QCN: Algorithm with Drift

Rong Pan, Balaji Prabhapar, Ashvin Lakshmikantha, Mick Seaman
Outline of presentation

• High-level description of QCN already provided
 – Current slides have updated version of how the DE bit is used

• Drift has now been added
 – For failsafe operation
 – For reclaiming rate limiters

• Simulations with drift
 – Infinitely long-lived flows: throughput, backlog, fairness, drops
 – Finite flows: FCT (short and long flows), drop percentages
Basic QCN

• 2-point architecture: Reaction Point -- Congestion Point

1. **Congestion Points:** Sample packets, compute feedback (Fb), quantize Fb to 6 bits, and reflect only negative Fb values back to Reaction Point with a probability proportional to Fb.

 \[
 F_b = -(q_{off} + w q_{delta}) = -(\text{queue offset} + w.\text{rate offset})
 \]

2. **Reaction Points:** Transmit regular Ethernet frames. When congestion message arrives: perform multiplicative decrease, fast recovery and active probing.
 - Fast recovery similar to BIC-TCP: gives high performance in high bandwidth-delay product networks, while being very simple.
Fast Recovery and Active Increase

- **Fast Recovery**
 - R
 - Rd
 - Rd/2
 - Rd/4
 - Rd/8

- **Active Increase**

Rate

Time

Congestion message recd
Basic QCN: Outcomes/results

- Easy to deploy, light resource requirement
 - No header modifications, no tags, **immediately deployable**.
 - Can work with a *single* rate limiter.
 - Alias all flows which have received negative feedback onto the rate limiter. RL becomes “meta-flow” with fast recovery + active probing ensuring good performance.
 - The algorithm is well-defined; i.e. does not rely on the existence of multiple rate limiters for correctness of specification since it has no tags or probes.

- Quantizing Fb simplifies implementation
 - Fb value used to index into a small table to find the decrease factor.
 - No potentially expensive hardware resources needed for computations.
 - Lookup table also makes the scheme **easily reconfigurable** (if Fb --> Rate relation changes), a useful workaround.
QCN: 3-point architecture

- ReaP--CP--RefP
 - Allows signaling Fb=0 values to ReaP, which indicate lack of congestion. Only the RefP can do this without the use of RP-->CP association tags.
 - When a ReaP receives an Fb=0 signal, it just skips to the next cycle of Fast Recovery or Active Increase; i.e. it increases the rate appropriately and it restarts the byte counter
 - Simple behavior, no increase gains or parameters.
 - Two flavors of signaling
 - In-band: Using packet headers
 - Out-of-band: Using probe packets (as in E2CM and FECN)

- In-band signaling
 - In the pseudocode released, we showed how the 6-bit Fb field in the packet header can be modified at the switch for sampled packets and how reflection occurs at CP and RefP.
 - A probe version of this scheme can also be done.
Simplifying signaling further

• Note that
 – To maintain low drops while allowing sources to come on at 10 Gbps, we need negative Fb values to be signaled backward; the forward path has a larger delay.
 – To grab extra bandwidth, it is useful to signal Fb=0. We can employ forward signaling to do this without tags.

• Therefore, we propose
 – All Fb-negative signals generated probabilistically by CPs
 – RefP reflects only Fb=0 signals
 – This elegantly extends the 2-point architecture to the 3-point architecture
 – As we will see in the simulations, it also performs excellently
Two concrete signaling methods based on this proposal are...

1. **Use probe packets, say 1 in K packets from the source**
 - Probe enters network with a single Fb0-bit set to 0 and passes through the CPs
 - If a CP has Fb < 0 value, it sets the Fb0-bit to 1
 - When RefP receives a probe
 - If Fb0-bit is set to 1, do nothing
 - Else, reflect probe with small probability (e.g. 1-3%)

2. **Using the DE (Discard Eligible) bit in the packet header**
 - DE bit set to 0 when packet leaves source
 - When packet arrives at CP
 - If Fb value at CP is negative
 - Set DE bit to 1
 - Reflect Fb value to ReaP with probability biased by Fb value
 - Else, do nothing
 - When RefP receives a packet
 - If DE bit is set to 1, do nothing
 - Else send Fb=0 signal to ReaP with small probability (e.g. 1-3%)
Drift

• Since both FR and Active Increase use byte counters for self-clocking, it is advisable to have a time-driven “rate drift”
 – Provides failsafe operation, allows rate limiters to be decommissioned
 – Note: We’ve seen drift earlier in BCN

• Drift
 – Drift clock corresponding to RL expires every T units of time
 – When clock expires
 • Increase transmission rate from R to R.X, where X > 1
 • Restart clock
 – Any time an Fb<0 signal is received by RL, restart the drift clock
 • Note: this ensures drift is used only minimally and when network is uncongested
 • Also note it makes drift inversely proportional to a flow’s sending rate, since larger sources get more Fb<0 signals relative to small sources
Simulation: 2-point Architecture

- Infinitely long-lived flows: simultaneous starts
 - Single link, 6 flows on at 10 Gbps at time 0
 - Link delay (RTT): 40 microseconds
 - Gd = 1/128
 - w = 2
 - Ri = 12 Mbps
 - Drift: X = 1.005, T = 500 musecs
 - Sampling function = linearly increases with IFbI from 1--10%
Queue Length: No Drift

Queue Length, Number of Flows: N = 6

Simulation Time

Queue Length
Aggregate Rate: No Drift

Sum Rate, Number of Flows: $N = 5$

of drops: 240
Instantaneous Rates, No Drift
Queue Length: With Drift

Queue Length, Number of Flows: N = 6

Simulation Time

Queue Length
Aggregate Rate: With Drift

Sum Rate, Number of Flows: $N = 6$

of drops: 240
Instantaneous Rates: With Drift
Fairness: No Drift
2 flows: 1 starting at 1Gbps, 1 starting at 9 Gbps
Fairness: With Drift
2 flows: 1 starting at 1Gbps, 1 starting at 9 Gbps
Dynamic flows: FCT and Drops

- **Workload**
 - IPC traffic: Mean = 5 KB (uniform distribution)
 - Data traffic: Pareto, shape 2, mean 100 KB
 - Parameters (Gd, w, etc): same as before
 - Reflection probability = 0, 2.5 and 5%

- **BCN parameters**
 - Gd = 1/128
 - Gi = 2.0
 - w = 2.0
 - Sampling Probability = 1% and 3%
Completion Time of Short Flows

C=10Gbps, Pareto Traffic, mean = 100KB, Delay = 40 mus
Completion Time of Long Flows

C=10Gbps, Pareto traffic, mean = 100KB, Delay = 40 mus

- QCN-Ref-0.00
- QCN-Ref-0.01
- QCN-Ref-0.025
- QCN-Ref-0.05
- BCN-Sampling-0.01
- BCN-Sampling-0.03

Offered Load

10000
1000
100

0.45 0.5 0.55 0.6 0.65 0.7 0.75
Packet Drops

C=10Gbps, Pareto traffic, mean = 100KB, Delay = 40 mus

Loss Probability

Offered Load

QCN-Ref-0.00
QCN-Ref-0.01
QCN-Ref-0.025
QCN-Ref-0.05
BCN-Sampling-0.01
BCN-Sampling-0.03
Conclusion

- Drift needed for failsafe behavior
 - Very mild amount sufficient
 - Improves fairness