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Abstract

Suppose that there are jobs and machines and it costs
to execute job on machine . The assignment problem

concerns the determination of a one-to-one assignment of
jobs onto machines so as to minimize the cost of executing
all the jobs. The average case analysis of the classical ran-
dom assignment problem has received a lot of interest in
the recent literature, mainly due to the following pleasing
conjecture of Parisi: The average value of the minimum-
cost permutation in an matrix with i.i.d. en-
tries equals . Coppersmith and Sorkin (1999) have
generalized Parisi’s conjecture to the average value of the
smallest -assignment when there are jobs and ma-
chines. We prove both conjectures based on a common set
of combinatorial and probabilistic arguments.

1. Introduction

Suppose there are jobs and machines and it costs
to execute job on machine . An assignment (or

a matching) is a one-to-one mapping,
, of jobs onto machines. The cost of the assign-

ment equals , and the assignment prob-
lem is about finding the minimum cost assignment. Let

represent the cost of the mini-
mizing assignment. In the random assignment problem the

’s are random variables drawn from some distribution,
and the quantity of interest is the expected minimum cost,

.

When the are i.i.d. variables, Parisi [21] has
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made the following conjecture:

Coppersmith and Sorkin [6] have proposed a larger class of
conjectures which state that the expected cost of the mini-
mum -assignment in an matrix of i.i.d. exp(1) entries
is:

By definition, and their expression
coincides with Parisi’s conjecture.

In this paper, we prove Parisi’s conjecture by two dif-
ferent but related strategies. Both involve establishing the
exponentiality of the increments of the weights of match-
ings. The first builds on the work of Sharma and Prabhakar
[22] and establishes Parisi’s conjecture by showing that cer-
tain increments of weights of matchings are exponentially
distributed with a given rate and are independent. The sec-
ond method builds on the work of Nair [18] and establishes
the Coppersmith-Sorkin conjectures. It does this by show-
ing that certain other increments are exponentials with given
rates; the increments are not required to be (and, in fact, are
not) independent.

The two methods mentioned above use a common set
of combinatorial and probabilistic arguments. For ease of
exposition, we choose to present the proof of the conjec-
tures in [22] first. We then show how the arguments also re-
solve the conjectures in [18]. Before surveying prior work,
it is important to mention that simultaneously and indepen-
dently of our work Linusson and Wästlund [15] have also
announced a proof of the Parisi and Coppersmith-Sorkin
conjectures based on a quite different approach.

1.1. Background and related work

There has been a lot of work on determining bounds for
the expected minimum cost, , and calculating its asymp-
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totic value. Assuming, for now, that exists, let
us denote it by . We survey some of the work; more
details can be found in [24, 6]. Early work uses feasible so-
lutions to the dual linear programming (LP) formulation of
the assignment problem for obtaining the following lower
bounds for : by Lazarus [13], 1.441 by Goe-
mans and Kodialam [8], and 1.51 by Olin [20]. The first
upper bound of 3 was given by Walkup [26], who thus
demonstrated that is finite. Walkup’s argu-
ment was later made constructive by Karp et al [12]. Karp
[10, 11] made a subtle use of LP duality to obtain a better
upper bound of 2. Coppersmith and Sorkin [6] have further
improved the bound to 1.94.

Meanwhile, it had been observed through simulations
that for large , [4]. Mézard and Parisi [16]
used the replica method [17] of statistical physics to argue
that . (Thus, Parisi’s conjecture for the finite ran-
dom assignment problem is an elegant restriction, for i.i.d.
exp(1) costs, of the asymptotic result to the first terms in
the expansion: .) More interestingly, their
method allowed them to determine the density of the edge-
weight distribution of the limiting optimal matching. These
sharp (but non-rigorous) asymptotic results, and others of a
similar flavor that they obtained in several combinatorial op-
timization problems, sparked interest in the replica method
and in the random assignment problem.

Aldous [1] proved that exists by identifying the limit
as the value of a minimum-cost matching problem on a cer-
tain random weighted infinite tree. In the same work he
also established that the distribution of affects only
through the value of its density function at 0 (provided it
exists and is strictly positive). Thus, as far as the value of

is concerned, the distributions and are
equivalent. More recently, Aldous [2] has established that

, and obtained the same limiting optimal edge-
weight distribution as in [16]. He also obtains a number
of other interesting results such as the asymptotic essen-
tial uniqueness (AEU) property—which roughly states that
almost-optimal matchings have almost all their edges equal
to those of the optimal matching.

Another notable paper on the infinite random assignment
problem is due to Talagrand [25]. He considers a version
of the assignment problem in the “very high temperature”
regime and rigorously establishes that the structure of the
solution is indeed as predicted by the replica method. This
work constitutes a part of a larger program Talagrand has
initiated on rigorizing the replica method for combinatorial
optimization problems.

Generalizations of Parisi’s finite conjecture have also
been made in other ways. Linusson and Wästlund [14]
conjecture an expression for the expected cost of the mini-

mum -assignment in an matrix consisting of zeroes
at some specified positions and entries at all other
places. Indeed, it is by establishing this conjecture in their
recent work [15] that they obtain proofs of the Parisi and
Coppersmith-Sorkin conjectures. Buck, Chan and Robbins
[5] generalize the Coppersmith-Sorkin conjecture for matri-
ces with for .

Alm and Sorkin [3] verify the Coppersmith-Sorkin con-
jecture when , and ; and
Coppersmith and Sorkin [7] study the expected incremen-
tal cost of going from the smallest -assignment in
an matrix to the smallest -assignment in an

matrix.

2. Preliminaries

We introduce some notation that will be used in the pa-
per. For an matrix, , of i.i.d. entries
define to be the weight of the smallest matching of
size .

Let be the matrix formed by the columns used
by . Consider the set of all matchings in of size

which use exactly columns of . Define
to be the weight of the smallest matching in this set.

Now let be the matrix of size
consisting of the columns used by both and .
Consider the set of all matchings in of size
which use exactly columns of . Let be
the weight of the smallest matching in this set.

In this way we can recursively define
to be the matrix of size

consisting of the columns present in all the matchings
, and obtain , ..., as

above. We shall refer to the matchings
as the T-matchings of the matrix .1

The T-matchings for a matrix are illustrated below.

:
3 6 11

9 2 20

1Conventions: (1) If the minimum weight permutation is not unique,
we shall consistently break the tie in favor of one of these permutations. (2)
To avoid an explosion of notation, we shall use the same symbol for both
the name of a matching and for its weight. For example, the defined
above might refer to the smallest matching as well as to its weight.
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3 6

9 2

6 11

2 20

3 11

9 20

Conjecture 1 [22] For ,
and these increments are independent of each

other.2

Remarks: It was shown in [22] that Conjecture 1 implies
Parisi’s conjecture: . Further, it was
established that and that

. As noted in [22], a nat-
ural generalization of their argument for showing

fails for higher increments. However,
we use a different generalization in this paper, involving a
subtle randomization step, to prove Conjecture 1.

2.1. A Sketch of the Proof

Our proof of Conjecture 1 is inductive, and follows the
steps below.

INDUCTIVE HYPOTHESIS: Start with a matrix of size
containing i.i.d. random variables such

that

INDUCTION STEP:

Step 1: Obtain , a matrix of size ,
from such that

Step 2: Establish that the entries of are i.i.d.
random variables.

This completes the induction step since satisfies
the induction hypothesis for the next iteration.

In Step 2 we also show the following:

1. and hence conclude
that .

2. is independent of . Observe that
the higher increments , for , are
functions of . This will allow us to conclude
that is independent of for

.
2The symbol ‘ ’ stands for ‘is distributed as’ and the symbol ‘ ’

stands for ‘is independent of’.

Remark: The randomization procedure alluded to ear-
lier is used in obtaining from and ensures
that has i.i.d. entries.

We state some combinatorial properties regarding
matchings in Section 3 that will be useful for the rest of the
paper. Section 4 establishes the above induction, thus com-
pleting the proof of Conjecture 1. We extend the method
used in Section 4 to prove the Coppersmith-Sorkin conjec-
ture in Section 5. Due to page limitations the proofs of
the combinatorial properties and some lemmas in Section
4 have been removed. The interested reader can find them
in the full version of the paper, [19].

3. Some combinatorial properties of matchings

Lemma 1 Consider an matrix and let
be the set of columns used by . Then for any column

, the smallest matching of size that doesn’t use
, denoted by , contains exactly one element outside the

columns in .

Lemma 2 Consider an matrix in which
is the smallest matching of size . Suppose there exists a
collection of columns in , denoted by , with the prop-
erty that the smallest matching of size in is lighter
than : the smallest among all matchings of size that
have exactly one element outside . Then .

Lemma 3 Let be the smallest matching of size in an
matrix . Let be any

matrix ( ) whose first rows equal (i.e. is an
extension of ). Let denote the smallest matching of
size in . Then the set of columns in which the
elements of lie is a subset of the columns in which the
elements of lie.

The following is a useful alternate description of
. Let be the weight of the smallest

matching in after removing its column. Note
that for all , . Consider
for and arrange them in increasing order to get

.

Lemma 4 .

Corollary 1 The matchings
contain exactly one element outside .

Corollary 2 Given a matrix , arranging the
for in increasing order gives the sequence

.
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Lemma 5 [23] Consider all the elements of an
matrix that participate in at least one of the matchings

(or, equivalently, in one of the ). The total number of
such elements is and exactly such elements are present
in every row of .

Lemma 6 Consider an matrix and mark all
the elements that participate in any one of the matchings

defined in Section 1. Then exactly two
elements will be marked in each row.

4. Proof of Conjecture 1

We shall execute the two steps mentioned earlier. Thus,
we shall begin with an matrix, , which has
i.i.d. entries.

Now consider the general step . Suppose we have that
contains i.i.d. entries and

for , where the are as defined
in Section 1.

4.1. Step 1: Obtaining from

The matrix is obtained from by applying
the series of operations , and , as depicted below

It would be natural to represent the T-matchings correspond-
ing to each of the intermediate matrices and us-
ing appropriate superscripts. For example, the T-matchings
of can be denoted . However, this creates
a needless clutter of symbols. We will instead denote

and simply as and , respectively. Ta-
ble 1 summarizes the notation we shall use, with the matrix,
its dimensions and notation for its T-matchings given in the
first, second and third rows respectively.

Table 1. Operations to transform to .

We now specify the operations and .

In the matrix , subtract the value
from each entry not in the sub-matrix . (Recall from
Section 1 that denotes the sub-matrix

of whose columns contain the entries used by .)
Let the resultant matrix of size be .

Consider the matrix . Generate a random variable
with . Define so that

when and when . Denote by
the unique entry of the matching outside the matrix .
Denote by the unique entry of the matching outside
the matrix . Now remove the row of in which is
present and append it to the bottom of the matrix.3 Call the
resultant matrix . Note that is a row permutation of .

Remove the last row from (i.e., the row containing
and appended to the bottom in operation ) to obtain the

matrix .

Lemma 7 The following statements hold:
.

For , .
For , .

Proof Since is entirely contained in the sub-matrix
, its weight remains the same in . Let be the set of

all matchings of size in that contain exactly one
element outside the columns of . From the definition of

, it is clear that every matching in is lighter by exactly
compared to its weight in . From the

definition of we know that every matching in had
a weight larger than (or equal to) in the matrix .
Therefore, every matching in has a weight larger than (or
equal to) in . So every matching
that has exactly one element outside the columns of in

has a weight larger than (or equal to) . Therefore,
from Lemma 2 it follows that is the smallest matching
in . Thus, we have .

From Corollary 1 we know that has exactly one el-
ement outside the columns of for . Since every
matching in is lighter by from its weight
in , it follows that for

. Substituting , we obtain . This
proves part . And considering the differences
establishes part .

Since the values of T-matchings are invariant under row
and column permutations, part follows from the fact
that is a row permutation of .

To complete Step 2 of the induction we need to establish
that has the following properties.

3The random variable is used to break the tie between the two match-
ings and , both of which have the same weight (see Lemma 7). This
randomized tie-breaking is essential for ensuring that has i.i.d.

entries; indeed, if we were to choose the entry in (or, for that
matter, in ) with probability 1, then the corresponding will not
have i.i.d. entries.
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Lemma 8
.

Proof The proof of the lemma consists of establishing the
following: For

where follows from the induction hypothesis on
, and follows from Lemma 7. We shall establish

by showing that

(1)

for some appropriately defined constant .

Two cases arise: For and as defined in the operation
, Case 1 is when and are present in the last row of ,

and Case 2 is when is present in the last row of and
is present in a different row.

Case 1: We claim that the values of and are
equal, say to . This is because and choose the
same matching of size from the matrix (call
this matching ) to form the matchings and . But

, from Lemma 7. Therefore .

Consider all matchings of size in that
have exactly one entry outside the columns defined by .
Clearly, one (or possibly both) of the entries and could
have chosen these matchings to form candidates for . The
fact that the weight of these candidates is larger than
indicates that the weight of these size matchings
are larger than the weight of . Thus, from Lemma 2, we
have that equals : the smallest matching of size

in . Therefore,
.

Now consider , the smallest matching in obtained by
deleting the column in . Since this is for some

, must use one of the entries or , according to
Lemma 6. Therefore, , where is
the weight of the best matching in that doesn’t use
the column in .

However, from Corollary 1 applied to , we have
that has exactly one element outside since

defines the columns in which the smallest matching of
is present. Therefore can pick at least one

of the two entries or to form a candidate for that
has weight . This implies .

This shows .

But, arranging , for all , in increasing order
gives us . And arranging in in-
creasing order gives us . These ob-
servations follow from Corollary 2. This verifies equation
(1) and completes Case 1.

Case 2: Please refer to [19] for the proof of this case.

Corollary 3 Let be the smallest matching of size
in , contained in the columns of , that goes

with to form . Then , the smallest
matching of size in .

Proof Letting be the weight of , we note that is
formed by and . From Equation (1), has a weight
equal to . Hence the weight of equals

.

4.2. Step 2: has i.i.d. entries

We compute the joint distribution of the entries of
and verify that they are i.i.d. variables. To

do this, we identify the set, , of all matri-
ces, , that have a non-zero probability of mapping to a
particular realization of under the operations
and . By induction, the entries of are i.i.d
random variables. We integrate over to obtain the
joint distribution of the entries of .

Accordingly, fix a realization of
and represent it as below

(2)

Let be the pre-image of
under , and let . Now is a
random map, whose action depends on the value taken by

. In turn, this is related to whether and are on the
same row or not. Therefore we may write as the disjoint
union of the sets and , which respectively correspond
to and belonging to the same and to different rows.
Finally, , the set we’re trying
to determine.

Consider an , such as represented below

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03) 

0272-5428/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:38 from IEEE Xplore.  Restrictions apply. 



In the above representation denote the ele-
ments in the columns of , the sub-matrix of
which contains .

We shall show that is precisely the set of all such
for which the vector satisfies
the conditions stated in Lemma 9.

Consider an element outside the columns of
in . Let be the cost of the smallest matching,
say , of size with the following property:
The entries of are in and
no entry is present in the same row as . Clearly
is a matching of size in the matrix . Let be
that entry outside the columns of in which
minimizes . Let , and let denote the
column in which occurs.

Given any , the follow-
ing lemma stipulates conditions that must sat-
isfy so that is in .

Lemma 9 For any , let be the collec-
tion of all such that one of the following two conditions
hold:

There exist and such that ,
and for all .

There exists such that for all
and .

Then .

Proof Please refer to [19] for a proof.

Let and be the subsets of matrices in that
satisfy Conditions and of Lemma 9, respectively.
Clearly is the disjoint union of and . (The su-
perscripts and are mnemonic for whether and oc-
curred in the same row or in different rows.)

Now that we have identified explicitly in Lemma 9,
can be identified following manner: Pick a matrix
and form matrices by removing the last row of

and placing it back as the th row, for . Call
this collection of matrices . Define

Lemma 10 .

Proof Please refer to [19] for a proof.

Partition into and ;
these partitions correspond to the cases where and are

in the same row and in different rows. Also observe that
when we have with proba-
bility one and when we have
with probability .

We are finally ready to characterize , the set of ’s
that map to a particular realization of with non-zero
probability.

Consider any . Let be any positive number.
Consider the column, say in which contains . (Re-
call, from Lemma 9, that is the smallest of the ’s in the
last row deleted by .) Let be the union of the columns
of and . Add to every entry in outside the
columns . Denote the resultant matrix by . Let

Now consider the column, say in where the entry
or (depending on whether satisfies condition
or condition of Lemma 9) is present. Let be

the union of columns of and . Now add to
every entry in outside the columns . Call this matrix

. Let

and note that and are disjoint since .
Remark: Note that is added to precisely entries
in in each of the two cases above.

Lemma 11 .

Proof Please refer to [19] for a proof.

Remark: Note that the variable used in the character-
ization of precisely equals the value of , as
shown in the proof of Lemma 11.

Continuing, we can partition into the two sets and
as below:

(3)

Observe that whenever , we have
and hence with probability 1. For

, . Hence with
probability .

Now that we have characterized , we “integrate out the
marginals” and by setting

and

Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03) 

0272-5428/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:38 from IEEE Xplore.  Restrictions apply. 



where is as defined at equa-
tion (2). We will evaluate

, to obtain the marginal density of . The
regions and are defined by the set of all s that sat-
isfy and of Lemma 9, respectively.

On , we have that for as
in Lemma 9. We shall set , and

for . Finally, define

Thus, denotes the sum of all of the entries of except
those in . As noted in the remark preceding Lemma 11, the
value was added to precisely entries. We have

(4)

The factor at equality comes from the possible
choices for and from 1,..., , the factor comes
from the row choices available to as in Lemma 10, and
the factor 2 corresponds to the partition, or , that
belongs to.

Similarly, on , we have that
and we shall set for to obtain

(5)

In equality above, the factors , and 2 come,
respectively, from the choice of positions available to ,4

the row choices available to and the partition, or ,
that belongs to. The factor comes from the fact
that on , and occur on different rows. Therefore,

is in and will map to the desired with
probability .

Putting (4) and (5) together, we obtain

4Note that there are only choices available to since it has to occur
in a column other than the one in which occurs.

We summarize the above in the following lemma.

Lemma 12 The following hold:
(i) consists of i.i.d. variables.
(ii) is an random variable.
(iii) consists of i.i.d. variables.
(iv) , , and are independent.

From Lemma 8 we know that the increments
are a function of the entries of . Given

this and the independence of and from
the above lemma, we get the following corollary.

Corollary 4 is independent of for
.

In conjunction with Lemma 12, Corollary 4 completes
the proof of Conjecture 1. It has been shown in [22] that
establishing Conjecture 1 proves Parisi’s conjecture.

5. The Coppersmith-Sorkin Conjecture

As mentioned in the introduction, Coppersmith and
Sorkin [6] have conjectured that the expected cost of the
minimum -assignment in an matrix, , of i.i.d.
exp(1) entries is:

(6)

Consider the matrix and w.l.o.g. assume that .
For , let be the weight of the smallest match-
ing of size and denote the columns it occupies by .
Next, for , define to be the
ordered sequence (increasingly by weight) of the smallest
matching obtained by deleting one column of at a time.

We shall refer to the set as
the V-matchings of the matrix . Nair [18] has made the fol-
lowing distributional conjectures regarding the increments
of the V-matchings.

Conjecture 2 [18] The following hold for :
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We have grouped the increments according to size. That
is, the group consists of the differences in the weights:

, and is the matching of size ,
is the second smallest of size , etc, until —the

smallest matching of size . Note that according to Con-
jecture 2 the telescopic sum has expected value

. Note also that ,
being the smallest of independent variables.

The rest of the Section is devoted to establishing Conjec-
ture 2 for the group.

Proof of Conjecture 2

We will establish the conjectures for the group induc-
tively, as in Section 4. Consider a matrix, , of size

and let denote5 its V-matchings.
The induction consists of the following two steps:

Inductive Hypothesis:

Assume the increments satisfy the following combina-
torial identities

(7)

The entries of are i.i.d. random vari-
ables.

Induction Step:

Step 1: From , form a matrix of size
with the property that

Step 2: Establish that the entries of are i.i.d.
random variables.

This completes the induction step since satisfies
the induction hypothesis for the next iteration.

5We regret the cumbersome notation; but we must keep track of three
indices: one for the number of rows in the matrix (of size ),
one for the size of the matching, , and one for the rank of the matching,

, among matchings of size .

In Step 2 we also show that

and hence conclude from equation (7) that
.

The induction starts at and terminates at .
Observe that the matrix satisfies the inductive hypothesis
for trivially.

Proof of the Induction:

Step 1: Form the matrix of size
by adding columns of zeroes to the left

of as below

Let denote the weight of the T-
matchings of the matrix . Then we make the fol-
lowing claim.

Claim 1

and

Proof Note that any matching of size in
can have at most zeroes. Therefore, it is clear that the
smallest matching of size in is formed
by picking zeroes along with the smallest matching of
size in . Thus, .

If we remove any of the columns containing zeroes we
get the smallest matching of size in the rest of
the matrix by combining zeroes with
the smallest matching of size in . Hence

of the ’s, corresponding to each column of zeroes,
have weight equal to .

If we remove any column containing ,
then the smallest matching of size in is
obtained by zeroes and the smallest matching of size

in that avoids this column. Hence they
have weights for .

We claim that is larger than
for in . Clearly

. Further, for ,
we have a matching of size in
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that avoids the same column that avoids
in . But is the smallest
matching of size that avoids this column. Hence
we conclude that .

Hence arranging the weights (in increasing order) of the
smallest matchings of size in , obtained
by removing one column of at a time, establishes
the claim.

From the above it is clear that the matchings
and are formed by zeroes and the matchings

and respectively. Hence, as
in Section 4, we have two elements, one each of
and that lie outside the common columns of

and . Let denote these common
columns. (Note that necessarily includes the
columns of zeros).

We now proceed to perform the procedure outlined in
Section 4 for obtaining from by work-
ing through the matrix which is an extension of

.

Accordingly, form the matrix by removing the value
from all the entries in that

lie outside . Generate a random variable , as before,
with . Let when

and let when . Denote by the
unique entry of the matching outside the matrix .
Denote by the unique entry of the matching outside
the matrix . Remove the row containing and call this
matrix . Now remove the columns of zeroes to
obtain the matrix of size .

Let denote the weight of the T-
matchings of the matrix and denote the V-
matchings of the matrix . We make the following
claim.

Claim 2

and

Proof The proof is identical to that of Claim 1.

Now from Lemma 8 in Section 4 we know that

for
(8)

Finally, combining Equation (8), Claim 1, Claim 2 and
the inductive hypothesis on we obtain:

This completes Step 1 of the induction.

Step 2: Again we reduce the problem to the one in Sec-
tion 4 by working with the matrices and in-
stead of the matrices and . (Note that the
necessary and sufficient conditions for a to be in
the pre-image of a particular realization of is ex-
actly same as the necessary and sufficient conditions for a

to be in the pre-image of a particular realization of
.)

Let denote all matrices , of size ,
that map to a particular realization of with and
in the same row. Let denote all matrices that
map to a particular realization of with and in
different rows. Observe that in , will map to
the particular realization of with probability as in
Section 4. We borrow the notation from Section 4 for the
rest of the proof.

Remarks: Before proceeding, it helps to relate the quanti-
ties in this Section to their counterparts in Section 4. The
matrix had dimensions ; its counterpart

has dimensions . The
number of columns in outside the columns of
equalled ; now the number of columns of outside
the columns of equals . This implies
that the value will be subtracted
from precisely elements of

. Note also that the vector , of length , has
exactly zeroes and non-zero elements.

Let denote a particular realization of
. We proceed by setting, as in Section 4,

and

To obtain the marginal density of , we will evaluate
.

On , we have that for as in Section 4.
(The counterparts of and in Section 4 were and ,
and these were defined according to Lemma 9.) We shall
set for . Finally, define
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Thus, denotes the sum of all of the entries of
except those in . We have

(9)

The factor at equality comes from the possible
choices for from the set , the factor

comes from the row choices available to as
in Section 4, and the factor 2 corresponds to the partition,

or (defined likewise), that belongs to.

Similarly, on , we have that and we shall set
for to obtain

(10)

In equality above, the factor comes
from the choice of positions available to (note that
cannot occur in same column as the entry which was
defined in Lemma 9). The factor comes from
the row choices available to , and the factor 2 is due to
the partition, or , that belongs to. Finally, the
factor comes from the fact that on , and occur on
different rows. Therefore, will map to the desired

with probability .

Putting (9) and (10) together, we obtain

We summarize the above in the following lemma.

Lemma 13 The following hold:
(i) consists of i.i.d. variables.
(ii) is an

random variable.
(iii) consists of i.i.d. variables and zeroes.
(iv) , , and are independent.

This completes Step 2 of the induction.

From Claim 1, we have that
, and from the inductive

hypothesis we have
. Hence we have the following corollary.

Corollary 5
for .

To complete the proof of Conjecture 2 we need to com-
pute the distribution of the two increments and

. At the last step of the induction, i.e.
, we have a matrix consisting of i.i.d.

random variables and satisfying the following properties:
and

. The following lemma com-
pletes the proof of Conjecture 2.

Lemma 14 The following identities hold:

.

.

Proof This can be easily deduced from the memoryless
property of the exponential distribution; equally, one can
refer to Lemma 1 in [18] for the argument. (Remark: There
is a row and column interchange in the definitions of the
V-matchings in [18].)

Thus, we have fully established Conjecture 2 and obtain

Theorem 1

Proof

and

This gives an alternate proof to Parisi’s conjecture since
[6] shows that .
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