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Abstract

We consider diversity for media streaming in a rate-distortion optimization

framework. A sender-driven transmission scenario is investigated, where diver-

sity is achieved by using multiple transmission paths over the network. The

proposed framework enables the sender to decide at every instant which pack-

ets, if any, to transmit and over which transmission paths in order to meet a

rate constraint while minimizing the end-to-end distortion. Experimental re-

sults demonstrate the benefit of exploiting packet diversity in rate-distortion

optimized sender-driven streaming of packetized media.

1 Introduction

Diversity techniques have been studied for many years in the context of wireless com-
munication. They were introduced in order to exploit the large variability in terms
of channel quality when multiple channels are considered for simultaneous transmis-
sion. A number of studies have shown that there is an analogous situation in Internet
communication: in 30-80% of the cases there is an alternate path that performs signif-
icantly better than the default path between two hosts [1]. Performance is measured
in terms of round-trip-time, loss rate and bandwidth. These studies have motivated
the introduction of packet path diversity for video streaming in [2], where the author
proposes to send complementary descriptions of a multiple description (MD) coder
through two different Internet paths. The presented experimental results show the
potential benefits of the proposed system.

Since then a number of studies have appeared that exploit the concept of packet
path diversity in media communication. In [3] the authors employ path diversity
in the context of video communication using unbalanced MD coding to accomodate
the fact that different paths might have different bandwidth constraints. The un-
balanced descriptions are created by adjusting the frame rate of a description sent
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over a particular path. In [4] the authors study image and video transmission in a
multihop mobile radio network. It is shown that combining MD coding and mul-
tiple path transport in such a setting provides higher bandwidth and robustness to
end-to-end connections. In [5] a framework for video transmission over the Internet
is presented, based on path diversity and rate-distortion optimized reference picture
selection. Here, based on feedback packet dependency is adapted to channel condi-
tions in order to minimize the distortion at the receiving end, while taking advantage
of path diversity. In [6] the performance of path diversity and multiple description
coding in Content Delivery Networks (CDN) is studied. 20-40% reduction in distor-
tion is reported over conventional CDNs for the network conditions and topologies
under consideration. Finally, another related work is [7] where the authors consider
rate-distortion optimized streaming over networks with DiffServ support.

In this paper, we present a general framework for rate-distortion optimized sender-
driven streaming of packetized media over multiple network paths. Media packets
are typically characterized by different deadlines, importances and interdependencies.
Using this information and the proposed framework, the sender is able to transmit its
media packets over multiple paths based on the feedback it receives in a rate-distortion
optimized way, that is, minimizing the expected end-to-end distortion subject to a
constraint on the expected overall transmission rate over the paths. Such a rate-
distortion optimized transmission algorithm, or transmission policy, results in unequal
error protection provided to different portions of the media stream. The core step
of the optimization framework involves trading off the expected redundancy (the
cost used to communicate the packet) for the probability that a single media packet
will be communicated in error. The present work derives from the work in [8], which
develops a framework for rate-distortion optimized streaming of packetized media over
the Internet. By incorporating models for packet path diversity, error concealment
and burst loss channels, we have substantially generalized the framework in [8].

2 Packet Loss Probabilities

In a streaming media system, the encoded data are packetized into data units and
are stored in a file on a media server. All of the data units in the presentation have
interdependencies, which can be expressed by a directed acyclic graph. Associated
with each data unit l is a size Bl, a decoding time tDTS,l, and an importance ∆dl.
The size Bl is the size of the data unit in bytes. tDTS,l is the delivery deadline by
which data unit l must arrive at the client, or be too late to be usefully decoded.
Packets containing data units that arrive after the data units’ delivery deadlines are
discarded. The importance ∆dl is the amount by which the distortion at the client
will decrease if the data unit arrives on time at the client and is decoded.

We model a network path between a sender and a receiver, typically a media server
and a client, as a burst loss channel using a K-state discrete-time Markov model.
The forward and the backward channel make state transitions independently of each
other every T seconds, where the transitions are described by probability matrices
P(F ) and P(B), respectively. In each state the forward and the backward channel are



characterized as an independent time-invariant packet erasure channel with random
delay. Hence, they are completely specified with the probability of packet loss εk

F/B

and the probability density of the transmission delay pk
F/B, for k = 1, . . . , K. This

means that if the media server sends a packet on the forward channel at time t, given
that the forward channel is in state k at t, then the packet is lost with probability
εk
F . However, if the packet is not lost, then it arrives at the client at time t′, where

the forward trip time FTT k = t′ − t is randomly drawn according to the probability
density pk

F . Therefore, we let P{FTT k > τ} = εk
F + (1 − εk

F )
∫ ∞

τ
pk

F (t)dt denote the
probability that a packet transmitted by the server at time t, given that the forward
channel is in state k at t, does not arrive at the client application by time t + τ ,
whether it is lost in the network or simply delayed by more than τ . Then similarly,
P{BTT k > τ} = εk

B + (1 − εk
B)

∫ ∞

τ
pk

B(t)dt denotes the probability that a packet
transmitted by the client at time t, given that the backward channel is in state k at
t, does not arrive at the server by time t + τ , whether it is lost in the network or
simply delayed by more than τ . Finally, we are interested in P{RTT kj > τ}, which
is the probability that the server does not receive an acknowledgement by time t + τ
for a packet transmitted at time t, given that the forward and the backward channel
are respectively in states k and j, at t.

To derive P{RTT kj > τ} assume first that the transmission on the forward chan-
nel occured immediately after the channel made a state transition. If FTT k ≤ T ,
the packet is received by the client before the backward channel makes the next state
transition. Then P{RTT kj > τ |FTT k ≤ T} = P{FTT k + BTT j > τ |FTT k ≤ T}
as the client sends an acknowledgement while the backward channel is still in the
current state j. The probability of this event is P{FTT k ≤ T}. However, if
lT < FTT k ≤ (l + 1)T , for l ≥ 1, then the state of the backward channel makes
l transitions before the packet actually arrives at the client. The probability of this
event is P{lT < FTT k ≤ (l + 1)T}. Here the state on the backward channel when
the acknowledgement is sent can be any of the K possible values. Hence we compute
the desired quantity as the expected value over all of them, i.e., P{RTT kj > τ |lT <

FTT k ≤ (l + 1)T} =
∑K

p=1 P
(l)
jp(B)

P{FTT k + BTT p > τ |lT < FTT k ≤ (l + 1)T}.

Note that P
(l)
jp(B)

is the probability of making a transition from state j to state p
in l transition intervals. These probabilities are obtained using matrix power, i.e.,
P

(l)
(B) = P l

(B)
. Finally, by averaging over all possible outcomes for FTT k we write

P{RTT kj > τ} =

∞
∑

l=0

K
∑

p=1

P
(l)
jp(B)

P{lT < FTT k ≤ (l + 1)T, FTT k + BTT p > τ}

=
M−1
∑

l=0

K
∑

p=1

P
(l)
jp(B)

P{lT < FTT k ≤ (l + 1)T, FTT k + BTT p > τ}

+

K
∑

p=1

P
(M)
jp(B)

P{MT < FTT k ≤ τ, FTT k + BTT p > τ} + P{FTT k > τ}

where the first equality follows from Bayes’ rule, while the second one holds since
P{lT < FTT k ≤ (l + 1)T, FTT k + BTT p > τ} = P{lT < FTT k ≤ (l + 1)T}, for



lT ≥ τ . Finally, M = bτ/T c and P
(0)
(B) = I, the identity matrix.

3 Rate-distortion optimized policy selection

Suppose there are L data units in the media presentation. Let πl ∈ Π be the trans-
mission policy for data unit l ∈ {1, . . . , L} and let π = (π1, . . . , πL) be the vector of
transmission policies for all L data units. Π is a family of policies defined precisely
in the next section.

Any given policy vector π induces an expected distortion D(π) and an expected
transmission rate R(π) for the media presentation. We seek the policy vector π that
minimizes D(π) subject to a constraint on R(π). This can be achieved by minimizing
the Lagrangian D(π) + λR(π) for some Lagrange multiplier λ > 0, thus achieving a
point on the lower convex hull of the set of all achievable distortion-rate pairs.

We now compute expressions for R(π) and D(π). The expected transmission
rate R(π) is the sum of the expected number of bytes transmitted for each data unit
l ∈ {1, . . . , L}, R(π) =

∑

l Blρ(πl), where Bl is the number of bytes in data unit l
and ρ(πl) is the expected number of transmitted bytes per source byte (under policy
πl), called the expected cost. The expected distortion D(π) can be expressed in terms
of the probability ε(πl) that data unit l does not arrive at the receiver on time (under
policy πl), called the expected error. Let Il be the indicator random variable that
is 1 if data unit l arrives at the receiver on time, and is 0 otherwise. Furthermore,
let N

(l)
c = {1, . . . , l} be the set of data units that the receiver considers for error

concealment in case data unit l is not decodable by the receiver on time. Then let
∆d

(l1)
l , for l1 ∈ N

(l)
c , be the reduction in distortion if data unit l is not decodable and

is concealed with a previous data unit l1 that is received and decoded on time. Note
that the decoder always prefers the most recent decodable unit from the concealment
set, i.e., for l1, l2 ∈ N

(l)
c : l2 > l1 and both l1, l2 decodable on time the decoder

always choses l2 to conceal the missing data unit l. The product
∏

j∈A(l1) Ij is 1 if

data unit l1 is decodable by the receiver on time, and is 0 otherwise, where A(l1) is
the set of ancestors of l1, including l1. Now given that l1 is decodable, the product
∏

l2∈C(l,l1)



1 −
∏

l3∈A(l2)\A(l1) Il3



 is 1 if none of the data units j ∈ N
(l)
C : j > l1 are

decodable on time, and is 0 otherwise. C(l, l1) is the set of data units j ∈ N
(l)
c : j > l1

that are not mutual descendants, i.e., for j, k ∈ C(l, l1) : j /∈ D(k), k /∈ D(j), where
D(j) is the set of descendants of data unit j. “\” denotes the operator “set difference”.

We use these results first to take an expectation over all possible cases of conceal-
ment for data unit l and then to sum over all data units in order to obtain

D(π) = D0 −
∑

l

∑

l1∈N
(l)
c

∆d
(l1)
l

∏

j∈A(l1)

(1 − ε(πj))
∏

l2∈C(l,l1)















1 −
∏

l3∈A(l2)\A(l1)

(1 − ε(πl3))















where D0 is the expected reconstruction error for the presentation if no data units
are received and ∆d

(l1)
l is the reduction in reconstruction error if data unit l is not

decoded on time, but is concealed with data unit l1. Note that ∆d
(l)
l = ∆dl.



To obtain D(π) we have used an assumption that the packet losses affecting
different data units are independent, in order to factor the expectation in D(π).
However, we still account for the dependencies between different packets associated
with same data unit, as shown in Section 4. Using the independence assumption
between data unit allows us to obtain a mathematically tractable solution for the op-
timal transmission policies, as shown below. The obtained solution is suboptimum for
burst-loss channels, and we might obtain a better solution by taking the dependence
into account. However, without the independence assumption we cannot factor the
expectations over interdependent data units in D(π) as products of the individual
expectations. This can render the problem of computing the optimal transmission
policies too complex to solve even for small sets of interdependent data units, as the
solution space is exponential in the number of data units.

Finding a policy vector π that minimizes the expected Lagrangian J(π) = D(π)+
λR(π), for λ > 0, is difficult since the terms involving the individual policies πl in
J(π) are not independent. Therefore, we employ an iterative descent algorithm, called
Iterative Sensitivity Adjustment (ISA), in which we minimize the objective function
J(π1, . . . , πL) one variable at a time while keeping the other variables constant, until
convergence [8]. It can be shown that the optimal individual policies at iteration n,
for n = 1, 2, . . ., are given by

π
(n)
l = arg min

πl

S
(n)
l ε(πl) + λBlρ(πl), (1)

where S
(n)
l =

∑

l1 : l∈N
(l1)
c

S
+(n)
l,l1

− S
−(n)
l,l1

= S
+(n)
l − S

−(n)
l can be regarded as the sen-

sitivity to losing data unit l, i.e., the amount by which the expected distortion will
increase if data unit l cannot be recovered at the client, given the current transmis-
sion policies for the other data units. Note that differently from [8], the sensitivity

here consists of two nonnegative terms S
+(n)
l and S

−(n)
l . The first term increases the

sensitivity associated with data unit l in case l is in the ancestor set of data unit l2
used for concealment of a data unit l1. On the other hand, the second term reduces
the sensitivity associated with l in case l is not in the ancestor set of l2. This result is
intuitive and allows us to better model the situations where data unit l is irrelevant
for concealment of another data unit. Due to space considerations, we do not provide
here the explicit expressions for the two sensitivity terms.

The minimization (1) is now simple, since each data unit l can be considered in
isolation. Indeed the optimal transmission policy πl ∈ Π for data unit l minimizes the
“per data unit” Lagrangian ε(πl) + λ′ρ(πl), where λ′ = λBl/S

(n)
l . Thus to minimize

(1) for any l and λ′, it suffices to know the lower convex hull ε(ρ) = minπ∈Π{ε(π) :
ρ(π) ≤ ρ} of the function, which we call the expected error-cost function. In the next
section we show how to compute the expected error-cost function for the family of
policies corresponding to sender-driven transmission with packet path diversity.

4 Computing the expected error-cost function

Assume that there are M network paths over which the server can simultaneously send
a data unit to the client. Furthermore assume that there are N discrete transmission



opportunities t0, t1, . . . , tN−1 prior to the data unit’s delivery deadline tDTS at which
the server is allowed to transmit a packet for the data unit on the forward channel
of any m ≤ M paths. The server need not transmit a packet at every transmission
opportunity. The server does not transmit any further packets after an ACK is
received on the backward channel of any of the paths.

At each transmission opportunity ti, i = 0, 1, . . . , N −1, the server takes an action
ai = [ai1, . . . , aiM ], where aim = 1 means that a packet is sent on the forward channel
of path m and aim = 0 means that no packet is sent on the forward channel of path m.
Then, at the next transmission opportunity ti+1, the server makes an observation oi,
where oi is the set of acknowledgements received by the server in the interval (ti, ti+1].
For example, oi = {ACKm1

j1
, ACKm2

j2
} means that during the interval (ti, ti+1], ACKs

arrived on the backward channels for the packets sent at time tj1 and tj2 on the forward
channels of paths m1 and m2, respectively. The history, or the sequence of action-
observation pairs (a0, o0)◦(a1, o1)◦· · ·◦(ai, oi) leading up to time ti+1, determines the
state qi+1 at time ti+1, as illustrated in Figure 1. If the final observation oi includes
an ACK, then qi+1 is a final state. In addition, any state at time tN = tDTS is a final
state. Final states in Figure 1 are indicated by double circles.
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Figure 1: Markov decision tree for a data unit with packet path diversity.

The action ai taken at a non-final state qi determines the transition probabilities
P (qi+1|qi, ai) to the next state qi+1. Formally, a policy π is a mapping q 7→ a from
non-final states to actions. Thus any policy π induces a Markov chain with transition
probabilities Pπ(qi+1|qi) ≡ P (qi+1|qi, π(qi)), and consequently also induces a probabil-
ity distribution on final states. Let qF be a final state with history (a0, o0) ◦ (a1, o1) ◦
· · ·◦ (aF−1, oF−1), and let qi+1 = qi ◦ (ai, oi), i = 1, . . . , F −1, be the sequence of states
leading up to qF . Then qF has probability Pπ(qF ) =

∏F−1
i=0 Pπ(qi+1|qi), transmission

cost ρπ(qF ) =
∑F−1

i=0

∑M
m=1 aim, and error επ(qF ) = 0 if oF−1 contains an ACK and

otherwise επ(qF ) is equal to the probability that none of the transmitted packets ar-
rives at the client on time, given qF . Hence, we can express the expected cost and error
for the Markov chain induced by policy π: ρ(π) = Eπρπ(qF ) =

∑

qF
Pπ(qF )ρπ(qF ),

ε(π) = Eπεπ(qF ) =
∑

qF
Pπ(qF )επ(qF ).

We wish to find the policy π∗ that minimizes ε(π) + λ′ρ(π), as discussed in the
previous section. We do that by enumerating all possible policies π, plotting the error-



cost performances {(ρ(π), ε(π))} in the error-cost plane, and producing an operational
error-cost function for our scenario. At every transmission opportunity ti we find π∗,
where {(ρ(π), ε(π)) : π ∈ Π} is calculated conditioned on qi and all the policies
under consideration are consistent with the history (a0, o0) ◦ (a1, o1) ◦ · · · ◦ (ai−1, oi−1)
leading up to state qi at time ti. Then, ai is set to the first action π∗(qi) of π∗, and
the procedure is repeated at each successive transmission opportunity until a final
state is reached.

In the following we provide expressions for ε(π) and ρ(π). Let ti be the current
transmission opportunity and let CF

jm, CB

jm ∈ {1, . . . , K} be respectively the states
on the forward and the backward channel of path m = 1, . . . , M at transmission
opportunity tj : j ≤ i. We assume that the sender has this information available.
This is a reasonable assumption, as any congestion control mechanism employed by
a streaming media system will include some kind of channel estimation. The error-
cost expressions for a policy π in this scenario generalize those for a sender-driven
streaming over a single network path [8]. Moreover, contrary to [8], the channel state
associated with a path is time-varying here. Therefore, the contribution to the error-
cost of prospective transmissions in π at opportunities tj : j > i can be accounted for
only as an expected value over all possible channel states at tj . Hence we write

ε(π) =















∏

j<i, m : ajm=1

P{FTTCF
jm > tDTS − tj |RTT CF

jmCB
jm > ti − tj}















× (2)

∏

j≥i, m : ajm=1

K
∑

k=1

P
(j−i)

CF
imk(F )

P{FTT k > tDTS − tj}

ρ(π) =
∑

j≥i, p : ajp=1













∏

l<i, m : alm=1

P{RTT CF
lm

CB
lm > tj − tl|RTT CF

lm
CB

lm > ti − tl}













×

∏

i≤l<j, m : alm=1

K
∑

k1=1

K
∑

k2=1

P
(l−i)

CF
imk1(F )

P
(l−i)

CB
imk2(B)

P{RTT k1k2 > tj − tl}

where the first product term in both ε(π) and ρ(π) accounts for previous transmissions
(if any).

5 Experimental results

Here we investigate the end-to-end distortion-rate performance for sender-driven
streaming of packetized video content over a single and over multiple network paths.
The video content is a two layer SNR scalable representation of the sequence Foreman.
Using H.263+ the first 130 frames of QCIF Foreman have been encoded into a base
and enhancement layer with corresponding rates of 32 and 64 Kbps. The frame rate
is 10 fps and the size of the Group of Pictures (GOP) is 10 frames, consisting of an I
frame followed by 9 consecutive P frames. Performance is measured in terms of the
luminance peak signal-to-noise ratio (Y-PSNR) in dB of the end-to-end perceptual



distortion, averaged over the duration of the video clip, as a function of the available
bit rate on the forward channel(s) of the network path(s).

In the experiments we use T = 100 ms as the time interval between transmission
opportunities and 600 ms for the playback delay. Furthermore, we employ a K = 2
state Markov model for each path. The model parameters are kept same over all
paths and are specified in Table 1. In particular, in Table 1a we specify the delay

Loss Delay
ε (%) κ (ms) µ (ms) σ (ms)

State 1 3 25 75 50
State 2 15 25 275 250

(a) Loss and delay parameters.

π2 τ2 (ms)
Model 0 0 0
Model 1 0.2 200
Model 2 0.5 1000
Model 3 0.8 2000
(b) State transitions.

Table 1: Network path characterization.

and loss characteristics for a channel state. We keep the same characteristics for the
forward and the backward channel. The delay density is modeled using a shifted
Gamma distribution specified with three parameters: shift κ, mean µ and standard
deviation σ. Finally, the state transitions are modeled using two parameters: the
stationary probability of being in State 2, π2, and the expected duration of stay in
State 2, τ2, once a transition is made to this state. We employ four sets of values
for these parameters denoted Model 0 - 3 in Table 1b. Due to the selected values
Models 0 - 3 cover a range of possibilities in terms of the loss and delay characteristics
exhibited on a network path.
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Distortion−rate performance for streaming QCIF Foreman
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Figure 2: R-D performance for streaming over M = 1, 2 and 3 paths.

We first study the performance of the proposed framework as a function of the
number of paths available. The state transitions are generated using Model 2 in
these experiments. It can be seen from Figure 2 that streaming over 2 network paths
can improve performance compared to the case of streaming over a single network
path. An improvement is observed over the whole range of available rates. The gains



in performance are most significant for the range of rates 30 - 70 Kbps and reach
up to 0.65 dB. The difference in performance decreases as we move towards very
low or very high transmission rates. The improved performance is due to the fact
that having an alternate path for transmission reduces dramatically the probability
of having to transmit on a forward channel that features degraded quality (State
2) at transmission. This ultimately contributes to a higher likelihood of delivering
the media packets on time. Furthermore, it can be seen from Figure 2 that using
further paths for streaming does not provide additional gains in performance, since the
performances of M = 3 and of M = 2 are almost identical. As explained above having
2 network paths reduces substantially the likelihood of facing a degraded channel at
transmission on every path. Therefore, adding one more path as an alternative does
not provide further benefits, given the selected path model.
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Figure 3: R-D performance for M = 1, 2 and different state transition models.

Next, we study the performance of the framework as a function of the quality of the
network paths. As explained earlier depending on the state transition model, a path
cah exhibit different levels of quality in terms of the loss and delay characteristics of
packet transmissions. In Figure 3 we show the performance for streaming over M = 1
and over M = 2 network paths in case of Models 0, 1 and 3. It can be seen that
streaming over two paths does not offer any advantages in case of Model 0. This is
expected, as a path here does not switch between states and hence there is no need
for an alternative routing of packets over another path. However, as the frequency
of state transitions and the duration of stay in State 2 for a path increase on the
average, the need for an alternative routing in order to avoid a bad quality path
steadily increases. Thus, the difference in performance between M = 2 and M = 1 is
largest when the state transitions on a path are governed by Model 3.

6 Conclusions

A framework has been presented that incorporates network path diversity in a rate-
distortion optimized sender-driven streaming of packetized media. Using our frame-



work a sender can exploit the availability of multiple paths over which media packets
can be transmitted in order to obtain an improved performance over the case when
only a single path is used. Experimental results for streaming video content demon-
strate the benefit of using the proposed framework. The gains in performance are
dependent on the quality of the paths in terms of loss and delay. In a follow-up
work [9] we explore the concept of server diversity in a rate-distortion optimization
framework for receiver-driven streaming of media.
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