
M
obile visual search (MVS) sys-

tems recognize objects in the

user’s local environment,

retrieve interesting and im-

portant information about the objects, and

overlay the information in the mobile device’s

viewfinder. Figure 1 shows a typical example of

an MVS system. The system recognizes outdoor

buildings, overlays the address and phone

number of each building, and shows the build-

ing’s location on a map of the local neighbor-

hood. MVS systems have also been developed

for recognizing and augmenting media covers,

product packages, billboards, artwork, and

clothing, among other categories of objects.

Recent commercial deployments of MVS tech-

nologies include Amazon Flow, Kooaba Visual

Search, Google Goggles, Nokia Point and Find,

and Layar Browser.

For accurate object recognition in MVS,

images captured by the device’s camera are

compared against a database of labeled images.

A near-real-time response is desired to provide

seamless and continuous augmentation. Exist-

ing MVS systems typically query a database

hosted on a remote server and can achieve a

low latency, around 1 second, when the net-

work connection is fast and when the server is

highly responsive. However, slow transmissions

over a wireless network or congestion on a busy

server can severely degrade the user experience.

To address this problem, we explain how a

memory-efficient database of image signatures

stored entirely on a mobile device can enable

fast local queries. A locally stored database can

provide fast recognition anywhere and any-

time, regardless of conditions outside the

mobile device. To realize this goal, the image

signatures stored in the local database must be

extremely compact to fit in the small amount

of memory available on the mobile device,

capable of efficient comparisons across a large

database, and highly discriminative to provide

robust recognition for challenging queries.

With compact image signatures, a mobile

device can store a database containing images

of outdoor landmarks, book covers, or product

packages, among many more practical exam-

ples. When the database requires an update in

response to changes in the user’s environment

or interests, the same signatures should support

incremental database updates. Ideally, when

server and network conditions improve, these

compact signatures can be transmitted to a

remote server for expanded queries against a

remote database.

In this article, we present four methods

recently developed for constructing a compact

database from local image-based features and

compare their retrieval performances: tree his-

togram coding (THC),1 inverted index coding

(IIC),2 residual enhanced visual vector (REVV),3

and scalable compressed fisher vector (SCFV).4

Both THC and IIC use compression techniques

in conjunction with a bag-of-visual-words his-

togram to generate compact and discriminative

global image signatures. These two methods

require the storage of a codebook in the mobile

device’s memory and decoding of compressed

signatures during a query. In contrast, compact

REVV and SCFV signatures are generated from

bag-of-visual-words residuals. While achieving

the same high-level retrieval performance as

THC and IIC, REVV and SCFV utilize a much

smaller codebook and perform comparisons

directly in the compressed domain. We also

present several new improvements to REVV

and utilize them in an on-device image retrieval

system for the Android platform that achieves

low recognition latencies and is parsimonious
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in its memory usage. An on-device retrieval

framework becomes increasingly attractive as

processor speeds and memory capacity of avail-

able mobile devices rapidly improve.

On-Device Image Retrieval
Figure 2 shows an on-device image retrieval and

augmentation pipeline designed for low-

latency MVS. First, the motion of objects

between viewfinder frames is analyzed to detect

periods of low motion, when the user is most

likely to be interested in the viewfinder’s con-

tents. In each identified low-motion interval,

the feature-rich keyframes are automatically

selected by maximizing the expected number

of local features. Then, local features such as

scale-invariant feature transform (SIFT)5 or

speeded-up robust features (SURF)6 are ex-

tracted from the selected frames.

The next few steps in the pipeline shown in

Figure 2 cover the image retrieval process using

the local image features. Comparing the local

features directly would be too computationally

expensive and slow, so a global signature is usu-

ally generated from many local features

extracted for each image. A well-designed

global signature can summarize the most

important statistics of the local features and has

a compact representation of the overall image

characteristics to enable fast comparisons. By

comparing the query global signature against

all database global signatures, a ranked list of

database candidates is produced. The candi-

dates at the top of this ranked list are further

tested for geometric consistency of local feature

matches with respect to the query image.

Lastly, relevant augmentations are drawn for

the recognized objects in the viewfinder based

on the retrieved information. The positions of

the recognized objects are continuously

updated using the same motion analysis algo-

rithm that was previously used to detect low-

motion intervals.

Crucial to the success of the entire pipeline

is a global image signature that should be effi-

cient to compare, highly discriminative for

accurate differentiation of images from one

another in a large database, and compact for

convenient storage and fast access in memory.

Compared with a commodity server that often

has 16 to 64 Gbytes of RAM, a mobile device

generally has one to two orders of magnitude

less RAM. The MVS application must share this

small amount of RAM with many other applica-

tions concurrently running on the device.

Given such tight constraints on RAM

capacity, generating a compact visual database

is critically important. A compact database rep-

resentation will provide the following major

capabilities:

� More images can be indexed in the data-

base, increasing the image search range.

� Multiple databases can be stored in RAM,

allowing MVS systems to search for multi-

ple classes of objects.

� Each database can be quickly loaded into

RAM from the storage card.

� A memory-efficient database is faster to

search because fewer memory accesses are

required to complete each query.

Each of the four methods we discuss here

attempts to build compact visual databases.
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Figure 1. Mobile visual search (MVS) system. The system recognizes outdoor

buildings and augments the viewfinder with useful information about each

recognized building.
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Figure 2. On-device recognition and augmentation pipeline for a mobile visual

search system. Crucial to the success of the entire pipeline is a global image

signature, which is generated from a set of local features extracted for each

image.

15



Bag-of-Visual-Words Histograms
Many popular image retrieval systems are based

on bag-of-visual-words histograms.7–10 A code-

book of visual words is generated from a sample

set of local feature descriptors. For good

retrieval performance, the codebook must con-

tain a large number of visual words, for exam-

ple, from 100,000 to 1 million. To create such a

large codebook, hierarchical k-means clustering

can be employed,11 and the output of the

hierarchical divisive clustering process is a tree-

structured vector quantizer commonly called a

vocabulary tree.8

A vocabulary tree with depth D and a branch

factor k has kD leaf nodes at the bottom level D,

as depicted in Figure 3. After quantizing all fea-

ture descriptors for an image to the nearest leaf

nodes using a greedy search,9 the resulting tree

histogram acts as a global image signature. For

the tree parameters k ¼ 10 and D ¼ 6, there areIE
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1 million leaf nodes. Because there are typically

several hundred local features per image, a tree

histogram for the 1 million leaf nodes is

sparsely filled. This type of sparsity leads to

both excellent retrieval performance and effi-

cient calculations of histogram intersection

scores.8 During histogram intersection, the

count or term frequency (TF) in each histogram

bin can be multiplied by an inverse document

frequency (IDF) weight, resulting in the popular

TF-IDF scoring method.12

Storing a vocabulary tree with 1 million leaf

nodes requires approximately 64 to 128 Mbytes

of RAM on a mobile device, depending on the

dimensionality of some popular feature descrip-

tors.1 Although storing a tree of this size is feasi-

ble with most of today’s mobile devices, it will

greatly reduce the memory available for storing

tree histograms and running other applications

concurrently on the device. A large tree also

hinders the quick launch of MVS applications

because it may take tens of seconds to load a

large tree from the storage card into RAM. Thus,

it is desirable to achieve the same high level of

retrieval performance as a vocabulary tree but

require a substantially smaller codebook. We

will revisit this issue when discussing bag-of-

visual-words residuals later on.

Storing the tree histograms efficiently in

memory is possible with tree histogram coding

(THC)1 or inverted index coding (IIC).2 THC

takes a direct approach to compressing the tree

histograms, and IIC first transforms the tree his-

tograms into an inverted index structure and

then compresses the index. Both methods

require some selective decompression during a

query. Direct comparisons in the compressed

domain are desirable for faster retrieval, which

we discuss in more detail in the “Bag-of-

Visual-Words Residuals” section.

Tree Histogram Coding

Because tree histograms are sparse, a memory-

efficient representation of the tree histograms

should directly exploit this sparsity of the data.

Assume that the leaf nodes of the vocabulary

tree are enumerated in depth-first order. Then,

THC encodes the runs between consecutive

nonempty histogram bins and the counts

within those bins (see Figure 4).1 The sequence

of run values is compressed with an entropy

coder using the probability distribution of runs.

The sequence of count values is first quantized

with a Lloyd-Max quantizer and then com-

pressed with an entropy coder based on the

probability distribution of quantized counts.

Compressed bitstreams for the runs and the

counts of the database tree histograms can then

be efficiently stored in RAM. During a query,

the compressed bitstreams are decoded to ena-

ble comparisons against the tree histogram for

the current query image.

There is a design trade-off between achieving

the largest compression gain and reducing the

decoding time during a query, which greatly

impacts the overall system performance. On

the one hand, an arithmetic coder (AC) can be

used to encode the runs and quantized counts

to levels that are close to the respective infor-

mation theoretic entropy limits. On the other

hand, entropy coders that compress data into

byte-aligned codewords13 offer much faster

decoding than AC, at the cost of slightly lower

coding efficiency. For low-latency MVS, it is

usually preferable to use a byte-aligned entropy

coder to achieve low decoding delays while still

maintaining a high compression ratio.

Inverted Index Coding

An inverted index enables fast computation of

the similarity scores between the query and
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database tree histograms. Figure 5 shows the

inverted lists for two leaf nodes in a vocabulary

tree. For each leaf node, the associated inverted

list contains the identifiers (IDs) of all images

with at least one feature descriptor visiting the

leaf node and the counts of how often the

images have visited. Because only a small frac-

tion of the database images visit each leaf node,

the length of an inverted list is much smaller

than the size of the database, which is a key

property that enables fast score computation.

A memory-efficient representation of the

index is achievable using IIC.2 Assume the

image IDs are sorted in increasing order—for

example, i1;1 < i1;2 < … < i1;N1
for IDs in the

first list. Then, it is sufficient to encode the dif-

ferences between consecutive IDs with an

entropy coder. Difference coding is similar in

spirit to the coding of runs used in THC,

although the underlying statistics are different.

The counts can be effectively compressed using

a Lloyd-Max quantizer and an entropy coder.

Image IDs and counts for each leaf node are

encoded independently so that only the com-

pressed lists for leaf nodes visited during a query

need to be decompressed. As in THC, there is a

trade-off between high compression efficiency

and faster decoding. Byte-aligned coders can

compress the image database almost as well as

an arithmetic coder, while resulting in much

shorter decoding delays.2

Bag-of-Visual-Words Residuals
In contrast to the bag-of-visual-words histo-

grams discussed previously, a new trend in

image retrieval is generating compact and dis-

criminative bag-of-visual-words residuals.3,4,14,15

The residual representation also uses a code-

book of visual words, but it is typically of a

much smaller size (128 to 256 visual words).

Such a small codebook reduces the memory

requirement of the vector quantizer by a sev-

eral orders of magnitude compared with bag-

of-visual-words histograms. A histogram

formed over such a small codebook, however,

would not be discriminative enough for large-

scale retrieval. Instead, the primary signals

used to generate discriminative signatures are

now the quantization errors or residuals

between the feature descriptors and their near-

est visual words. It is possible to generate com-

pact and discriminative residuals with REVV3

or SCFV.4 In contrast to THC and IIC, REVV

and SCFV enable signature comparisons

directly in the compressed domain.

Residual Enhanced Visual Vector

The algorithm for generating and comparing

REVV signatures is illustrated in Figure 6. First,

using a codebook of k visual words—for exam-

ple, k ¼ 128 to k ¼ 256—an image’s local fea-

ture descriptors are quantized to the nearest

visual words, and residual vectors between the

descriptors and their nearest visual words are

computed. Second, for each visual word, the

mean of the residual vectors for that visual

word is calculated. Third, a nonlinear power

law transform is applied to the residual vectors

to reduce the detrimental influence of peaky

components. Fourth, for each visual word, the

residual vector is projected onto a set of eigen-

vectors obtained by linear discriminant analysis

(LDA). Finally, the REVV vectors are binarized

based on the sign of each component, andIE
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weighted correlations are calculated for the

query REVV signature and every database REVV

signature.

To improve retrieval performance, the Ham-

ming distance hi at the ith visual word is

weighted by a factor wi that distinguishes

between informative and noninformative

observations. Specifically, we use wi ¼ w1
i �w2

i ,

where w1
i and w2

i are defined as follows. First,

w1
i ¼ Pm hið Þ= Pm hið Þ þ Pnm hið Þð Þ½ �b, where hi is

the Hamming distance between the binarized

query and database residuals for the ith visual

word, and Pm hð Þ and Pnm hð Þ are the probabil-

ities that matching and nonmatching residuals

have Hamming distance h, respectively. For

b > 1, this power law transformation rewards

visual words that generate a low Hamming dis-

tance. Second, w2
i ¼ log m �Nmax= N qi;1

� �
þ

��

…þN qi;m

� ���
. Here, qi;j refers to the jth part of

the binarized query residual for the ith visual

word. N qi;j

� �
j ¼ 1; …; mð Þ is the number of

times that the jth part of a binarized database

residual lies within Hamming distance ht of qi;j

at the ith visual word. Nmax is a large number

that serves as an upper bound for N qi;j

� �
—for

example, Nmax is the number of images in the

database. This weight can be interpreted as an

IDF weight for patterns in Hamming space.

When all the weighted Hamming distances

are added, a normalization is required to

account for different number of features in dif-

ferent database images. In previous work,7 we

normalized the score for each database image

by Nd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dLDA Idj j

q
, where dLDA is the number

of LDA eigenvectors per visual word and Id is

the set of visual words visited by a database

image. Because the value jIdj can vary signifi-

cantly between database images, we apply

a variance-stabilizing transformation16 to gen-

erate the new normalization factor: Nd ¼
dLDAjIdj
� �c

, where 0 < c < 0:5.

Compressed Scalable Fisher Vector

Recently introduced, the SCFV is also a global

signature based on visual word residuals.

Because of its excellent retrieval performance

and compactness, the SCFV has been selected

by the MPEG Compact Descriptors for Visual

Search (CDVS) subgroup for adoption into the

CDVS Test Model.17 SCFV signatures are gener-

ated by the pipeline depicted in Figure 7, which

has similarities to the pipeline for generating
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REVV signatures. First, the local feature descrip-

tors are transformed by a power law that

reduces the detrimental influence of peaky

components. Second, each descriptor vector is

reduced in dimensionality using principal com-

ponent analysis (PCA). Next, the PCA-projected

descriptors are quantized using a Gaussian mix-

ture model (GMM). Gradient vectors with

respect to the GMM centroids are generated for

the subsequent formation of a compact and dis-

criminative signature. Dimensionality reduc-

tion of the feature descriptor is performed prior

to the GMM stage because the GMM parame-

ters can be more effectively learned on vectors

of lower dimensionality. Then, the residual vec-

tors are binarized depending on the sign of

each component. Finally, weighted correlations

between the query signature and database sig-

natures are computed to generate a ranked list

of database candidates.

SCFV offers a scalable representation that

can be adjusted depending on the memory

budget. For a small memory capacity, SCFV

selects a small number of centroids in the GMM

and retains only the gradient vectors for these

centroids. As memory capacity increases, the

set of selected centroids can be enlarged to yield

a more discriminative signature. The basic ver-

sion of the SCFV utilizes the gradient vector

with respect to the Gaussian mean in the

GMM. If additional memory is available, the

discriminative capability of the SCFV can be

enhanced by also utilizing the gradient vector

with respect to the Gaussian variance.

Performance Evaluation of
Compact Databases
To assess the performance of an MVS system

that uses on-device image retrieval, we first

obtained the retrieval performance and mem-

ory usage on two publicly available datasets

that are commonly used for benchmarking.

Then, we measured the query latency in an

Android implementation of on-device image

retrieval.

Evaluation for Stanford Mobile Visual

Search Dataset

We measured the retrieval performance on the

publicly available Stanford Mobile Visual

Search (SMVS) dataset,18 which contains 3,300

query images and a database of 1 million

images. Figures 8a and 8b plot the retrieval

recall and precision versus database size for

THC, IIC, and REVV on the SMVS dataset. Both

THC and IIC use a vocabulary tree with 1 mil-

lion leaf nodes, multipath greedy-10 nearest

neighbor search,9 soft binning with three leaf

nodes per feature descriptor,10 and TF-IDF

weighting.12 These parameter settings for the

vocabulary tree have been found to yield high

retrieval performance. REVV uses a codebook of

128 visual words. All three schemes use SURF

features with 64-dimensional descriptors.6 As

we can see from Figure 8, REVV achieves com-

parable retrieval recall and precision as THC

and IIC with a much smaller codebook.

Figure 8c plots the RAM usage for a database

of 10,000 images contained in the SMVS dataset

and clearly shows the advantage of REVV over

THC and IIC for on-device image retrieval.

Memory usage is divided between the database

signatures and the auxiliary data. For THC and

IIC, the auxiliary data consists of a vocabulary

tree and a set of IDF weights. For REVV, the aux-

iliary data consists of a codebook of visual

words, a set of LDA eigenvectors, and weights

used for the similarity calculation. Both THC

and IIC use substantially more RAM than REVV

in the database signatures and auxiliary data.

Thus, it is much easier to deploy a REVV-based

image retrieval pipeline on a mobile device

with small RAM capacity.

Evaluation for MPEG Compact Descriptors

for Visual Search

We also compared the retrieval performance of

THC, IIC, REVV, and SCFV on the MPEG CDVS

dataset,17 which contains 8,313 query images

from five classes (graphics, paintings, video

frames, landmarks, and common objects) and aIE
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database of 1 million images. In this experi-

ment, all four schemes use the same SIFT fea-

tures.5 Figures 9 shows the precision at rank 1

and the mean average precision of THC, IIC,

REVV, and SCFV for the five different classes.

Overall, all four schemes obtain comparable

retrieval performance. Figure 9c plots the RAM

usage for a database of 10,000 images contained

in the MPEG CDVS dataset. Similar to the

results of the SMVS dataset, both THC and

IIC use substantially more RAM than REVV

and SCFV in the database signatures and auxili-

ary data.

Implementation on Android Smartphone

Using REVV, we have implemented an MVS sys-

tem for recognizing outdoor landmarks and

media covers on a Samsung Galaxy S3 smart-

phone, which has a 1.4 GHz processor and

1 Gbyte of RAM. A database of 10,000 images

was indexed on the device. We measured the

system latency for 400 different queries of

media covers and landmarks, and we plotted

the distribution of latencies in Figure 10a. Var-

iations in the latency are mainly caused by

different numbers of local features for the dif-

ferent objects. On average, each query required
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0.4 seconds, with 56, 20, and 24 percent of the

time spent on feature extraction, database

search, and geometric verification, respectively

(see Figure 10b). Importantly, this low latency

can be achieved anywhere and anytime, inde-

pendent of any adverse network conditions or

server congestion.

Conclusions and Outlook
Our experimental results show that low-latency

MVS systems can be constructed with local fea-

tures and memory-efficient image databases.

On-device image retrieval enables object re-

cognition with low processing delay and with-

out any potentially adverse effects from poor

network conditions or server congestion. In

particular, we have shown that compact and

discriminative bag-of-visual-words residuals

can be created with a small codebook, enabling

an effective, easy-to-deploy image retrieval

pipeline.

This work has focused on retrieval using a

database stored locally on the device, with-

out the need to query a remote server. Fur-

ther study is required on how to efficiently

update the local database on the mobile

device with new data generated and stored

on a remote server, including how to perform

the updates during periods when the network

conditions are favorable. Similarly, efficient

on-device caching, including how to quickly

transfer a compact database from the storage

card to RAM in response to changes in the

user location or other environmental con-

text, deserves more attention. Compact

global signatures can be beneficial for fast

database updates and caching because small

amounts of data need to be transmitted,

transferred, and stored. MM
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