can also augment earlier experimental demonstrations of a
NCTA system used for below-ground imaging [11], [15].
It is a multi-modal sensing approach that combines high
microwave contrast with good ultrasound (US) resolution. By
decoupling the transmit and receive mechanisms, this hybrid
approach overcomes the limitations of GPR based methods to
provide spatial soil moisture profiles and their variation with
depth, with improved resolution across different soil types. The
use of highly sensitive, air-coupled capacitive micromachined
ultrasound transducers (CMUT) [16] allows for non-contact,
autonomous operation permitting high-throughput, dynamic
measurements over large areas.

II. THERMOACOUSTIC SOIL MOISTURE SENSING

Fig. 1 shows a conceptual view of the NCTA sensing
system. A microwave excitation source modulated at the
desired US frequency irradiates the soil and roots. Difference
in dielectric properties between the soil and roots results in
differential heating at the soil-root interface which in turn
causes the generation of an US signal via the thermoacoustic
(TA) effect. This generated signal propagates through the soil,
then passes through the soil-air interface and is captured using
an array of CMUT receivers present at a standoff in air.
Additional system details can be found in [15].

Experimental studies have shown that the propagation ve-
locity of US waves in soil depends on the soil moisture content
and water potential [11], [17], [18]. Given the correlation
between the speed-of-sound (SoS) and soil moisture content, a
reconstructed SoS distribution could be used to extrapolate soil
moisture profiles. Thus, in this preliminary work we propose
a novel SoS reconstruction algorithm for use in our NCTA
system and verify the performance of the technique through
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Fig. 2. (a) Single acoustic ray path from source to receiver and (b) acoustic
ray paths for all source-receiver pairs.

a simulation framework. Experiments in the field are beyond
the scope of this paper and will be addressed in future work.

III. SPEED-OF-SOUND RECONSTRUCTION ALGORITHM

Reconstruction of the SoS, which we use as a proxy for
the soil moisture content, has been explored in medical US
imaging for phase aberration correction and for diagnostics
[19]–[24]. The general theme for these approaches is to find
the spatial SoS distribution which satisfies the equation:

t = H(s)s, (1)

where t is a vector containing the empirical time-of-flight
(ToF) of US signals, s is the vectorized slowness distribution or
equivalently 1

SoS defined at each pixel in the discretized image
domain, and H(s) is a forward model matrix which encodes
integration of the slowness distribution along the acoustic
paths traversed by the US signals. The matrix-vector product
H(s)s represents the algorithmically calculated ToFs, while
t represents the experimentally captured ToFs. The calculated
ToFs converge to the captured ToFs when we have an accurate
estimate of the SoS distribution. The algorithm presented here
exploits similar concepts to previous works by formulating the
SoS reconstruction using NCTA imaging as an inverse problem
in the form of (1).

A. Empirical Time-of-Flight t

Whereas in some applications transducer-to-transducer US
signals can be transmitted through the medium of interest to
determine the ToF along a path, the imaging geometry here
does not permit tomographic approaches with an enclosing
transducer array [21]–[24]. Instead, our approach relies on
underground structures which can be excited via the TA effect
to act as in-soil US transmitters.

In this paper, we model TA sources as discrete, artificially
introduced sources, though future work will aim to exploit
existing root systems, other buried structures, or inherent
underground heterogeneity [13]. As with tomography, the
number of projections and their angular diversity through
the medium of interest is important to obtaining a well-
posed inverse problem [25]. In our application, this requires
TA sources at varying depths in the soil. We expect this to
be true in realistic underground environments with sufficient
heterogeneity; however, for our discrete source formulation,
we use a scattered source placement as shown as the blue
circles in Fig. 2(a). Fig. 2(b) shows sufficient diversity of

the acoustic paths through the soil between all of the source-
receiver pairs that prevent the problem from being severely
ill-posed.

When the sources are excited with microwave energy, the
US signals emit from all sources simultaneously. As a result,
it is not possible to isolate ToF information of each individual
source’s US signal from the captured data without further
processing. To estimate ToF of US signals along acoustic paths
for each source-receiver pair, we discretize the soil medium
into image pixels and use the coherence factor (CF) formalism
[26]:

CFi =
|
∑N

k=1 sk[i]|2

N
∑N

k=1|sk[i]|2
, (2)

where CFi is the CF defined at image pixel i, N is the number
of receivers, and sk[i] is the signal received at receiver k
sampled at the ToF that corresponds to pixel i for the assumed
SoS distribution.

The CF is highest when the assumed SoS distribution results
in proper focusing of the received US signals to a given
location in soil. Therefore, by looping over uniform SoS values
for the soil, the SoS which maximizes the CF at each source
location can be used to estimate the ToF for every source-
receiver pair [27]. Despite the fact that the soil SoS distribution
is not truly uniform, this approach finds an average SoS to the
source location that can be used to determine the empirical
ToF with a straight ray path assumption in the soil. This
assumption is fairly robust as long as the true SoS distribution
does not have large lateral variations. The SoS in air is held
constant at 340 m/s [28] and thus refraction at the air-soil
interface and height of receivers must also be considered.
These empirical ToFs are stored in the vector t; if there are
M sources, t ∈ IRMN .

B. Constructing Forward Model H
After extracting the empirical ToF data, we must con-

struct the forward model matrix H before solving the inverse
problem in (1). Here, and for the remainder of this paper,
we discuss two-dimensional acoustic propagation, though the
methods applied could be scaled to three-dimensional geome-
tries. The two-dimensional Eikonal equation is written as:√(

∂τ

∂x

)2

+

(
∂τ

∂z

)2

= s(x, z), (3)

This equation relates the slowness distribution s(x, z) to the
time accumulation along the propagation path while inherently
considering refraction. This nonlinear partial differential equa-
tion can be solved efficiently using the Fast Marching Method
(FMM) [29]. The solution attained via the FMM solves for the
ToF from each pixel location to a receiver location, producing
a ToF map as depicted in Fig. 3 for each of the N receivers.

By tracing the steepest gradient from a source location
through each of the ToF maps, the acoustic path can be
found for every source-receiver pair. An example output of
the gradient descent ray tracing is shown in Fig. 2, where (a)
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Fig. 4. Reconstruction algorithm for spatial distribution of SoS. The first step
loops over typical SoS range for US in soil [18]

shows a single acoustic path and (b) shows all of the acoustic
paths. The matrix H(s) is constructed such that each row
encodes the pixels along a single acoustic path through the
slowness distribution. If the slowness distribution is defined
over X lateral pixels and Z depth pixels, H ∈ IRMN×XZ .

C. Iterative Least Squares Solution for s

In the construction of the matrix H(s), the acoustic paths are
dependent on the slowness distribution, thus resulting in the
inverse problem in (1) being nonlinear. In addition, the inverse
problem is clearly ill-conditioned due to some pixels in the
domain not being intersected by acoustic paths as seen in Fig.
2(b). Therefore, we use a total variation (TV) regularization
which penalizes SoS distributions with high gradients:

ŝ = argmin
s
||t−H(s)s||2+λ||∇s||1, (4)

where λ is the regularization parameter, ||·|| is the 2-norm, and
||·||1 is the 1-norm. We solve this regularized least-squares
problem iteratively using Alternating Direction Method of
Multipliers (ADMM) which enables decoupling of the ob-
jectives into two independent problems [30]. The iterative
approach removes the nonlinear dependence on the slowness
distribution such that each iteration involves solving a linear
problem and permits the use of the efficient LSQR method for
updating the distribution [31]. After convergence, the slowness
distribution is pixel-wise inverted to find the reconstructed SoS
distribution. The algorithm is summarized in Fig. 4.

IV. SIMULATION RESULTS

We implement the algorithm described in Section III in
MATLAB and test its efficacy on data collected through
acoustic simulations using the k-Wave toolbox [32]. The k-
Wave simulation setup consists of scattered acoustic sources
embedded in the soil medium as depicted by the blue circles in
Fig. 2(a); again, in a practical use case these sources would be
excited via the TA effect as shown in Fig. 1. The ground-truth
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Fig. 5. Left: Ground-truth, Middle: Reconstructed, Right: Slice through
profiles noted by dashed lines for (a) monotonic and (b) non-monotonic SoS
profiles. RMS errors of (a) 9.7 m/s and (b) 10 m/s.

SoS distributions are shown in the left column of Fig. 5; these
were chosen to validate the algorithm’s robustness to both
monotonic and non-monotonic distributions. The receivers are
modeled in the simulation as uniformly λ/2-spaced point
detectors that are 5 cm above the soil interface. For these
simulations we assume the use of our previously reported
CMUTs as receivers, which have a 71 kHz center frequency
and a 2.5 kHz bandwidth [15] – the effects of which we
include by convolving the simulated data with the CMUT
impulse response prior to using our algorithm.

Finally, using our algorithm, we reconstruct the SoS dis-
tributions as shown in the middle column of Fig. 5 with
root-mean-square (RMS) error of 9.7 m/s and 10 m/s,
respectively which corresponds to only a minor variation in
the soil moisture content [18]. While large lateral changes in
SoS within the imaging window are challenging to reconstruct,
subsequent spatially adjacent data captures could be indepen-
dently reconstructed and stitched to form a continuous, large-
scale reconstruction.

V. CONCLUSION

In this paper, we demonstrate a non-contact thermoacoustic
soil moisture sensing approach that relies on the correlation
between ultrasound wave speed and soil moisture content. An
iterative speed-of-sound reconstruction algorithm was devel-
oped for the thermoacoustic sensing system, and simulation
results show accurate reconstruction of the ground-truth speed-
of-sound profiles. The hybrid nature of the proposed system
provides multiple degrees of freedom in system design that
help alleviate challenges in existing technologies and could
permit non-invasive, below-ground sensing at scale.

Future work will include experimentally validating the sim-
ulation framework and results, incorporating the use of inher-
ent soil heterogeneity or sub-surface structures, and mapping
the reconstructed speed-of-sound profile to various true soil
moisture distributions.
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