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Abstract— We developed adversarial input generators to
attack a recurrent neural network (RNN) used to classify the
sentiment of IMDb movie reviews as being positive or negative.
To this end, we developed LSTM network as well as two baseline
models - SVM and Naı̈ve Bayes and evaluated their accuracy
under the attack by two black-box adversaries and a white
box adversary. Our results showed that though LSTM is more
robust than other two models, it’s still very susceptible to
white-box attack with generated adversary still preserving the
sentiment of input review, making us question whether LSTMs
really learn the sentiment in this task.

I. INTRODUCTION

Today, RNNs are used in many applications, ranging from
natural language processing to financial trading decision
making. In particular, LSTMs [1] are highly effective for
classifying sequential or time-series data. However, like
convolutional neural nets, RNNs are vulnerable to adversarial
examples. For instance, a cleverly-placed word may change
the predicted sentiment of a movie review from positive to
negative. Similar adversarial techniques can be applied to
more safety-critical applications.

Our work assesses the vulnerability of classification-
oriented (as opposed to sequence-oriented) LSTMs to three
distinct types of adversarial attacks. Two of these attacks rely
upon Naı̈ve Bayes-based probabilities to generate adversarial
examples, and the third relies upon a new gradient-based
method, the Jacobian Saliency Map Approach (JSMA) [15].
For comparison, we also implemented two baseline classi-
fiers — multinomial Naı̈ve Bayes and a linear SVM — and
measured their vulnerability to the adversarial attacks as well.

All three models are binary classifiers and make use of
the same dataset, the Stanford Large Movie Review Database
[2]. The goal of each model is to classify examples in the test
set as accurately as possible. The goal of each adversary is to
perturb the testing examples such that the model misclassifies
the perturbed example as belonging to the opposite category.

II. RELATED WORK

Many papers about adversarial machine learning have fo-
cused on convolutional neural nets (CNNs) as benchmarked
in [4], but relatively few have considered RNNs/LSTMs.
Though some similarities exist between attacks on CNNs
and RNNs, RNNs’ discrete and sequential nature poses
added challenges in generating and interpreting adversarial
examples. To generate adversarial examples, the main idea
is to find close inputs that have a high value of the loss
function. One common way to find such inputs in image
classifiers is to change each pixel, based on the gradient of
the loss function near the input. This basically considers a

linear approximation of the loss function around the inputs.
Due to the discrete nature of RNNs, such an approach doesn’t
directly work. However, we can use the same intuition to
find discrete modifications to the inputs that roughly align
with the gradient of the loss function. [15] showed that the
Jacobian Saliency Map Approach, though initially developed
for feed-forward networks, can be generalized to RNNs.
[16] extended this approach to generate adversarial examples
using Generative Adversarial Networks (GANs).

III. DATASET AND FEATURES

All models and adversaries in this project operated on the
same dataset, the Stanford Large Movie Review Dataset [2].
This dataset consists of 50,000 reviews of movies gathered
from the IMDb movie review database. This data is split as
shown in Figure 1 and used to train, develop, and test the
models we use in this paper.

Train Dev Test
Positive Reviews 12,500 6,250 6,250
Negative Reviews 12,500 6,250 6,250

Fig. 1. Dataset Split

The dataset is provided with 25,000 total training exam-
ples, and 25,000 testing examples. To perform our hyperpa-
rameter search, we further split the test set in half, using the
first 12,500 examples of it for our dev set, and last 12,500
examples as our test set.

Before processing, punctuation marks such as commas,
periods, and question/exclamation marks were filtered out
using regular expressions [3]. However, stop words were
left in place, and no stemming algorithm was used. The
rationale for this was that our Word2Vec dictionary was large
enough (400,000 words) to contain nearly all the various
suffixes of words we encountered. Any word which could
not be identified was mapped to the “unknown word” vector
provided with the embeddings model.

The Naı̈ve Bayes and SVM models used bag-of-words as
features, with inputs encoded as a one-hot vector the size
of the dictionary (400,000 words). The LSTM model used a
pretrained Word2Vec word embeddings model from [3]. The
word vectors were 50-dimensional.

For compatibility with the NumPy and TensorFlow input
models (which require fixed-dimension input matrices), we
truncate all movie reviews at 250 words. This truncation is
typically not a problem, though, because the average movie
review length (in the training set) is 233 words.



IV. MODELS

We constructed an LSTM RNN [3] to test our adversaries
on. In addition to the LSTM, we built and trained a Support
Vector Machine (SVM) and a Naı̈ve Bayes model to bench-
mark LSTM in both clean test and adversarial conditions.
The trained weights of the Naı̈ve Bayes model were also used
in the construction of two of the adversarial input generators
we developed. The Naı̈ve Bayes and SVM models were
implemented using Python, Python3, and NumPy [8]. The
LSTM model was implemented in TensorFlow [9]. All our
results and findings are summarized in Section VI.

A. LSTM

Long short-term memories [1], or LSTMs, are a specific
type of recurrent neural network well-suited for classification
and prediction tasks on sequential data. LSTMs maintain a
richer internal state representation than simple RNNs. For our
project, we focused on a single-layer LSTM with a varying
number of hidden units.

The LSTM layer has two inputs, which are the current
element in the sequence, xt, and its own internal state
from the previous timestep, statet−1. It then produces two
outputs: the prediction outt and its new internal state statet.

Fig. 2. An LSTM layer [10]. The symbol � denotes element-wise
multiplication.

The internals of the LSTM layer are defined by four
components:

Input activation:
at = tanh(Wa · xt + Ua · outt−1 + ba)

Input gate:
it = σ(Wi · xt + Ui · outt−1 + bi)

Forget gate:
ft = σ(Wf · xt + Uf · outt−1 + bf )

Output gate:
ot = σ(Wo · xt + Uo · outt−1 + bo)

which give us

Internal state:
statet = at � it + ft � statet−1

Output:
outt = tanh(statet)� ot

The weights W and biases b for each gate are then trained
via backpropagation [12]. Us are transition matrices, and
define how hidden states should evolve across timesteps,
similar to a Markov chain.

To classify an entire sentence, the LSTM layer is fed the
words as input tokens across different timesteps. Then, the
overall sentiment prediction is taken as the output of the
LSTM upon seeing the final input token (word). Finally,
a pooling layer provides additional weighting and biasing
of the final output. This architecture of the LSTM cell
“unrolled” across timesteps is given in Figure 3.

Fig. 3. The high-level LSTM architecture with Word2Vec.

The main focus of our work was to generate adversaries
for RNNs; however, we did perform a hyperparameter search
to optimize the LSTM being attacked. See Section VI for
more information.

B. SVM

The SVM developed in this paper was based on [13] and
implemented as Stochastic Gradient Descent on hinge-loss
function [14] using scikit-learn library [17]. Input features
used in SVM model were generated by a bag-of-words model
and were in |D| dimensional space, where D is dictionary of
words. A hyperparameter search was performed on learning
rate and appropriate feature kernels (linear/polynomial) by
first training the model on trainng set and then chosing the
best model on dev set. The best model ended up being a
linear SVM model trained with learning rate of 0.0001. It
performed better compared to other two models in the non-
adversarial setting.

We also tried some other input features for the SVM model
to understand how input encoding affects SVM performance.
We tried two new input encodings: mean Word2Vec for
each review (50 dimensional vector) as well concatenating
Word2Vec reviews back to back (50 × 250 dimensional
vector). But both these feature sets performed significantly
worse than bag-of-words model. Our understanding for this
was that the first encoding reduced the information present
in the review significantly as we were condensing the whole
review to a single word. On the other hand, the second
encoding resulted in a very high dimensional feature space
over which SVM was no more efficient.



C. NAÏVE BAYES

The Naı̈ve Bayes model used in this paper was developed
from the derivation of multinomial Naı̈ve Bayes with Laplace
smoothing given in [11]. During training, every token (typ-
ically English words) of each of the training reviews is
considered to be a training example x(i). We say there are
m such tokens contained in the set of training reviews.

For each index j in the dictionary of words D, we
compute the following during training:

φj|y=1 =

1+
m∑

i=1

1{x(i)=D[j]∧ y(i)=1}

|D|+
m∑

i=1

1{y(i)=1}

φj|y=0 =

1+

m∑
i=1

1{x(i)=D[j]∧ y(i)=0}

|D|+
m∑

i=1

1{y(i)=0}

Where y(i) ∈ {0, 1} is the label of the review that contains
x(i), and y = 0 denotes a positive review, and y = 1 denotes
a negative review.

The training procedure is carried out by observing all the
training examples and maintaining two arrays (one array
Aneg for negative reviews and one array Apos for positive
reviews) of size |D|. These arrays store, at each index, the
sum of 1 and the number of times each token is observed
in positive (Apos) or negative (Aneg) examples. After all
training examples have been observed, φy=0 is found by
dividing each element of Apos by the sum of |D| and the
number of positive samples observed. Similarly, φy=1 is
found by dividing each element of Aneg by the sum of |D|
and the number of negative samples observed. The value
φj|y=0 is then simply the jth index of φy=0 (and likewise
for y = 1).

Inference on a movie review R containing n words is
conducted by first finding p0 and p1 where

p0 =
n∏
i=1

φj|y=0

p1 =
n∏
i=1

φj|y=1

and j is chosen for each term such that R[i] = D[j]. The
model then classifies R as being positive if p0 ≥ p1 or
negative if p0 < p1.

V. ATTACKS

We constructed three attacks as part of our work on this
paper: Tack-On Adversarial Word, N Strongest Words Swap,
and the Jacobian Saliency Map Approach (JSMA). The first
two attacks are black-box approaches based on the weights
learned by the Naı̈ve Bayes model. The JSMA attack is a
white-box approach developed in [15].

A. TACK-ON ADVERSARIAL WORD

Constructing this attack first required us to find the top
five tokens with the strongest positive sway and the top five
tokens with the strongest negative sway. We found these

words by using the weights learned by our Naı̈ve Bayes
model; the set of tokens Tpos with the strongest positive sway
is the set of tokens that maximize the ratio φj|y=0

φj|y=1
, and the set

of tokens Tneg with the strongest negative sway is the set of
tokens that maximize the ratio φj|y=1

φj|y=0
. Any ties that occurred

were broken by choosing tokens in lexicographic order. The
resulting five positive tokens were “edie,” “antwone,” “din,”
“gunga,” and “yokai.” and the resulting five negative tokens
were “boll,” “410,” “uwe, “tashan,” and “hobgoblins.”

Once the most positive and most negative words were
identified, we then constructed an adversarial dataset by
modifying copies of the examples in our test set. The
modifications we made were simple: replace the first token
of all positive-labeled reviews with a token chosen randomly
from the set of tokens with the strongest negative sway (and
vice-versa for negative-labeled reviews).

B. N STRONGEST WORDS SWAP

The second adversary we developed was intended to be a
direct improvement on Tack-On Adversial Word. As before,
we insert adversarial tokens from Tpos and Tneg into reviews
in an attempt to induce sentiment misclassification. Where
Tack-On Adversarial Word replaced the first token in the
review with an adversarial token, N Strongest Words Swap
replaces N number of tokens in the review that have the
strongest sway toward the correct classification. For this
project, we constructed N Strongest Words Swap adversaries
for N = 1, 3, and 5.

C. JACOBIAN SALIENCY MAP APPROACH (JSMA)

Fig. 4. Algorithm Illustration. For an example input sentence ~x, suppose
~x[2] was selected. Then, blue arrow points at the direction of maximum
increase in linearized approximation of loss function. With high probability
none of the words will lie in this direction. As a heuristic, we choose the
word which has highest projection along this direction and treat it as new
adversarial word. This procedure is applied iteratively.

This section summarizes [15] and how we implemented
the JSMA approach for generating adversaries in our LSTM
example. In Jacobian Saliency Map approach, the idea is to
explicit find out derivative of outputs wrt input and perturb
the input in desired direction so as to selectively make
the model mis-classify to an appropriate output class. More
specifically, a Jacobian matrix J is constructed such that

Jf [i, j] =
∂fj
∂xi



where xi is the ith component of the input and fj
the jth component of the output. Then, perturbing xi in
−sign(Jf [i, j]) makes the cost function increase the most
in order to decrease the outcome probability of fj .

This approach is extended to RNNs (or LSTMs) by com-
putational graph unfolding, i.e., instead of treating the LSTM
as a sequential unit, we can construct a graph by explicitly
keeping track of states at each time and then generate a
Jacobian matrix like construction by taking derivatives of
output wrt input at each time step. This is a tractable
operation if number of unfoldings are finite as derivatives
are straightforward to take in a recursive manner. This is like
backprop step when training a Neural Net. More concretely,

Jf (~x)[i, j] =
∂fj
∂~xi

where Jacobian is now a vector wrt to each time sequence
input to the network, and hence we know in which direction
we need to perturb each word when ~x is a review sentence.
Thus, we have overcome the recursive nature problem of
RNNs.

For overcoming the discrete nature of ~x, a heuristic is
used to find the word vector whose projection along this
perturbation is maximum. The whole process of selecting
a word and finding an adversary is done iteratively until an
adversarial example is found or some upper limit of M words
are perturbed. A large value of M results in larger running
time and a smaller value of M results in fewer success in
adversarial example generation. Figure 4 gives the overview
of the algorithm and Figure 5 shows the pseudocode for
implemented algorithm.

Fig. 5. The JSMA algorithm. Inputs are f: Prediction Model, ~x: Input
Sentence, D: Dictionary. Output is ~x∗: Adversarial Sentence

Specifically, in our implementation we used TensorFlow to
generate gradient graph and we took gradient at the pooling
layer instead of softmax layer. This helps to overcome
gradient saturation that could happen at the softmax layer.
Since LSTMs have finite memory, most-recent words before
prediction were chosen to be perturbed. To compute step 6 in
the algorithm, an efficient vectorization and matrix product
were used to find the word in the dictionary with maximum
projection on perturbation direction. Due to lack of com-
putation power we restricted our experiment to changing a
maximum of M = 35 words out of 250 word review limit
only running this attack on a subset of the dataset.

VI. RESULTS & DISCUSSION

A. MODELS

Before attacking the LSTM with the three adversaries,
we performed a basic hyperparameter search to optimize
clean accuracy. One key hyperparameter for LSTMs is the
number of hidden units, which corresponds to the size of the
weight matrices for the gates, and thus the amount of internal
state maintained. We compared 32-, 64-, and 128-hidden-unit
LSTMs, and found that the 64-unit LSTM performed best on
the dev. set (see Figure 6). Thus, we chose it for our further
experiments.

Our hypothesis is that the 32-unit LSTM wasn’t expressive
enough to model the complexity of the reviews, and the
128-unit LSTM overfit the training set. This hypothesis is
supported by the fact that while training set accuracy for the
32-unit LSTM took the full 100K iterations to converge, the
64-unit LSTM took 60-70K, and 128-unit took 30-40K. Each
model took around 8 hours to train, with higher-unit models
taking slightly longer.

Fig. 6. Sweeping num. LSTM hidden units.

To further address overfitting, our LSTM training archi-
tecture included dropout on the hidden units. A dropout
rate of 50% proved inferior to a rate of 25%, with 81.77%
and 82.21% dev. set accuracies, respectively (for 64 hidden
units). The Adam optimizer [5] and a training batch size of
24 examples were used for all models.

To further explore the training set, we performed principal
component analysis on it. As seen below in Figure 7, even
just two principal components demonstrate class separation
[17]. This may suggest why our linear SVM and Naı̈ve Bayes
models were able to perform as well as they did.

Fig. 7. Principal Component Analysis of the IMDb dataset.



B. ATTACKS

Fig. 8. Accuracy of models when subject to each set of inputs.

When choosing which adversaries to construct, we consid-
ered two approaches : black-box and white-box. We antic-
ipated that a black-box approach, requiring no knowledge
of model parameters (Tack-on adversary and N strongest
word swap), would be quicker and simpler to build but have
reduced impact on the model’s performance. In contrast,
white-box approaches (JSMA) should take more time to
construct but have higher impact, given their specialized
nature. What we hypothesized was correct, but the extent to
which the black-box adversaries affected the LSTM exceeded
our expectations.

All three adversaries had negative impact on LSTM per-
formance. Tack-On Adversarial Word and 1 Strongest Word
Swap had almost negligible impact on LSTM performance,
but 3 Strongest Words Swap, 5 Strongest Words Swap, and
JSMA were able to bring test accuracy down from 82.24%
to 68.17%, 59.36%, and 39.86%, respectively. As seen in
Figure 8, LSTMs are more robust to adversaries than other
models and accuracy of all models fall monotonically with
increasing adversary strength.

Figure 9 shows that JSMA was able to target and sway
both positive and negative sentiments proportionally. Even
more interesting is Figure 10 which shows that in many
successful adversarial examples we only need to change a
few words!

Another point that we found interesting was that the adver-
sarial words utilized by all three models seemed to have little
to no effect on our interpretation of positive and negative
sentiment. We were anticipating words like ”excellent” and
”horrible” to be the tokens that were most indicative of
sentiment. This was not the case. We saw our adversarial
input generators using tokens like “brute,” “sonogram,” etc.
to perturb reviews toward misclassification. This leads us to
question what exactly the models are learning and using to
classify sentiment.

y=Positive y=Negative
True Positive 54 65
True Negative 110 62

Fig. 9. Confusion Matrix after JSMA attack on LSTM: JSMA is unselective
towards positive and negative sentiments and effects both of them similarly.

Fig. 10. Number of words replaced by JSMA method in the cases where
adversarial examples were successfully created. A lot of examples exist
where only changing a few words resulted in adversary generation.

VII. FUTURE WORK
One limitation of our work is the adversarial sentences

generated are often unintelligible to a human. For example,
the JSMA adversary perturbed the sentence This excellent
movie made me cry! to This excellent tsunga telsim grrr
cry. The intent of our work was to show that adversarial
examples can be generated in a mechanical way, and indeed,
even nonsensical examples might be useful in fooling, for
example, spam detection models for forum posts. However,
an interesting direction for future work would be to introduce
a proper statistical NLP parser such as [6] into the loop.
After the adversary perturbs its example, the parser could
check it for grammatical correctness. A variety of schemes
could be built on top of the feedback provided by the parser;
most obvious amongst these is a reinforcement learning setup
which uses parser hints to inform the adversarial generation.
GANs [7] are another interesting candidate for adversaries.

Beyond this, LSTM with mean-pool layer or a multilayer
LSTM architecture might provide better test set accuracy,
and perhaps better resilience to adversaries. We would like
to train these and check this hypothesis. We would also like
to do optimized memory allocation in TensorFlow code for
JSMA method and run it on GPUs. Finally, throughout our
work, all adversarial examples were evaluated only in the test
(inference) phase. In the future, we would like to experiment
to see how adversarial training could be used to develop more
robust models by analyzing the weaknesses of the models.

VIII. CONCLUSION
In summary, we developed an LSTM binary sentiment

classifier, as well as Naı̈ve Bayes and SVM baselines.
We then evaluated these models’ susceptibilities to three
distinct types of adversarial attacks: Tack-On Adversarial
Word, N Strongest Words Swap, and JSMA. We found that
although our single-hidden-layer LSTM loses slightly in test
set accuracy to the SVM, it is much more resilient to the
adversarial attacks, and outperforms both baselines in the
presence of any given adversary.

As we anticipated, the white-box JSMA method produced
the most successful adversarial examples. However, even the
simple N Strongest Word Swap method outperformed our
expectations by fooling LSTMs easily.

IX. ACKNOWLEDGEMENTS
We would like to acknowledge many helpful discussions

with Aditi Raghunathan, Rahul Trivedi and Jeremy Irvin.



X. CONTRIBUTIONS

We each led development of one machine learning model
on the sentiment analysis dataset: Andy developed the LSTM
model, Pulkit developed the SVM, and Mark developed the
Naı̈ve Bayes model. All members worked together to develop
the tack-on-word adversary. Andy refined the LSTM with hy-
perparameter search, Mark developed the N-strongest-words-
swap adversary, and Pulkit developed the JSMA adversary.
All members contributed equally to writing the poster and
reports.
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