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NatLog 
implementation



General Overview
Pipeline:

• Linguistic analysis

• Alignment

• Lexical Entailment classification

• Entailment projection

• Entailment joining



Linguistic analysis
As explained before except that the NatLog system as 
implemented uses the PS parse of the Stanford system, not 
the dependency graph.

Monotonicity marking of tokens in the input span (e.g. 
without is downward monotone). For each relevant operator 
the arity is specified and a tree pattern that helps identify its 
occurrence in the Treebank parse.DOWN and NON are 
marked, upward monotonicity is considered to be the 
default. Note that the other entailment projection signatures 
are ignored in the implementation.

No scope disambiguation; assumes that scope depends on 
linear order



Alignment
Remember

• EQ: connects a span in p with an equal span in h 
(based on lemmas)

• SUB: connects two unequal spans

• DEL: covers an unaligned span in p

• INS: covers an unaligned span in h.

The monotonicity marking is used in the heuristic rules that 
order the edits: in general DEL before SUB before INS; but 
downward monotone and  non-monotone operators are 
grouped after SUB and before INS.  



Lexical entailment 
classification

Based on machine learning exploiting 
external lexical resources about the 
relationships between word meanings



Feature representation
A real-valued vector encoding information 
about the edit: type, size, characteristics of 
the words, and (for SUB) information about 
the semantic relation between substituends.

Features for DEL and INS: 
Light: boolean, + when semantically light word (punctuation, preposition, 
possessive, article, auxiliary, expletive)
Pronoun: boolean: + when pronoun
MiscDel: hand-coded mappings from specific expressions: DEL(not) yields ^, 
DEL(true) yields ≣; non-intersective adjectives: DEL(fake) or DEL(former) 
yields |, DEL(alleged) yields #; mappings for implicatives and factives: DEL
(force) yields ⊏, DEL(fail) yields ^. For the factives, the positive ones (e.g. to 
know) are given a lexical ⊏ signature and the negative ones (e.g. to pretend) 
a | one.  



Features for SUB 

WordNet-derived features

WNSyn (synonymy) 1 iff the substituends are synonymous, 0 
otherwise
WNAnt (antonymy): 1 iff the substituends are antonyms, 0 
otherwise
WNHyper (hypernymy): if the h phrase is a hypernym of the p 
phrase, WNHyper takes the value 1- n/8, where n is the number of 
links to get from p to h, otherwise the value is 0; ex. WNHyper
(owl,bird) = 0.75, WNHyper(bird,owl) = 0,0.
WNHypo (Hyponymy) inverse of WNHyper
JiCo: semantic relatedness based on distance between two WN 
synsets, the measure used in the one proposed in Jiang and 
Conrath 1997.



         

NomB: NomBank has related noun/verb and 
adjective/adverb pairs. Nomb is set to 0.75 if 
the substituends are among these pairs, 0 
otherwise.

DLin: semantic relatedness based on a 
thesaurus complied by Dekang Lin, based on 
distributional similarity, mapping depends on 
the score given in the thesaurus

Features based on other 
lexical resources



LemStrSim similarity based on the string edit distance between 
word lemmas

where the distance is the Levenshtein string edit distance and k is 
a penalty parameter for very short string. It is put to 2, so the 
LemStrSim between ‘she’ and ‘the’ is 0 but the LemStrSim between 
‘Admadinejad’ and ‘Ahmadinejab’ is 0.89

LemSubSeq identifies the case where one of the substituends is a 
multi-word phrase which contains the other as a sub-phrase

LemSubSeq(p,h) = ⊏ iff h is a subsequence of p

LemSubSeq(p,h) = ⊐ iff p is a subsequence of h

LemSubSeq(p,h) = ≣ iff h and p are equal

LemSubSeq(p,h) = # otherwise

LemStrSim(w1,w2) = max 0,1− dist(lemma(w1),lemma(w2)
max(| lemma(w1) |,| lemma(w2) |)− k

⎡

⎣
⎢

⎤

⎦
⎥

String similarity features



Lexical category features

Light: boolean: on when both substituends are semantically light. 

Preps: boolean: on when both substituends are prepositions -- 
NatLog is liberal with preps.

Pronoun:boolean: on when both substituends are pronouns -- 
NatLog is liberal with pronouns.

NNN: boolean: on when both substituends are either common 
nouns or proper nouns, this predisposes the relation to being |

Quantifier: defines about a dozen quantifier categories and the 
relations e.g. SUB(ALL,SOME) → ⊏



        

NeqNum: boolean: on if both substituends are numbers and 
they are not equal

MiscSub: handcoded mappings for specific pairs of 
expressions, e.g. SUB(and,or) →  ⊏; after, before → |, etc.

Miscellaneous 
features



Classifier
Decision tree (J48)

Training set 2,449 lexical entailment problems: 1,525 SUB 
edits (words or phrases), 924 DEL edits (one word) , 
manually annotated with one of the seven relations 

examples: 
SUB(blast,explosion): ≣ 
SUB(acquired, bought): ⊐
Most SUBs were ≣, followed by |
Most DELs were ⊏, followed by ≣
99% accuracy on the training data.



Entailment projection
Based on the monotonicity marking done in the parsing stage.

Then: take the smallest parse constituent containing the tokens 
involved in the edit, trace a path upward through the parse tree from 
there to the root, collect monitonicity markers along the way. If any of 
these is NON, conclude NON for the whole, otherwise, if the number of 
DOWN markers is odd, conclude DOWN, if it is even, conclude UP.

If we end up with NON we conclude #, if we end up with DOWN we 
assume that every lexical entailment is projected as its dual under 
negation, if we end up with UP, we assume everything is projected 
without change

Dual under negation: ∀x,y : <x,y>∈ R ⇔<x̅,y ̅>∈ S; R1011 and R1101 (bit strings are 

reversed), R1001is its own dual.

Result: ⊏ and ⊐ are inverted.



Entailment joining

As described before.

Tendency to get # (conservative in its 
outcomes)



(S
  (NP (NNP Jimmy) (NNP Dean))
  (VP (VBD refused)
       (S
          (VP (TO to)
              (VP (VB move)
                  PP (IN without)
                    (NP (NNS jeans)))))))

(S
  (NP (NNP James) (NNP Dean))
  (VP (VBD did) (RB n’t)
        (VP (VB dance)
                  PP (IN without)
                    (NP (NNS pants)))))))

edit feature lexical rel monotonicity projection join
SUB(Jimmy Dean, 
James Dean) strsim:0.67 ≡ UP ≡ ≡

SUB(move,dance) hyponym ⊐ DOWN ⊏ ⊏
EQ

(without,without) ≡ DOWN ≡ ⊏

SUB(jeans, pants) hypernym ⊏ UP ⊏ ⊏

DEL(refused to) implic:+- | UP | |
INS(n’t) cat: neg ^ UP ^ ⊏

INS(did) cat: aux ≡ DOWN ≡ ⊏



Evaluation: Fracas
Test suite created to evaluate inferential phenomena. 346 
problems

Asks for YES, NO, UNKNOWN answers

59% problems have YES answers, 28% UNKNOWN and 10% 
NO 

154 contain multiple premises, excluded from the evaluation. 
183 left

Example of multiple premise reasoning: 

      Smith wrote a report in two hours, 

      Smith started writing the report at 8 a.m.,

--> Smith had finished writing the report by 11 a.m. 



Fracas

P R Acc

baseline: assume yes 55.7 100.0 55.7

bag of words 59.7 87.2 57.4

NatLog 8 89.3 65.7 70.5

accuracy: correct/total
precision: correct(tp)/correct+fp
recall: correct/correct+fn



Fracas

guess
gold

yes no unknown total

yes 67 4 31 102
no 1 16 4 21

unknown 7 7 46 60
total 75 27 81 183

Fracas contains problems sets that NatLog doesn’t know 
anything about: ellipsis, anaphora resolution, temporal 
reference, NatLog does well on quantifiers (97.7), adjectives 
(80.0), attitudes (88.9) 



Evaluation:RTE3
P R Acc

Stanford 68.8 60.2 60.5

Hybrid 64.5 68.9 64.5



Evaluation:RTE3
P R Acc

Stanford 68.8 60.2 60.5

Hybrid 64.5 68.9 64.5

best 80.0

average 62.4

median 62.6



Evaluation:RTE3
P R Acc

Stanford 68.8 60.2 60.5

Hybrid 64.5 68.9 64.5

best 80.0

average 62.4

median 62.6

bag of words 62.8


