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Model
A typed model is a pair <Dα, I>, where

(i) {Dα} is a Fregean universe.
(ii) I is a function on the set of all constants such as 
I(Cα) ∈ Dα

Assignments
(i) An assignment is a function f on the set of variables 
such that f(Xα) ∈ Dα.
(ii) If Y is any variable, f an assignment, then [a/Y]f is the 
assignment that assigns a to Y.
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Denotation Function
The denotation of an expression M of type α 
with regard to a model ! and an assignment f, 
⟦M⟧f, is defined as follows. ⟦M⟧f always belongs 
to Dα.
⟦M⟧f is given by the following recursion:

(i) ⟦M⟧f = f(M) when M is a variable.
(ii) ⟦M⟧f = I(M) when M is a constant.
(iii) ⟦MN⟧f = ⟦M⟧f (⟦N⟧f), when M has type α→β 
and N has type α.
(iv) When M is of type β and X is of type α 
then ⟦ λX.M⟧f is that funcion in D such that for 
all a ∈ Dα: ⟦ λX.M⟧f(a) = ⟦M⟧[a/X]f 
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Monotone Functions

A function z ∈ Dα→β is upward monotone iff for every 
x, y ∈ Dα, x ≤α y entails z(x) ≤β z(y)

A function z ∈ Dα→β is downward monotone iff for 
every x, y ∈ Dα , x ≤α y entails z(y) ≤β z(x)

Give some examples!
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Monotone Terms

Assume that N’α is like Nα except for containing an 
occurrence of M’β whenever Nα contains Mβ.

Nα is upward monotone in Mβ iff for all models and 
assignments ⟦M⟧f ≤β ⟦M’⟧f entails ⟦N⟧f ≤α ⟦N’⟧f.

Nα is downward monotone in Mβ iff for all models and 
assignments ⟦M’⟧f ≤β ⟦M⟧f entails ⟦N⟧f ≤α ⟦N’⟧f.

Give some examples!
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Polarity of Occurrences
Assume that a language contains constants denoting monotone 
functions. A specific occurrence of Mβ of Mβ is called positive 
(negative) according to the following rules.

(i) M is positive in M.

(ii) M is positive (negative) in PQ if M is positive (negative) in P.

(iii) M is positive (negative) in PQ if M is positive (negative) in Q 
and P denotes an upward monotone function.

(iv) M is negative (positive) in PQ if M is positive (negative) in Q 
and P denotes a downward monotone function.

(v) M is positive (negative) in λX.P if M is positive (negative) in P 
and X ∉ FV(M).
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Polarity ⊩ Monotonicity

If Nβ is positive (negative) in Mα, then Nβ 
is upward (downward) monotone in Mα.

A term N is positive (negative) in M iff all the 
occurrences of N in M are positive (negative).
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A Typed Language
Constants Type

ABELARD, HELOISE e

LOGICIAN, THEOREM, THING, MAN, 
MEN, HEAD p

WANDER, WALK, RUN e→t

NOT t→t

FEMALE, MALE, TALL, SMALL p→p
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Constants Type

PROVE, LOVE, IS e→e→t      *

EVERY p→(e→t)→t

THAT (e→t)→(p→p)

OF ((e→t)→t)→p→p

IN, AT, ON, WITH, WITHOUT ((e→t)→t)→(e→t)→(e→t)

* Convention:
e→e→t is an abbreviation for (e→(e→t)).
p→(e→t)→t is the same as p→((e→t)→t) and (p→((e→t)→t))
The outermost parentheses can be left out.
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Interpretation of 
Constants

(1) I(EVERY), I(A), I(NO), I(FEW), I(THE) are those 
functions in Dp→(e→t)→t such that for any x ∈ Dp:

(a) I(EVERY)(x)(y) = 1 iff x ⊆ y.

(b) I(A)(x)(y) = 1 iff  x ⋂ y ≠ 0.

(c) I(NO)(x)(y) = 1 iff x ⋂ y = 0.

(d) I(MOST)(x)(y) = 1 iff |x ⋂ y| > |x - y|.

(e) I(FEW)(x)(y) = 1 iff |x ⋂ y| < |x - y|.

(f) I(THE)(x)(y) = 1 iff |x| = 1 and x ⊆ y.
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(2)
(a) I(THING) = Dp.

(b) I(IS) is that function on De→(e→t) such that for x,y ∈ De, 
I(IS)(x)(y) = 1 iff x = y.

(c) I(THAT) is that function in D(e→t)→(p→p) such that for 
any x ∈ De→t, y ∈ Dp I(THAT)(x)(y).

(d) I(NOT) is that function in Dt→t such that for any x in 
Dt, I(NOT)(x) = 1-x.

(3)
(a) I(FEMALE), I(MALE) are restrictive upward functions 
on D (e→t)→(p→p).

(b) I(TALL), I(SMALL) are restrictive functions on D(e→t)→

(p→p).
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Restrictive functions:
I(FEMALE) and I(SMALL) are both restrictive 
(intersective) functions because
female bears and small bears are all bears. 

Upward (monotonic) functions:
I(FEMALE) is an upward monotonic function 
because all female bears are female animals.
I(SMALL) is not an upward function because all 
small bears need not be small animals.

Restrictive vs. Upward

I(BEAR) ≤e→t I(ANIMAL)
I(FEMALE)(I(BEAR)) ≤e→t I(FEMALE)(I(ANIMAL))
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(4)
(a) I(IN), I(AT), I(WITH), I(OF) are upward functions on D
((e→t)→t)→((e→t)→(e→t)) such that I(IN)(x), I(AT)(x), I(WITH)(x) 
are upward restrictive functions and I(OF)(x) is an 
upward function.

Question: Expressions of type  (e→t)→t are NPs such as 
every man, some man, and johnNP. How are they ordered 
by ≤(e→t)→t?

(5)
If Aα is a constant not mentioned in (1)-(4) then I(A) is 
simply a member of Dα.
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with every man with John

with some man

dances

⟦every man⟧ ≤(e→t)→t ⟦john⟧ ≤(e→t)→t ⟦some man⟧ 

⟦with every man⟧ ≤(e→t)→ (e→t) ⟦with john⟧ ≤(e→t)→ (e→t) ⟦with some man⟧ 

⟦dances with every man⟧ ≤e→t ⟦dances with john⟧ ≤e→t ⟦dances with some man⟧ 
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⟦a knife⟧ ≤(e→t)→t ⟦a cutter⟧ ≤(e→t)→t ⟦a tool⟧ 

⟦knife⟧ ≤(e→t)→t ⟦cutter⟧ ≤(e→t)→t ⟦tool⟧ 

with a knife

with a cutter

with a tool

works

⟦with a knife⟧ ≤(e→t)→t ⟦with a cutter⟧ ≤(e→t)→t ⟦with a tool⟧ 

⟦works with a knife⟧ ≤(e→t)→t ⟦works with a cutter⟧ ≤(e→t)→t ⟦works with a tool⟧ 

A look ahead
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of every man of John

of some man

donkey

Why is I(OF)(x) not restrictive?
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without a tool

without a cutter

without a knife

works

⟦a knife⟧ ≤(e→t)→t ⟦a cutter⟧ ≤(e→t)→t ⟦a tool⟧ 

⟦without a tool⟧ ≤(e→t)→ (e→t) ⟦without a cutter⟧ ≤(e→t)→ (e→t) ⟦without a knife⟧ 

(4)

(b) I(WITHOUT) is a downward function in D((e→t)→t)→((e→t)→(e→t)) such 
that I(WITHOUT)(x) is an upward restrictive function.

⟦with a knife⟧ ≤(e→t)→ (e→t) ⟦with a cutter⟧ ≤(e→t)→ (e→t) ⟦with a tool⟧ 

⟦knife⟧ ≤(e→t)→t ⟦cutter⟧ ≤(e→t)→t ⟦tool⟧ 
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Three components:
(1) Lexical monotonicity marking of functors
(2) External polarity marking of the nodes of a derivation.
(3) Computation of the final node polarities that may reverse the 
initial polarity assignments.

Phrases that end up with a + are upward monotone, phrases with a - 
are downward monotone, unmarked phrases are neither.

Sanchez’ Natural Logic

Comment:
It is a complex system and a bit confusing because the + and - 
signs are used for marking monotonicity in step (1) and for marking 
polarity in steps (2) and (3).
David Dowty’s paper proposes an incrementally better simpler 
version.
Larry Moss’ work is a recasting of the whole enterprise.

Tuesday, July 19, 2011



Lexical Monotonicity
The main idea: introduce notation that allows the 
constraints on the interpretation and the assignments in 
the model  to be expressed in the derivations of Lambek 
Grammars.

In addition to the unmarked functors of type α→β, there 
are two new types: α+→β and α-→β.

If A is an expression assigned to the category α+→β, 
then A denotes an upward monotone function in Dα→β.

If A is an expression assigned to the category α-→β, 
then A denotes an downward monotone function in 
Dα→β.
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Examples
Constants Type

EVERY, ALL p-→((e→t)+→t)

SOME, A p+→((e→t)+→t)

NO p-→((e→t)-→t)

NOT t-→t

MOST p→((e→t)+→t)
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Constants Type

FEW p→((e→t)-→t)

THE p→((e→t)+→t)

FEMALE, MALE p+→p

IN, AT, WITH ((e→t)→t)+→(e→t)+→(e→t)

WITHOUT ((e→t)→t)-→(e→t)+→(e→t)

OF ((e→t)→t)+→p+→p

THAT (e→t)+→(p+→p)
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Polarity Marking in 
Derivations

The major premiss in a Modus Ponens application 
(Elimination) is positive.

α
β

α→β+

The minor premiss in a Modus Ponens application 
is positive if the major is in the category α+→β.

α+→β α

β
+ +

The minor premiss in a Modus Ponens application 
is negative if the major is in the category α-→β.

α

β

α-→β+ -
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The discharching of a numerical assumption leaves 
the previous marking unchanged. This will be 
indicated by putting a + symbol below the last but 
one node.

[αi]

D
β

(i) I
α→β

+
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Assume that D is a derivation with conclusion α.

(i) A node γ has polarity iff all the nodes in the 
path from α are marked.

(ii) A node γ is positive if (a) γ has polarity and 
(b) the number of nodes marked by ‘-’ is even.

(iii) A node γ is negative if (a) γ has polarity and 
(b) the number of nodes marked by ‘-’ is odd.

Final Polarities
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Example

every
p−→((e→t)+→t)

not
t−→t

(e→t)+→t)

t

t

logician
p

wanders
e→t

not((every logician) wanders)

With lexical 
monotonicity 

markings
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every
p−→((e→t)+→t)

not
t−→t

(e→t)+→t)

t

t

+
logician

p
−

+

wanders
e→t
+

+ −

Augmented with 
external polarity 

markings
in the derivation

Tuesday, July 19, 2011



every
p−→((e→t)+→t)

not
t−→t

(e→t)+→t)

t

t

+
logician

p
−

+

wanders
e→t
+

+ −

Tracing paths 
from the root of 
the derivaton to 
the intermediate 

nodes
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every
p−→((e→t)+→t)

not
t−→t

(e→t)+→t)

t

t

+
logician

p
−

+

wanders
e→t
+

+ −

every
p−→((e→t)+→t)

not
t−→t

(e→t)+→t)

t

t

−
logician

p
+

−

wanders
e→t
−

+ −

not+((every− logician+)− wanders−)−

not↑((every↓ logician↑)↓ wanders↓)↓

Reading off the 
final result.
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