IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 4, APRIL 2006

793

Light Field Compression Using
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Abstract—We propose disparity-compensated lifting for wavelet
compression of light fields. With this approach, we obtain the ben-
efits of wavelet coding, such as scalability in all dimensions, as well
as superior compression performance. Additionally, the proposed
approach solves the irreversibility limitations of previous light
field wavelet coding approaches, using the lifting structure. Our
scheme incorporates disparity compensation into the lifting struc-
ture for the transform across the views in the light field data set.
Another transform is performed to exploit the coherence among
neighboring pixels, followed by a modified SPIHT coder and
rate-distortion optimized bitstream assembly. A view-sequencing
algorithm is developed to organize the views for encoding. For
light fields of an object, we propose to use shape adaptation to im-
prove the compression efficiency and visual quality of the images.
The necessary shape information is efficiently coded based on
prediction from the existing geometry model. Experimental results
show that the proposed scheme exhibits superior compression
performance over existing light field compression techniques.

Index Terms—Disparity compensation, lifting, light field, multi-
view image, shape adaptation, wavelet transform.

1. INTRODUCTION

NTERACTIVE photorealistic three-dimensional (3-D)

graphics has many potential applications ranging from sci-
entific visualization and medical imaging to e-commerce and
video games. Traditional rendering techniques for photo-real-
istic scenes, however, are typically computationally intensive.
They additionally face the difficult problems of correctly
modeling the surface properties, 3-D scene geometry, and
lighting to obtain satisfactory results. Image-based rendering
has emerged as an important alternative to traditional image
synthesis techniques in computer graphics. With image-based
rendering, scenes can be rendered by sampling previously
acquired image data, instead of synthesizing from light and
surface shading models and scene geometry. Since image-based
rendering involves only resampling the acquired image data, it
is particularly attractive for interactive applications.

A light field, described by Levoy and Hanrahan [1] and
Gortler et al. [2], is a general image-based rendering data set. It
captures the outgoing radiance from a particular scene or object,
at all points in 3-D space and in all directions. In 3-D space, a
light field depends on five independent variables, three for the
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viewing positions and two for the viewing angles. However,
in free space without obstructions that block the radiance, the
light field can be parameterized as a four-dimensional (4-D)
data set since radiance is constant along lines in free space. In
practice, the light field can be sampled and parameterized by
capturing the scene or object with a two-dimensional (2-D) set
of 2-D camera views. A novel view from an arbitrary position
and direction can be generated by appropriately combining
image pixels from the acquired views.

One of the main challenges with light fields is their enormous
size. The uncompressed size for a large photo-realistic light field
can easily exceed tens of Gigabytes [3]; therefore, compression
is essential to any practical system.

A major objective of light field compression is to fully
exploit the intra-view and inter-view coherence in the data set:
intra-view refers to the relationship among pixels within the
same view, and inter-view refers to the relationship between
pixels in views captured from different viewpoints. In addition,
it is desirable to have a scalable representation of the light
field, which allows the system to efficiently adapt to varying
storage capacities, transmission bandwidths, display devices,
and computational resources by decompressing and rendering
the light field only up to a certain resolution, quality, or bit-rate
requirement.

An early light field compression algorithm employs vector
quantization (VQ) to exploit the inter- and intra-view coherence
[1]. In [4]-[6], the (DWT) has been proposed to exploit coher-
ence as well as to achieve scalability. In [6], for instance, the
multilevel 4-D Haar transform is directly applied to the 4-D light
field data set, followed by a 4-D extension of the set partitioning
in hierarchical trees (SPIHT) algorithm [7]. Due to parallax,
however, a point from the target scene appears at different pixel
locations in different views; therefore, the inter-view coherence
is not fully utilized, resulting in low compression efficiency for
both coders.

A common technique in light field compression to address
the parallax problem is disparity compensation, akin to mo-
tion compensation in video coding. It is used in some predic-
tion-based coders [8], [9], which have good compression effi-
ciency but provide only limited support of scalability. In [10],
disparity compensation is incorporated into a scalable coder by
applying the 4-D wavelet coder described in [6] to an aligned
reparametrization of the views based on an explicit geometry
model. The problem with this scalable coder, however, is that
the resampling process involved is irreversible and, therefore,
introduces degradation in image quality.
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These effects mirrors recent work in 3-D subband coding
of video signals. Many attempts have been made to incorpo-
rate motion compensation into the 3-D subband video coding
framework [11]-[13]. Earlier works are somewhat unsatisfac-
tory either for reasons similar to the resampling problem in light
field compression, or because the displacement vector field is se-
verely restricted. Recently, a technique called motion-compen-
sated lifting [14]-[18] has been proposed, which successfully
incorporates unrestricted motion compensation into 3-D sub-
band coding in a reversible fashion.

For light field compression, we propose a wavelet coding
scheme that achieves reversibility using a technique analogous
to motion-compensated lifting for video. The proposed scheme,
disparity-compensated lifting, incorporates disparity compen-
sation into the DWT using the lifting structure. We extend the
scheme to handle a more general representation of light fields,
namely unstructured light fields [19], allowing arbitrary camera
positions instead of restricting the views to a 2-D grid. For light
fields describing an object with extraneous background, shape
adaptation is further adopted to improve compression efficiency
and reconstruction quality. Compared with existing techniques,
the proposed scheme has several advantages. Reversibility re-
sulting from the disparity-compensated lifting framework im-
proves the compression performance. The wavelet transform al-
lows scalability in different dimensions. The incorporation of
shape-adaptation enhances compression efficiency as well as the
visual quality of reconstructed views.

The remainder of the paper is organized as follows. In
Section II, we provide a brief survey of light field compression
using disparity compensation and discuss some open problems.
The proposed approach is presented in Section III, where we
describe in detail the major steps involved, including the inter-
and intra-view transforms, coefficient coding and bitstream as-
sembly, together with a discussion on scalability of the system.
In Section IV, we introduce a method for sequencing the un-
structured camera views of general light fields for applying
the inter-view transform. In Section V, we present our shape
adaptation techniques and describe a method for shape coding
when the geometry model is approximate. The experimental
results and comparisons with prior techniques are shown in
Section VI.

II. PRIOR WORK

Most light field compression approaches incorporate some
form of disparity compensation for compression efficiency. Dis-
parity compensation has originally been proposed for stereo and
multiview image compression [20]-[24] and is also extensively
used in compression of concentric mosaics, a 3-D data set for
image-based rendering [25]-[30].

Existing light field compression approaches with disparity
compensation generally fall into one of two categories: coders
that use a prediction-based structure or coders that reparame-
terize the views onto the geometry.

To encode the views, the prediction-based coders apply
disparity-compensated prediction from previously encoded
views and encode the prediction residuals. In [31] and [32],
Tong and Gray use VQ To encode intra frames and prediction
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residuals after disparity compensation, achieving reasonable
compression efficiency and decoding speed. In [8], Magnor
and Girod describe a disparity-compensated predictive method
with a block-wise discrete cosine transform (DCT) and
run-level-coding of the coefficients. In [33], Zhang and Li
describe a similar disparity compensation method with multiple
reference views. In [9], disparity values are inferred from an
explicit geometry model. The scheme is extended in [34] to
include disparity compensation from multiple reference views
and multiple-hypothesis prediction, allowing multiple coding
modes for each block in the view and performing mode selec-
tion using the Lagrangian multiplier technique. These coders
exhibit good compression performance and viewpoint scala-
bility; however, reconstruction quality and image resolution
scalability are not supported.

In the second category of coders, an explicit geometry model
is used to warp all the views to a common reference frame and
resample the aligned views on a common grid. In [35]-[37],
light fields are first warped onto the surface of a geometry
model to form the so-called surface light field. Transform
coding or matrix factorization techniques are then applied to
facilitate compression as well as rendering. In [10], a texture
map-based approach is proposed. An approximate geometry
model is first estimated from the light field [38]. Using the
geometry model, the various views in the data set are warped
onto a global texture map reference frame, generating a set
of aligned view-dependent texture maps. These texture maps
are then coded by the 4-D Haar transform and the 4-D SPIHT
algorithm. The 4-D transform effectively exploits the coherence
along all dimensions; meanwhile, a scalable representation is
naturally provided by the Haar transform and SPIHT coding.

To reconstruct the acquired views, however, the recon-
structed texture maps need to be projected back to their original
view points. If portions of the image were contracted during
the warping process, there is a permanent loss in resolution.
In addition, the interpolation involved in warping the views is
usually not reversible. Careful design of the warping functions
can reduce these problems, but, nevertheless, the backward
warping functions generally do not invert the forward warping
functions. As a result, the reconstruction of the acquired views
not only exhibits the quantization noise introduced by lossy
compression of the wavelet coefficients, but also inevitably
inherits the distortion arising from the mismatch between
the forward and backward warping processes. Moreover, the
approach can only encode the portions in each view covered by
the geometry model because of the underlying parametrization.
Note that these problems are not specific to the texture map
wavelet coding approach described above, they arise for all
light field compression and rendering systems involving a
similar resampling process of the acquired views [1], [2], [4],
[35]-[37]. The quality degradation due to resampling can affect
the quality of the rendered view [19]. Accordingly, for light
field compression, our objective is to minimize the distortion
in the reconstruction of the acquired views for a given bit-rate
constraint.

In the Section III, we describe a novel approach to solve the
problems caused by the resampling process. Disparity compen-
sation is effectively incorporated into the inter-view transform
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so that reconstruction quality of the acquired views are only af-
fected by coefficient quantization. Additionally, in contrast to
prediction-based coders, scalability is naturally supported by the
DWT in the proposed scheme.

III. LIGHT FIELD COMPRESSION USING
DISPARITY-COMPENSATED LIFTING

In the proposed light field compression scheme, a wavelet
transform is performed on all dimensions of the light field data
set, through an inter-view transform and an intra-view trans-
form. The inter-view transform is carried out using disparity-
compensated lifting. The resulting subband images from the
inter-view transform still exhibit coherence among neighboring
pixels. Therefore, the 2-D image transform, i.e., the intra-view
transform, is performed on each subband image to exploit the
remaining coherence. To encode the final DWT coefficients, a
modified version of the SPIHT algorithm is applied in 2-D for
each of the transformed subband images.

The basic architecture of the proposed system is shown in
Fig. 1, for the special case where the light field data set is rep-
resented as a 2-D array of views. In such a case, the inter-view
transform is carried out by applying one-dimensional (1-D)
transforms horizontally and vertically across the 2-D array of
views. To handle general light fields with arbitrary camera set-
tings, a view-sequencing method is developed to organize the
data set as a sequence of views so that the inter-view transform
can be applied efficiently.

In the following subsections, each component of the system,
including the inter-view transform, intra-view transform, coef-
ficient coding and bitstream assembly will be described. In ad-
dition, the scalability provided by the proposed system will be
discussed. View sequencing will be presented in Section IV.

A. Inter-View Transform Using Disparity-Compensated Lifting

Lifting is a procedure that can be used to implement DWTs
[39]. It is shown that any two-band subband transform with
FIR filters can be implemented using the lifting structure [40].
Suppose that, in the context of light field compression, we have
a sequence of N views, z[n],n = 0,...,N — 1. The order
of the view sequence can be obtained either by the natural
structure of the data set or by applying the view-sequencing
algorithm that will be discussed in Section IV. Assuming N is
even for simplicity, we split up this sequence into two sets of
N/2 views: an even set 2g[k], k = 0,..., N/2—1, and an odd
seta1[k],k =0,..., N/2—1. Wavelet analysis can be factored
into one or more lifting steps, each consisting of a prediction
and an update filter. The lifting procedure transforms xq[k]

Subband Images
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Coefficient
Coding

Intra-View
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System architecture: The input is a simplified light field containing only four views, which is represented, as a special case, as a 2-D array of views. The
inter-view transform is first applied, both horizontally and vertically. The resulting subband images, including the LL, LH, HL, and H H subbands, are further
decomposed by the 2-D intra-view transform. Finally, the wavelet coefficients are encoded to generate the compressed bitstream.

and 1 [k] into yo[k] and y; [k], the low-pass and the high-pass
subbands resulting from the DWT of z[n], respectively. For
reconstruction, as long as the filters used in wavelet synthesis
are identical to those in wavelet analysis, the reversibility of
the transform is ensured. We can use any kind of filters in
lifting, including nonlinear or data-adaptive filters, while still
preserving reversibility.

For light field compression, we incorporate disparity com-
pensation into the prediction and update filters. In particular,
we use an explicit geometry model, estimated from the light
field data set [38], for disparity compensation. Note that in
video coding with motion-compensated lifting, multiple sets of
motion vectors are often needed, including the one set between
two neighboring video frames for the prediction filter, possibly
a different set in the reverse direction for the update filter, and
other sets that span multiple frames. For the proposed light field
compression scheme, the disparity values between any pair of
views in the data set can be derived from the geometry model.
This makes the geometry model a compact representation of
the disparity values. Complicated issues in video coding such
as motion estimation and motion vector coding are, thus, elimi-
nated. In addition, compared to block matching in video coding,
disparity compensation using the geometry model generally
provides better prediction of the signal. The resulting prediction
residual in the high-pass subband images is smooth and free
of blocking artifacts, suitable for the subsequent intra-view
wavelet transform and coefficient coding stages for the purpose
of compression.

We can formulate disparity compensation as a function that
warps a view from one viewpoint to another. Let vy [k] and v1 [k]
denote the viewpoint, i.e., the viewing position and direction,
of zo[k] and z1[k], respectively. Let woli) be the function that
warps its input, either an even-view x[k] or a low-pass subband
image yo[k], from viewpoint vg[k] to vy [k] using the disparity
information. Similarly, wy,” warps its input, either an odd-view
x1[k] or a high-pass subband image y; [k], from viewpoint v1[k]
to vo[k]. As an example, w((]li)(xo [k]) denotes the warped view
(with viewpoint vy [k]), derived from the given view z¢[k] (with
viewpoint vg[k]).

To calculate one particular pixel value at location p; on
fw((]li) (xo[k]), p1 is first back-projected to 3-D space, from vy [k],
to find the corresponding point on the geometry surface. This
3-D point is then projected onto on the image plane at vg[k] to
yield location pg. The pixel value at py is extracted from zq[k]
using bilinear interpolation and assigned to p; as wé’i)(xg[k]).

The disparity-compensated lifting approach uses the warping

functions w((]li) and wgg) as the first stage of the prediction and
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update filters, respectively. For the Haar wavelet, disparity-com-
pensated lifting can be described by the following equations:

yi[k] = w1[k] — wgy (wo[k])
wolk] = zolk] + 5wy (k)

= (wolk] — il () (o [k1)) + 5wl (ra[4)

(1a)
(1b)

2
olk] = volk] — 5utk) (1 K]) = ol (19
#1[K] = k] + woy (o[k]) = 1 [K]. (1d)

Note that y1 [k] needs to be computed prior to yo[k] in the lifting
structure. We first generate a warped view wé’i)(zo [k]) from
xo[k] to predict x1 [k]. The resulting disparity-compensated pre-
diction residual y; [k] corresponds to the high-pass subband of
the Haar wavelet. This high-pass subband is then warped and
added to xo[k] in order to generate yo[k], the low-pass subband,
which is approximately the disparity-compensated average of
xolk] and x1[k]. The scaling factors needed to normalize the
transform are omitted in (1). Note that the lifting structure is
not limited to the Haar wavelet. Any DWT can be factorized
into lifting steps [40].

Disparity-compensated lifting effectively incorporates dis-
parity compensation into the DWT while maintaining the
reversibility of the transform. In addition, the lifting structure
also allows in-place calculation of the wavelet transform, i.e.,
the original samples zo[k] and x;[k] can be overwritten by
the subbands yo[k] and y1[k] without having to allocate new
memory [39]. Moreover, a memory-efficient implementation
using a pipeline structure has also been proposed which is
especially suitable for interactive rendering applications [30],
[41].

1) Wavelet Kernels: Various wavelet kernels can be im-
plemented using lifting. In this work, the Haar wavelet and
the biorthogonal Cohen—Daubechies—Feauveau 5/3 wavelet
[42] are adopted because of their simplicity and effectiveness.
Typically, the 5/3 wavelet, due to its symmetric support which
corresponds to bidirectional prediction and update, yields better
performance than the Haar wavelet, at the cost of increased
computation. To reduce computation, a truncated version of the
wavelet kernels can also be used, in which case the low-pass
subband images are replaced directly by the even views.

2) Multilevel Transform: The low-pass subband image se-
quence yo[k] is essentially the down-sampled version of the
original sequence z[n], viewed at the even viewpoints vg[k].
If the number of viewpoints is sufficiently large, a multilevel
transform can be performed. The inter-view transform can be
applied again, on yo[k], with vo[k] as the corresponding view-
points. This procedure can be repeated several times depending
on the density and total number of the viewpoints.

By applying multiple levels of the transform, despite that we
are using wavelet kernels with relatively short supports such as
the Haar and the 5/3 wavelet, the coherence in a larger neigh-
borhood is in effect being exploited. In addition, the sequence
yo[k] can be re-ordered before applying the inter-view transform
to exploit the coherence among views more efficiently, as de-
scribed in Section IV.
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B. Intra-View Transform

After the inter-view transform, there is remaining coher-
ence among neighboring pixels within each resulting subband
image, especially for the low-pass subbands. To further
exploit this, the intra-view transform is applied to each sub-
band image using a multilevel 2-D DWT. The biorthogonal
Cohen—Daubechies—Feauveau 9/7 wavelet [42], popular for
image compression, is chosen for the intra-view transform.
Note that due to the irrational coefficients of the 9/7 wavelet,
the intra-view transform is in general not reversible. Neverthe-
less, for lossy compression this irreversibility in the intra-view
transform has only minimal impact on compression efficiency.
An extension to lossless compression should include an in-
teger-to-integer intra-view transform, such as defined in the
JPEG2000 standard [43], together with rounding of the dis-
parity-compensated signal that constitutes an integer-to-integer
inter-view transform. However, the main scope of this work is
lossy compression and the lossless extension is not incorporated
in our current implementation.

C. Coefficient Coding

To encode the DWT coefficients, the SPIHT algorithm is
chosen for its computational simplicity and high compression
efficiency [7]. It is applied to each subband image separately
and modified to operate in a block-wise manner.

1) Two-Dimensional Coding Versus Higher-Dimensional
Coding: It may seem natural to use a 3-D or 4-D SPIHT
coder to encode the inter-view and intra-view transformed
coefficients as in [6] and [10]. Our experiments, however,
show that compression performance of the higher-dimensional
SPIHT coder is inferior to that of its 2-D counterpart for the
proposed system. The main reason why 2-D coding is better is
that the subband images maintain their own viewpoints after
disparity-compensated lifting, unlike the aligned structure in
[6] and [10]; therefore, coefficients at the same position in
different subband images no longer necessarily correspond to
the same point in the original scene. Hence, the assumption
of high correlation across the views for higher-dimensional
SPIHT coding no longer holds.

Aside from the above observation, higher-dimensional
SPIHT coding is more computationally demanding and less
flexible for bitstream truncation. Two-dimensional SPIHT
coding is, therefore, chosen in our system, with each subband
image encoded separately.

2) Block-Wise Spiht: For better exploitation of the local
statistics as well as memory efficiency, we further modify the
SPIHT coder to regroup the DWT coefficients in each subband
image into individual blocks and encode them separately.
Similar ideas have been proposed for image compression [44]
and video residual image coding [45].

For each subband image, the coefficients are re-grouped
into blocks as illustrated in Fig. 2. The SPIHT algorithm is
then separately applied to each coefficient block, generating a
corresponding bitstream. In this way, each block can be encoded
starting from its own highest bit-plane and truncated at an
appropriate point, as opposed to the conventional case, where
the starting bit-plane and the truncation point are determined
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Fig. 2. Block-wise SPIHT: The transform coefficients are divided into blocks,
each containing spatially neighboring coefficients from all intra-view subbands.
For example, the coefficients at the locations labeled by * are grouped into one
block, and those labeled by o are grouped into another block.

globally for the entire image. The block-wise SPIHT coder also
lowers the memory requirement [44] and allows the ability to
randomly access part of an image without having to decode
its entirety, an important feature for light field rendering. Note
that although the coefficients are coded together within each
block, the intra-view wavelet transform is performed on the
entire image.

D. Scalability

For a given bitstream, we can decode only part of it to reduce
the bit rate at the cost of increased distortion, yielding recon-
struction-quality scalability.

Viewpoint scalability is supported by the inter-view wavelet
transform. Specifically, the low-pass subband images are es-
sentially the down-sampled version of the light field views, re-
quiring a fraction of the total bit rate. If necessary, one can de-
code only the low-pass subband images for rendering, as op-
posed to the full reconstruction that need both the low-pass and
high-pass subband images to be decoded.

Moreover, the intra-view wavelet transform provides image-
resolution scalability. Depending on the applications, the views
in the light field can be decompressed up to the full resolution, or
only a fraction of it, from a single compressed bitstream. How-
ever, for the SPIHT algorithm to achieve image-resolution scala-
bility, i.e., to gather the bits regarding to the low-pass intra-view
subbands at the beginning of the bitstream, the output order has
to be modified as described in [46]. Note that this modification
has not been incorporated into our current implementation.

IV. VIEW SEQUENCING

In order to apply the inter-view transform, the camera views
in the data set must be organized as a sequence of views, with
a specific scanning order for compression. For the light fields
acquired by cameras positioned as a 2-D array encompassing
the scene, the data sets can be easily represented as a 2-D array
of camera views [1], [47]. In such a case, the columns and the

rows in the array structure naturally form the view sequence
required for the wavelet transform. The inter-view transform
is carried out by applying 1-D transforms horizontally and
vertically across the 2-D array, resulting in a 2-D inter-view
transform.

Not all light field data sets, however, bear such a simple
structure. Some light fields are captured by hand-held cam-
eras moving around the scene [19]. Many others have denser
samples of views for a particular part of the scene in order to
capture more details for the part of interest. In these so-called
unstructured light fields [19] where the cameras are not posi-
tioned on a regular grid, an effective view sequencing method
should arrange the camera views such that neighboring views in
the sequence exhibit high coherence for the wavelet transform
to decorrelate the signals more effectively.

For a light field data set, the coherence between two camera
views can be accounted for, for instance, by the angular differ-
ence of the viewing directions and the difference of the distances
from the camera centers to the scene [19]. In the data sets we
work on, cameras are densely positioned surrounding the scene,
and they are approximately equally distant to the center of the
scene and looking at it. Hence, only the angular difference in the
viewing directions is of concern, which roughly corresponds to
the distance between each pair of cameras. In other words, as
an approximation applied for the data sets of interest, camera
views that are taken from nearby positions are assumed to ex-
hibit higher coherence. The view sequencing method should at-
tempt to minimize the camera distance between neighbors in the
resulting view sequence.

As a result, we propose to formulate the view sequencing
problem as the travelling salesman problem (TSP) [48], i.e.,
finding the cheapest closed tour visiting a set of nodes, starting
from a node, visiting every node exactly once, and returning to
the initial node. Each node corresponds to a view, and the cost
of a path connecting two views is defined as the Euclidian dis-
tance between their corresponding camera centers. Note that,
for general data sets, other metrics, such as the camera-to-scene
difference, can be incorporated into the cost calculation as the
penalty measurement defined in [19]. The fact that the path re-
turns to the initial node also facilitates periodic extensions for
the inter-view transform at the boundary of the view sequence.

Note that the optimal solution of TSP, which is NP-com-
plete, does not necessarily guarantee the best compression
performance since the problem formulation is based on sev-
eral approximations. A suboptimal solution suffices for the
purpose of systematically arranging the data sets into a view
sequence so that the inter-view transform can be carried out
efficiently. Since the Euclidian distance is a symmetric metric,
we adopt algorithms proposed for symmetric TSP based on
Lagrangian relaxation [48], [49].

We further propose to group the camera positions in a data set
into several clusters using, for instance, the K-means clustering
algorithm, and then independently sequence the views within
each cluster. For each cluster, TSP considers only a fraction of
the views in the data set, and, hence, the complexity is signifi-
cantly reduced. Additionally, as a result, the views in one cluster
are encoded independently from those in other clusters. This is
beneficial when the user only navigates part of the scene rather



798

Fig. 3.
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View sequencing for Bust: The cameras are approximately distributed on a hemisphere surrounding the object. The dots denote the camera positions

viewing from the top of the hemisphere. The lines denote the view sequence for different levels of the inter-view transform. (a) Heuristic, one-level. (b) Heuristic,

two-level. (c) TSP, five clusters, one-level. (d) TSP, five clusters, two-level.

than the whole data set, since only the data in the clusters being
navigated need to be accessed.

As an example of the unstructured light fields, the camera
positions of the Bust data set are shown in Fig. 3. The cameras
are distributed approximately on a hemisphere surrounding the
target object. The result of a heuristic view sequencing method
that approximately traverses along the longitude lines of the
hemisphere is shown in Fig. 3(a). For view sequencing of the
second level of the inter-view transform, the heuristic method
simply follows the even samples in the current view sequence,
i.e., the camera positions corresponding to the low-pass subband
images, as what is typically done for data sets with a regular
grid, as shown in Fig. 3(b).

The results using the proposed TSP method with five clusters
are shown in Fig. 3(c). For the second level, instead of following
the direction of the current view sequence as in the heuristic ap-
proach, TSP is applied again to the set of the even samples in
order to generate a sequence that can possibly exploit the coher-
ence in a different direction, as shown in Fig. 3(d). The compres-
sion performance using the proposed TSP method compared to
the heuristic method will be discussed in Section VI-C.

V. SHAPE ADAPTATION

When the light field of interest is an object, the constituent im-
ages contain extraneous background pixels and discontinuities
at the object boundaries. In the former, we encode unnecessary
pixels. In the latter, there is increased energy in the high-fre-
quency components. In both cases, this leads to inefficiency in
the coding. We, therefore, propose to mitigate these two effects
by utilizing 2-D shape of the object in each view, obtained by
image segmentation, when coding the light field data set.

In the proposed light field compression scheme, a geometry
model of the scene is available at the decoder to provide the
disparity values as discussed in Section III-A. If the geometry
model is accurate such that projection of the geometry is con-
sistent with the 2-D object shape in each view, the geometry
model itself can account for the shape information. On the other
hand, if the geometry model is just an approximation, it provides
only approximate shape information. In this case, techniques for
coding the exact shape, as will be discussed in Section V-B,
are needed. An example of the exact shape and the approximate
shape is illustrated in Fig. 4(a) and (b), respectively.

-
ol

Fig. 4. Shape coding example. (a) Exact shape S showing a front view of a
car. (b) Approximate shape S derived from a geometry model, in light gray
and superimposed on S. (¢) Dilated approximate shape 5, in dark gray with S
superimposed on it. The dashed lines divide the view into regions with different
mode selections. (d) Mode selection of each line is shown. For example, the lines
in the region containing the tires are using Standard mode with both Basic and
Refinement passes. One of the regions is using Skip mode because S is already
identical to S in this region as can be seen in (b).

. Not coded
E‘L Emprty
D Skip

[] standard - pasic

5 standard - Basic + Refine

(d)

A. Shape-Adaptive Transform and Coefficient Coding

Utilizing 2-D object shape information is beneficial for all
three stages of the proposed light field compression system: the
inter-view transform, the intra-view transform, and coefficient
coding.

In image and video compression, shape adaptation has
been proposed for the image-domain wavelet transform and
the wavelet coefficient coding methods [50], [51]. Similarly,
for the intra-view transform stage in light field compression,
we apply the shape-adaptive DWT (SA-DWT) [50] on each
subband image, generating as many wavelet coefficients as the
object pixels. It also avoids performing the transform across
object boundaries, contributing to improved coding efficiency
and enhanced reconstruction quality. For coefficient coding,
the SPIHT algorithm is modified to disregard zero-trees that
contain only background pixels as described in [51]. Note that,
conventionally, bitstreams from SPIHT coding are further com-
pressed by a context-based adaptive arithmetic coder, whereas
with shape adaptation, there will likely be a much smaller
performance gain from appending the arithmetic coder [51].
Therefore, the need of arithmetic coding is eliminated, and
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coding complexity can be reduced without sacrificing much
compression efficiency.

Specifically for light field compression, we further incorporate
the 2-D object shape, together with the geometry model, to
exploit the inter-view coherence in the data set. Using the
2-D shape, disparity compensation at the object boundaries
can be improved especially when the geometry model is only
an approximation.

In particular, with an inaccurate geometry model, an object
pixel in one view may be disparity-compensated to the back-
ground in another view. The contrast between object and back-
ground pixels may give rise to large residual errors that are ex-
pensive to code. With knowledge of exact object boundaries, on
the other hand, the prediction can be obtained from the nearest
object pixel instead of the background.

Another problem with disparity compensation from inaccu-
rate geometry is that some object pixels near the boundary do
not have a corresponding point on the geometry. In this case dis-
parity compensation is not applicable, resulting in large residual
errors at the edges. With the exact 2-D shape, all object pixels
are easily identified. The disparity values of those pixels unac-
counted for by the geometry can be simply extrapolated from
neighboring pixels; thus, all the object pixels can be disparity-
compensated properly.

In practice, an accurate geometry model is not always pos-
sible to acquire, whereas the 2-D object shape in each view can
be conveniently obtained by image segmentation techniques.
Using the 2-D object shape as an auxiliary to the approximate
geometry model is, therefore, advantageous for light field com-
pression. Furthermore, side information of the 2-D object shape
can be coded, in return, with the assistance of the approximate
geometry model as demonstrated in the next subsection.

B. Shape Coding

If the geometry model is just an approximation, we propose
to code the exact shape, denoted by .S, using the available ap-
proximate shape derived from the geometry, denoted by S.Sis
dilated for several iterations until the white pixels in the dilated
image cover all of the white pixels in S. We denote the dilated
version of § by S, illustrated inFig. 4(c), which is now used to
predict S. The number of dilations is transmitted, and the de-
coder, knowing this number, can recover S since the geometry
is also available.

S , S , and .S are compared for the horizontal scan lines con-
taining white pixels in S. We denote a line in S by L, the cor-
responding line in S by L and thatin S by L. Three modes are
defined for all possible situations.

e Empty mode: This mode is selected when L contains no
white pixels, i.e., the object is not contained in this line.

e Skip mode: This mode is selected when L contains white
pixels and it is identical to L, ie., the approximate shape
is already identical to the exact shape.

e Standard mode: This mode is selected when L contains
white pixels but is not identical to L. In this case, L is
used to predict L. Two passes are further defined for this
mode.

— Basic pass: The distance between the left-most white
pixel in L and that in L is recorded, followed by the

distance between the right-most white pixel in L and that
in L. The two distances are predictively encoded using
the corresponding distance from the line above.

— Refinement pass: If the line contains more than one run
of white pixels in L, it is signaled in the refinement pass.
Starting from the left-most white pixel, the length of each
run in L is recorded, alternating between white runs and
black runs. Note that the length of the last white run does
not need to be encoded since it can be derived from the
Basic pass.

The mode selection of each line for the given example is shown
in Fig. 4(d). The mode selections and the associated distances
and run-lengths are combined to form a set of symbols, which
are further encoded using an adaptive arithmetic coder. Note that
as a more accurate geometry is used, the Skip mode is selected
more often; hence, lower bit rate is needed for shape coding.

VI. EXPERIMENTAL RESULTS

Experimental results are shown for two types of light field
data sets: arranged in an array, and unstructured. The first type
consists of two data sets: Garfield and Penguin. Examples of
these data sets are shown in Figs. 11 and 12. Each data set
has a hemispherical view arrangement, where there are eight
latitudes each containing 32 views, each view with a resolution
of 288 x 384 pixels. The resulting data set can be directly
parameterized as a 2-D (8 x 32) array of 2-D (288 x 384) views.
For each data set, an approximate geometry model with 2048
triangles is reconstructed from the views, using the method
described in [38]. The object shape for each view is obtained
by image segmentation using a simple thresholding procedure.
Using the proposed shape coding method with the assistance
of the geometry model, the shape information is encoded at
around 0.008 bpp for both data sets, compared to the 0.017 bpp
by directly applying JBIG [52] on the exact shape .S and around
0.023 bpp by applying JBIG on the difference between S and
the approximate shape S. The difference image is more difficult
to encode with JBIG since it typically has more transitions than
the shape itself. The proposed shape coding method overcomes
this issue by employing a run-length-coding-like approach as
described in Section V-B. The overhead for shape coding
is included. The four-level intra-view transform with the 9/7
wavelet is chosen for these two data sets as it gives the best
empirical performance.

The second type of data sets also includes two data sets:
Bust and Buddha. Examples of the data sets are shown in Figs.
13 and 14. Bust consists of 339 views of a real-world object;
each view has a resolution of 480 x 768. The geometry model
and the camera parameters are estimated from the acquired
camera views using methods described in [37]. Buddha is a
computer synthesized data set with 281 views, each with a
resolution of 512 x 512, together with a known geometry model
and camera parameters. In both data sets, the camera positions
are approximately distributed on a hemisphere surrounding the
object. The camera positions in Bust and the results of view
sequencing (Section IV) are shown in Fig. 3. For these two
data sets, unlike Garfield and Penguin, the geometry models
are accurate. Therefore, for shape adaptation the projection of
the geometry model is directly used as the 2-D shape of the
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object. No extra coding is needed. The five-level intra-view
transform with the 9/7 wavelet is used for these two data sets.

For light field rendering, a novel view is in general rendered
by appropriately combining image pixels in the corresponding
reference views, i.e., a number of camera views with viewpoints
closest to this particular novel viewpoint, possibly via the
geometry model [1], [19]. Therefore, during a rendering session,
only the camera views that serve as reference views of the
desired novel viewpoints have to be reconstructed from the
coded data set. To evaluate the compression performance, in
the following experiments, we assume that the user navigates
throughout the entire scene such that every camera view needs
to be reconstructed. As a result, we consider the bit rate and
the reconstruction quality for all camera views in the data set.

For bit allocation among coefficient blocks, we use La-
grangian multiplier techniques similar to those in [53] for
image compression to choose the optimal truncation points
for each bitstream (coefficient block) so as to maximize the
reconstruction quality for all camera views in the data set
subject to different bit-rate constraints.

Note that we can safely assume the distortion (mean squared
error) in areconstructed camera view is proportional to that in the
wavelet coefficients, and warping a view to a different viewpoint
preserves the distortion originally in the view. If we further
assume that the reconstruction error in one view is uncorrelated
to that in any other view, the distortion between the novel
view rendered from the reconstructed camera views and that
rendered from the original camera views can be approximated
by a weighted sum of the reconstruction distortion in each
of its reference views [54]. As a result, the reconstruction
quality of the camera views provides a direct indication of
the quality of the rendered views.

Shape adaptation is incorporated in the experiments unless
otherwise mentioned. With shape adaptation, the conventional
bit-per-pixel (bpp) measurement of bit rate is modified to bit-per-
object-pixel (bpop), defined as the length of the final bitstream
in bits divided by the number of object pixels in the data set.
Similarly, the peak-signal-to-noise-ratio (PSNR) measurement
for the reconstruction quality is modified considering only the
object pixels in all camera views. The compression performance
is shown using rate-PSNR curves, which express the relation
between the bit rate (bpop) and reconstruction quality in PSNR
(in decibels). The geometry model is encoded at 0.027 bpop
for Garfield, 0.034 bpop for Penguin, 0.018 bpop for Bust, and
0.013 bpop for Buddha. Specifically, each dimension of the 3-D
coordinate of a geometry vertex is quantized and encoded by 21
bits, and the index of each vertex is represented by 10-12 bits.
The camera parameters (camera position and viewing direction
in each view) are encoded at around 0.008 bpop for Garfield,
0.010 bpop for Penguin, 0.002 bpop for Bust, and 0.001 bpop
for Buddha. The geometry model and the camera parameters
are, in general, used for rendering as well. Therefore, the bit rate
for encoding such information is not included in the following
rate-PSNR curves.

A. Inter-View Wavelet Kernels

The compression performance of four different inter-view
wavelet kernels, Haar, 5/3, truncated-Haar, and truncated-5/3,
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Fig. 5. Rate-PSNR curves for Garfield with different inter-view wavelet
kernels, using the one-level inter-view transform.

is compared along with the intra-coding scheme without inter-
view transform. The rate-PSNR curves for Garfield are shown in
Fig. 5. The one-level inter-view transform, i.e., inter-view trans-
form both vertically and horizontally since the data set is rep-
resented as a 2-D array of views, is used. Only the luminance
component is coded. Results for the other data sets, which are
not shown, are similar [47], [55].

At the same bit rate, the 5/3 wavelet performs about 1-1.5 dB
better than the Haar wavelet. Compared to the intra-coding
scheme, the inter-view transform with the 5/3 wavelet provides
3—4 dB gain in terms of PSNR at the same bit rate, or equiva-
lently a bit rate reduction of 50% for the same reconstruction
quality.

The truncated kernels perform worse than their nontruncated
counterparts. Note that for video compression, cases have
been reported where the nontruncated kernels give inferior
performance than the truncated ones [16]. This is mostly due to
the ghosting artifacts in the low-pass subband images, resulting
from the occasional failure of motion compensation in the up-
date lifting step, that are costly to encode. In the proposed light
field compression scheme, the 3-D geometry model typically
provides satisfactory results of disparity compensation; hence,
the advantage of the truncated kernels is negligible. Instead, in-
ferior compression performance due to aliasing in the low-pass
subbands, as well as quality fluctuation in the reconstructed
views, both result from absence of the update lifting step [56],
[57], actually make the truncated kernels undesirable in spite
of the reduced computational complexity.

B. Shape-Adaptation

To investigate the gain by shape adaptation, we conduct ex-
periments with shape adaptation switched off for comparison.
The 5/3 wavelet with the one-level inter-view transform is used,
and only the luminance component is coded. The rate-PSNR
curves for Garfield and Penguin are shown in Fig. 6. Note that
the measurement for bit rate is now bpp instead of bpop, since
no shape information is available for the scheme without shape
adaptation. For the same reason, the PSNR value is computed
by averaging over all luminance pixels in the data set. The ratio
between the number of object pixels and total number of pixels
is 16.70% in Garfield and 13.13% in Penguin.
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Fig. 6. Effect of shape adaptation: For the same reconstruction quality, shape
adaptation reduces 60%—-80% of the bit rate.
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Fig. 7. Rate-PSNR curves for Bust with different view-sequencing methods,
using the two-level inter-view transform.

Without shape adaptation, the block-wise SPIHT coder allo-
cates no bits to encode the coefficient blocks having all zeros
that typically happen at background blocks. Even so, the over-
head for control information of those coefficient blocks still
cannot be omitted. More importantly, the boundary regions con-
taining both background and object pixels cannot be handled
easily. On the opposite, shape adaptation reduces the bit rate
by 60%—80% for the same reconstruction quality for both data
sets due to omitting the overhead for all-background blocks and
avoiding high-frequency components at the object boundaries,
as discussed in Section V-A.

C. View Sequencing

The compression performance of the heuristic view-se-
quencing method and the TSP view-sequencing method with
one and five clusters (Section IV), all using the two-level
inter-view transform, is compared in Fig. 7. Results for the
Buddha data set, which are not shown here, are similar.

The rate-PSNR curves show that the TSP method outper-
forms the heuristic method with a gain of 0.25 dB at the same bit
rate. For the TSP method, the multiple-cluster case that groups
the views into five clusters introduces slight degradation of the
compression performance compared to the case considering the
whole data set as a single cluster. This is because coherence
across clusters is not exploited in the former case. Nevertheless,
the additional advantages of the multiple-cluster case such as
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Fig. 8. Rate-PSNR curves for Bust with different inter-view transform levels,
using the 5/3 wavelet.

reduced complexity for sequencing and more efficient data ac-
cess, as discussed in Section IV, make it the favorable approach.
In the following experimental results for Bust and Buddha, the
views are sequenced using the TSP method with five clusters.

D. Multiple Inter-View Transform Levels

In these experiments, the 5/3 wavelet is used and only the
luminance component is coded. The results for Bust using 1-4
levels of inter-view transform are shown in Fig. 8, along with the
intra-coding scheme. There is about a 2-dB gain by applying the
one-level transform over the intra-coding scheme, and a 1-dB
gain by further applying the two-level transform. The gain di-
minishes with more levels of inter-view transform, and the per-
formance degrades when using the four-level transform. This
may be due to the fact that neighboring views in the four-level
transform are too far apart to allow an efficient decomposition.
Results for other data sets show similar performance [47].

E. Comparison With Existing Techniques

For Garfield and Penguin, we compare the proposed coder
with the shape-adaptive DCT (SA-DCT) coder proposed in [58]
and the texture map coder described in [10]. The experiments
here are performed on color images using the (Y, Cb, Cr) color
representation, with chrominance components down-sampled
by a factor of 2 in each image dimension. The rate-PSNR curves
are shown in Fig. 9. The bit rate (bpop) is derived from dividing
the total bitstream length of the three channels by the number of
object pixels in the luminance component. The reconstruction
quality (PSNR) for the curves is computed using the luminance
component only. Examples of the luminance component of the
reconstructed views using the three coders at similar bit rates
are shown in Figs. 11 and 12.

For the proposed coder, we use the four-level intra-view trans-
form for the luminance, and the three-level intra-view transform
for the sub-sampled chrominance components. The one-level
5/3 wavelet is used for the inter-view transform. The compres-
sion procedure is applied to the three color channels separately
using the same Lagrangian multiplier ).

For the SA-DCT coder [58], the 2-D object shape is obtained
and coded in the same way as the proposed coder. It uses a
hierarchical prediction structure to encode all the views. Each
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Fig. 9. Comparison of the SA-DCT coder, the texture map coder, and the
proposed coder for Garfield and Penguin.
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Fig. 10. Comparison of the SA-DCT coder and the proposed coder for Bust
and Buddha.

view is divided into blocks of 8 x 8 pixels. For each block,
there are three possible modes of coding: INTRA, image coding
without prediction; GEO, disparity compensation from a ge-
ometry model followed by residual error coding; and COPY,
copying from the block at the same position in a designated
reference image. To encode each block with INTRA and GEO
mode, an 8 X 8 SA-DCT [59], [60] is applied, followed by quan-
tization and run-level-coding of the coefficients. Mode selection
is based on minimizing rate-distortion Lagrangian cost function
for each block. Each color channel is coded separately using the
same quantization step size.
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The texture map coder [10] is described in Section II. Bit al-
location among channels is achieved by decoding the bitstream
of each channel up to the same length as for the proposed coder
to obtain the same bit allocation for the two coders.

Note that all three coders need the geometry model as side in-
formation. However, only the proposed coder and the SA-DCT
coder need the shape information, since the texture map coder
implicitly uses the approximate shape derived from the geom-
etry. Consequently, the PSNR and bit-rate values for the tex-
ture map coder is obtained by only considering the object pixels
within the approximate shape, which are a different from those
of the other two coders that come from the exact shape.

Compared to the SA-DCT coder, the proposed coder
achieves superior compression performance. In addition, the
reconstructed views of the proposed coder do not exhibit
blocking artifacts, which can be observed with the SA-DCT
coder as shown in the magnified image in Fig. 12(b). The pro-
posed coder additionally provides scalability for reconstruction
quality, which is not supported in the SA-DCT coder.

Compared to the texture map coder, the compression perfor-
mance of the proposed coder is consistently better, except for the
very-low-bit-rate region, where the extra overhead for the shape
information is no longer negligible. If the proposed coder only
uses approximate shape from the geometry for fair comparison;
however, it always performs better than the texture map coder.
With increasing bit rate, the performance gap grows indefinitely
since reconstruction quality of the texture map coder is limited to
about 34 dB for Garfield and 36 dB for Penguin by the irreversible
resampling process, whereas that of the proposed coder increases
with bit rate. The proposed coder gains more than 6 dB in PSNR
over the texture map approach for the high bit-rate regime in the
plot. Alternatively, there is a reduction of 70% in bit rate for the
same reconstruction quality. Furthermore, as shown in Figs. 11
and 12, the object shape is distorted for the texture map coder,
whereas the proposed coder retains the original object shape.

For Buddha and Bust, we compare the proposed coder with
the SA-DCT coder [58]. The rate-PSNR curves are shown in
Fig. 10. Only the luminance component is coded. Examples of
the reconstructed views using the two coders at similar bit rates
are shown in Figs. 13 and 14. For the proposed coder, we use
the two-level inter-view transform with the 5/3 wavelet, along
with the five-level intra-view transform, for both data sets. Note
that the compression efficiency of the SA-DCT coder largely
relies on the prediction structure involved and, therefore, can
cover a wide range. To maintain the same random access ca-
pabilities for both coders, the levels of prediction are kept the
same as the levels of inter-view wavelet transform in the pro-
posed coder. More specifically, the two-level inter-view trans-
form corresponds to 1/4 of the views being intra-coded.

From the rate-PSNR curves in Fig. 10, we can see that the
proposed scheme exhibits superior compression efficiency over
the SA-DCT coder. For Bust, the proposed scheme outperforms
the SA-DCT coder by a gain of 1.5-2 dB in terms of object
PSNR, or equivalently a reduction of 20% in bit rate. In the case
of Buddha, the gain in object PSNR for the proposed coder is
around 2 dB, or equivalently the bit rate reduction is up to 30%.
The proposed coder further achieves better visual quality in its
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(a) (b) (c)

Fig. 11. Luminance component of Garfield: The reconstructed view from different coders, corresponding to the labeled points on the rate-PSNR curves in Fig. 9(a)
are shown on the top row, with the white box labeling the area magnified on the bottom row. (a) Proposed at 0.443 bpop. (b) SA-DCT at 0.445 bpop. (c) Texture

map at 0.437 bpop (bit rates include all color components).
(a) (b) (c)

Fig. 12. Luminance component of Penguin: The reconstructed view from different coders, corresponding to the labeled points on the rate-PSNR curves in
Fig. 9(b), are shown on the top row, with the white box labeling the area magnified on the bottom row. (a) Proposed at 0.305 bpop. (b) SA-DCT at 0.307 bpop.
(c) Texture map at 0.325 bpop (bit rates include all color components).

g

reconstructions. As shown in Figs. 13(a) and 14(a), there are VII. CONCLUSION
no blocking artifacts in the reconstructed views, which are ob-
servable in the magnified images of the corresponding SA-DCT We propose a novel approach for light field compression

coder results. that uses disparity-compensated lifting for inter-view wavelet
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(a)

Fig. 13.
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(b)

Luminance component of Bust: The reconstructed view from different coders, corresponding to the labeled points on the rate-PSNR curves in Fig. 10

are shown with the white box labeling the area magnified beside. (a) Proposed at 0.166 bpop. (b) SA-DCT at 0.148 bpop.

(b)

Fig. 14. Luminance component of Buddha: The reconstructed view from different coders, corresponding to the labeled points on the rate-PSNR curves in Fig. 10,
are shown with the white box labeling the area magnified beside. (a) Proposed at 0.297 bpop. (b) SA-DCT at 0.296 bpop.

coding. The lifting structure integrates disparity compensation
into wavelet coding and remains reversible. Reconstruction
of the acquired views is free of the distortion caused by the
irreversible resampling process. The proposed scheme also
supports scalability in image resolution, viewpoint, and recon-
struction quality.

The scheme is extended to accommodate unstructured light
fields by formulating the view sequencing problem as the TSP.

For light fields of an object with extraneous background, we
propose to use shape adaptation techniques, which improves
coding efficiency as well as visual quality of the reconstructed
views. An efficient shape coding method is described for cases
where the geometry model is approximate.

Experimental results from different types of light field data
sets show that the compression efficiency of the proposed ap-

proach outperforms current state-of-the-art techniques. Com-
pared with the texture map coder, a gain of more than 6 dB in
overall reconstruction quality at the same bit rate is observed,
or equivalently, a bit rate reduction of up to 70% at the same
reconstruction quality. Compared with the SA-DCT coder, the
proposed coder exhibits superior compression efficiency, im-
proves the support of scalability, as well as achieving better vi-
sual quality of the reconstructed views.
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