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Abstract— The Internet architecture uses congestion avoid-
ance mechanisms implemented in the transport layer protocol
like TCP to provide good service under heavy load. If network
nodes distribute bandwidth fairly, the Internet would be more
robust and accommodate a wide variety of applications. Various
congestion and bandwidth management schemes have been
proposed for this purpose and can be classified into two
broad categories: Packet scheduling algorithms such as Fair
Queueing (FQ [7]) which explicitly provide bandwidth shares
by scheduling packets. They are more difficult to implement
compared to FIFO queueing. The second category has active
queue management schemes such as RED [10] which use
FIFO queues at the routers. They are easy to implement but
don’t aim to provide (and, in the presence of non-congestion-
responsive sources, don’t provide) fairness. An algorithm called
AFD (Approximate Fair Dropping) [18]), has been proposed
to provide approximate, weighted max-min fair bandwidth
allocations with relatively low complexity. AFD has since been
widely adopted by the industry. This paper describes the
evolution of AFD from a research project into an industry
setting, focusing on the changes it has undergone in the process.
AFD now serves as a traffic management module, which can
be implemented either using a single FIFO or overlaid on
top of extant per-flow queueing structures and which provides
approximate bandwidth allocation in a simple fashion.

The AFD algorithm has been implemented in several switch
and router platforms at Cisco Sytems, successfully transitioning
from the academic world into the industry.

I. INTRODUCTION

Note: This paper describes the background, design and com-
mercial deployment of the bandwidth allocation scheme AFD
(Approximate Fair Dropping) which was developed in [18]
and [17]. Our goal is to describe the ultimate design decisions
that were made to enable its commercial implementation. We
refer the interested reader to [18] and [17] for the motivation,
ideas and original choices behind AFD, where Lee Breslau
of AT&T and Scott Shenker of UC Berkeley are crucial
contributors. This paper should be viewed as a continuation
of the work on AFD and a chronicle of its evolution from
an academic research subject into the real world of routers
and switches.

Background.We briefly review some necessary background.
By design, the Internet delivers a connectionless, best-effort
type of service. With ubiquitous connectivity as its primary
goal, its reliable functioning is based on the premise that
end hosts shall be responsible for the correct and complete
exchange of data, leaving intermediate network nodes to
facilitate data forwarding. Indeed, with end hosts employing
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transport layer protocols, like TCP (Transmission Control
Protocol) to regulate the amount of work injected into the
network, network routers are freed up to route and forward
data at high speeds to their final destinations. This infras-
tructure has allowed the Internet to grow at an astonishingly
fast rate.
The introduction of many new applications has brought
a new mix of traffic into the Internet with different re-
quirements of bandwidth, loss and latency. In addition,
service differentiation has led network equipment vendors
to develop products for different market segments; notably,
enterprise, metro, edge and core networks. This has resulted
in network nodes (switches, routers) taking a more active role
in managing their resources, notably bandwidth management
and allocation.
There has been a lot of research on developing mecha-
nisms for fairly partitioning the bandwidth at a link among
the flows traversing it, resulting in algorithms such as FQ [7],
CSFQ [21], SFQ [14] and RED [10], FRED [12], SRED
[16], SFB [9], RED-PD [13]. These schemes represent a
spectrum with high-precision bandwidth allocation on one
end (typified by the Fair Queueing, or FQ, algorithm) and
simple congestion management on the other end (typified by
the Random Early Detection, or RED, algorithm). The cost of
implementation varies inversely as the quality of bandwith-
allocation and FQ is much more expensive to implement than
RED.
Different choices along this spectrum of router algorithms
embody different expectations about the set of congestion
algorithms employed at end hosts. One possible view is that
in the future almost all flows will use a TCP-compatible
congestion control algorithm, and that there will only be a
very few malicious (or broken) flows that are substantially
more aggressive. In this scenario, routers only need to detect
these aggressive flows and restrain their bandwidth usage.
The CHOKe algorithm [19] is an example well-suited to
this task. The amount of extra work it performs is of the
order of non-TCP-compatible (or aggressive) flows. Another
possible view is that flows will use a very wide variety of
congestion control algorithms, some of which not necessarily
TCP-compatible, and that routers will need to perform some
degree of bandwidth allocation. The AFD (Approximate Fair
Dropping) algorithm is designed for this scenario. Based
on the observation that Internet flow distribution is heavy-
tailed [18] (most flows are small and low-rate ‘mice’, and
a few large ‘elephant’ flows bring the most work), its state
requirement is of the order of the number of large elephant
flows. We refer the reader to [18] for details.
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Bandwidth partitioning in the industry. A significant
amount of research and development on badwidth partition-
ing occurred in the industry, originating in ATM technology
under the practice of traffic management. Traffic manage-
ment algorithms aim to achieve very precise allocation
and control of bandwidth, requiring that precise scheduling,
shaping and policing decisions be made at the time scale
of an ATM cell (a 53-byte packet). Scheduling algorithms
such as Weighted Fair Queuing (WFQ) when combined
with shaping and policing mechanisms such as the Leaky
Bucket provide a high precision of bandwidth partitioning
and a tight control of end-to-end latency (see [2] for details.
But, such precise bandwidth scheduling algorithms come at
considerable expense, and by abandoning precise bit-level
fairness in favor of quantum-level1 fairness, has enabled
the Deficit Round Robin (DRR) [20] scheme to be widely-
deployed in routers and switches.

But DRR still requires per-flow queues and an a priori

commitment of hardware resources, based on the number
of flows that will be supported. This is both expensive and
inflexible: it is not possible to add a single flow in excess of
the number for which queues have been provided.

Approximate bandwidth partioning. The AFD algorithm
takes a further step down the path of approximate bandwidth
partitioning: it aims to provide bandwidth at the level of
a few tens of milliseconds (equivalent to a few hundred
packets). Such a trade-off in precision is supported by the
needs of network traffic; bandwidth measured at the level of
tens of milliseconds is adequate for voice, video and data.
The AFD algorithm is founded on two fundamental ideas: (i)
per-flow queues are not necessary for partitioning; per-flow
monitoring of rates, which is “soft per-flow state,” is adequate
and (ii) bandwidth partitioning can be achieved by dropping
packets from a flow which exceeds its allocated rate, rather
than by explicitly providing it the correct rate using packet
scheduling algorithms. These ideas at once simplify the
implementation and allow for AFD to be an enhancement
to more fine-grained packet scheduling algorithms, such as
DRR. Thus, implementations can overlay AFD on top of
DRR to achieve various degrees of precision in bandwidth
partitioning while becoming more flexible (by not having
a hard upperbound on the number of flows that can be
supported) and affordable.

Since AFD aims for approximate fairness over long time
scales, of the order of several roundtrip times, its design
is easily amenable to high-speed implementation. AFD per-
forms probabilistic drop-on-arrival. When a packet arrives,
it is either dropped or placed on a physical queue. The drop
decision is simple with O(1) complexity (that is, the com-
plexity does not increase with the number of classes/flows
or packets).

AFD has many applications in the area of traffic man-
agement. Depending on the capability of the underlying
scheduling and queuing system, AFD offers the ability to
provide a richer set of functionalities. For example, AFD may

1A quantum of data is typically 500 Bytes.
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Fig. 1. Basic AFD Algorithm

be used as a replacement for the Weighted RED algorithm.
Also, for systems that lack adequate physical queues, AFD
provides the ability to support a behavior consistent with
a system that has a larger number of queues. Similarly,
for systems lacking sufficient layers of hierarchy, AFD can
provide this enhancement. In summary, AFD offers the
potential to effectively complement, extend and simplify a
broad range of current traffic management mechanisms.
The remainder of this document is structured as follows:
we describe the details of AFD algorithm in Section II
and we introduce a few of AFD’s applications and their
performance in Section III. We conclude in Section IV.

II. AFD ALGORITHM: DETAILS

The fundamental goal of the AFD algorithm is to con-
trol bandwidth allocation among flows/classes that share a
common queuing system. Controlled bandwidth allocation
is achieved by selectively, probabilistically dropping the
packets of classes that send more than their “fair share,”
which depends on the notion of fairness we adopt.

A. Basic AFD Algorithm

As mentioned earlier, AFD is an active queue management
scheme that drops packets probabilistically upon arrival. A
key aspect of AFD is that the decision of whether to drop
a packet from a given class i is based not only on some
measurement of queue depth, but also on an estimate of
the class i’s current sending rate ri. This is different from
other active queue management systems (e.g., RED) where
the decision is based solely on the queue depth.
Let Di = (1 − rfairi/ri)+ denote the probability with
which a packet from class i should be dropped. Thus, if
ri < rfairi no drop will occur. If ri > rfairi, the drop
probability increases as ri gets further away from rfairi. As
a result, the throughput of each flow, ri(1−Di), is bounded
by its fair share: ri(1−Di) = min(ri, rfairi). Hence, drops
do not occur evenly across flows but are applied differentially
to flows with different rates.
Two key algorithmic aspects of AFD lie in the manner in
which ri and rfairi are estimated via measurements. There
are three elements in this procedure, as shown in Figure 1:

1. Arrival Rate Estimation. Let Mi = riTs be the
amount (measured in bytes, packets, etc) of traffic from flow

ThC1.3

1082

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:27 from IEEE Xplore.  Restrictions apply. 



5Mbps

2.5Gbps 2.5Gbps

Traffic

Sources
Traffic
Sinks

Fig. 2. Simulation Topology

i during the interval Ts. Similarly, Mfair be the fair share
amount of the traffic that the queue would have received if
sources sent at their fair share rates Mfairi, which will be
estimated as described next.

2. Fair Share Calculation. The fair share of the link
bandwidth is estimated dynamically, at the end of each
measurement interval, as follows. First, use the queue-size to
dynamically estimate Mfair using the equation: Mfair =
Mfair−a1∗(Qlen−Qref)+a2∗(Qlenold−Qref), where
Qlen is the real, instantaneous, queue length measured at the
end of the current measurement interval; Qlenold is the real
queue length measured at the end of the previous interval;
Qref is the reference queue length (set by the operator); a1

and a2 are the averaging parameters (chosen as part of the
design); andMfairi = wi ∗Mfair, where wi is the weight
associated with class i.

3. Drop Probability Calculation. When a flow i packet
arrives, we use a drop probability Di which satisfies

Mi ∗ (1 − Di)+ = min(Mi, Mfairi).

From the equations presented in this section, it is clear
that AFD is a closed loop control system. A detailed stability
analysis of this system has been developed but not presented
here. Such stability analysis is important for determining
stability margins and in correctly chosing the parameters of
the algorithm.

III. AFD APPLICATIONS

We will review some applications of AFD as an active
queue management scheme which improves on WRED and
which can closely emulate the bandwidth allocation achieved
by more complex queuing-plus-scheduling schemes such as
Weighted Deficit Round Robin (WDRR) [20]. We also show
how AFD may be extended to cover a number of new
applications related to traffic management; these applications
demonstrate the flexibility and generality of AFD. We use
Network Simulator, ns [7], for our simulations.

Consider the simulation topology depicted in Figure 2. The
access link speed is 2.5Gbps and the bottleneck link has a
bandwidth of 5Mbps.
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Fig. 3. AFD vs. WRED: Traffic Scenario
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A. AFD vs Weighted RED

WRED [6] is a variation of the RED algorithm which aims
to differentially drop the packets of different classes, thereby
prioritizing the classes. Consider the performance of pro-
viding differentiated, or weighted, allocation of bandwidth
by using either the WRED algorithm or the weighted-AFD
algorithm. We consider an experiment including two traffic
classes, competing for a link of capacity C = 5 Mbps, with
a desired bandwidth split of 70% to 30% between class 1
and class 2. Class 2 gradually increases its sending rate from
30%C to 150%C, while Class 1 sends rate C all the time, as
shown in Figure 3.

The bandwidth allocation achieved by WRED is plotted
against the ideal performance in Figure 4. The WRED
parameters are chosen in such a way that they provide the
desired bandwidth partitioning when class 2 sends at 100% of
the link capacity C. However, when the total traffic intensity
is different from this load, it is clear from the plot that WRED
is not able to allocate bandwidth in the desired proportion.
As the overall traffic intensity increases, the aggressive flow,
Class 1 in this case, grabs more bandwidth virtually shutting
out Class 2.

By contrast, AFD using weights 7 and 3 for Classes 1 and
2 respectively, achieves an almost perfect behavior as shown
in Figure 5. Initially, with its demand less than its allocated
rate, Class 1 gets its requested bandwidth and Class 2 obtains
the remaining bandwidth. When Class 1 offers more than
70% of the link bandwidth, Class 1’s throughput is restricted
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Strict Priority Queue With Voice Traffic

AFD Queue

Fig. 6. AFD vs WDRR: Simulation Setup

to 70% of the line rate and Class 2 gets the remaining 30%,
as desired.

B. AFD vs. WDRR

This section discusses how AFD can be used to com-
plement a more traditional queuing and scheduling system,
while replacing certain components of the more costly queue-
ing and scheduling system.
We study the behavior of AFD when the scheduler of
the FIFO queue does not have a constant throughput. We
introduce a strict priority queue into our system as shown in
Figure 6. Under this scenario, the capacity on the non-strict
priority is effectively varying as it can only take the left-over
bandwidth unused by the strict priority queue. We need to
make sure that once again fairness is enforced under AFD
with varying serving speed of the FIFO queue.

An exponential on-off traffic source with an average load
of 12%C is used to represent the high-priority voice traffic.
For the lower priority traffic, we have four classes of TCP
as follows: 5 flows in Class 1, 10 flows in Class 2, 15 flows
in Class 3 and 20 flows in Class 4. Thus, the sending rate in
each class is different. The classes have an equal weight of
1 and the flows are on and off at different times as shown
in Figure 6; that is, all classes are on at the beginning of the
simulation, then Class 1 stops sending traffic at 100 second
and Class 2 finishes transmitting at 150 second; Classes 3
and 4 send traffic throughout the simulation.
Once the voice traffic obtains its bandwidth by virtue of
belonging to the strict prioty queue, the four TCP traffic
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Fig. 7. AFD vs WDRR: Four Classes of TCP Traffic

Fig. 8. Performance Under WDRR

classes should share the remaining link bandwidth equally.
Since the fair share for these four classes is varying, we use
DRR as our reference to evaluate the performance of AFD.
Figure 8 depicts the throughput of each class under DRR,
and it is clear from the plot that each of the four TCP classes
obtains equal bandwidth.

Figure 9 shows that the performance of AFD matches
that provided by DRR quite closes. Indeed, a closer look of
the throughputs of Class 4 under the two different schemes
(Figure 10 shows that AFD is essentially identical to DRR
in performance.

IV. CONCLUSION

In this paper, we have shown that AFD provides a rich
set of functionalities which is complementary to the existing
queue/scheduling structures. AFD also can enhance the capa-
bilities of systems that currently don’t support some advance
features such as service propagation and dynamic policing.
Furthermore, AFD offers the capability of supporting non-
linear excess sharing rules that is difficult to provide in
traditional systems.

The AFD algorithm has been used in several switch and
router platforms at Cisco Systems, making the transition
from an academic project into wide use in the industry.
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