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Abstract

We present a method that unifies tracking and video
content recognition with applications to Mobile Aug-
mented Reality (MAR). We introduce the Radial Gradi-
ent Transform (RGT) and an approzimate RGT, yield-
ing the Rotation-Invariant, Fast Feature (RIFF) de-
scriptor.  We demonstrate that RIFF is fast enough
for real-time tracking, while robust enough for large
scale retrieval tasks. At 26x the speed, our tracking-
scheme obtains a more accurate global affine motion-
model than the Kanade Lucas Tomasi (KLT) tracker.
The same descriptors can achieve 94% retrieval accu-
racy from a database of 10* images.

1. Introduction

Mobile Augmented Reality (MAR) systems rely
on two key technologies, visual tracking and recogni-
tion. These two components are often used as com-
plementary pairs, where periodic recognition results
are bridged by tracking the recognized content. Some
MAR systems, such as Taylor et al. [1], have elimi-
nated tracking by performing recognition at sufficiently
high frame rates. However, such approaches inherently
suffer from temporal coherency challenges, and large
memory requirements. If neighboring frames do not
return consistent results then jitter may occur. Addi-
tionally, at video frame rates, the redundancy between
successive frames is extremely large. Consequently, it is
inefficient to perform a full recognition on every frame.

In this work we aim to exploit the redundancy be-
tween frames for unifying tracking and recognition.
To do so we must extract information at video frame
rates that is useful for both recognition and tracking.
Achieving such frame rates can be quite challenging
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on handheld devices used in many MAR systems. We
solve this challenge by designing a local feature descrip-
tor that is both robust and extremely fast to compute.
Very little effort is then needed to achieve both tracking
and recognition.

1.1. Prior Work

With the introduction of highly capable smart-
phones, there has been much recent interest in com-
bining tracking and content recognition for MAR [2, 3,
4,5, 6, 1]. Systems have been proposed to track video
content using feature descriptors, including motion vec-
tor tracking [7], SURFTrac [2], and patch tracking [5].
There have been numerous systems for image and video
content recognition using natural feature descriptors.
Many of these systems rely on a Histogram of Gradi-
ents (HoG) descriptor similar to SIFT [§], SURF [9],
DAISY [10], or CHoG [11].

For this work, we are interested in systems which
perform simultaneous tracking and recognition. Wag-
ner et al. [4, 5, 6] have made significant progress to-
wards such systems on mobile phones. However, their
systems use different methods for tracking (Patch-
Tracker) and for recognition (PhonySIFT or Pho-
nyFERNS). Klein and Murray [12] have implemented
parallel tracking and mapping on a mobile phone,
which allows them to track and localize points in space.
However, their system does not recognize content. Ide-
ally, the same data could be used for tracking and
recognition, however, most prior recognition systems
are prohibitively slow to also use for tracking.

The work by Taylor [13, 1] has largely eliminated
tracking by applying a high-speed recognition system
at video frame rates. However, their system requires a
large amount of memory and database redundancy, and
is not yet optimized for real-time operation on hand-



Figure 1. Illustration of radial gradients. The gradient, g,
is projected onto a local, radial coordinate system (r,t).
When the interest point, c, is rotated by 6 the radial gra-
dients are the same.

held devices. More importantly, it is wasteful to per-
form full content recognition on every frame of a video
stream because adjacent frames are highly correlated.

For unification, we need a descriptor that can be
computed at video frame rates on a handheld device.
Therefore, we wish to have a very simple descriptor,
while maintaining state-of-the-art robustness. Oth-
ers have proposed extremely fast descriptors [14, 1],
however, the robustness of these descriptors is sacri-
ficed. As a starting point, we use our prior work on
CHoG [11], which has been shown to perform well at
very low bitrates. For speed, we remove the orientation
assignment phase of keypoint detection, and instead
propose a Rotation-Invariant, Fast Feature (RIFF).

There are two prominent techniques for rotation
invariance in the current literature. The first is us-
ing steerable filters, often with descriptor permuta-
tion [10, 15]. This method suffers from high computa-
tional overhead of computing many filter orientations.
The second technique is to treat rotation as a circu-
lar shift and use the magnitude of the Fourier trans-
form [16, 17]. This method is often not sufficiently ro-
bust to viewpoint variation. An additional technique
has been propsed by Brasnett and Bober [18], and
included in the MPEG-7 Image Signatures standard.
Their method computes scalar statistics over circular
regions. Though these signatures are rotation invari-
ant, they are not robust to viewpoint variation.

1.2. Contributions

In this work we present the RIFF descriptor, which
provides state-of-the-art robustness and speed. We do
so by presenting a gradient transform that is extremely
simple to compute, and leverages on the proven meth-
ods of SIFT and CHoG. We then use RIFF for tracking
in real-time on a handheld device. Our tracker pro-
vides more accurate results than the KLT tracker [19],
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Figure 2. Illustration of rotation invariance with the RGT.
A database patch (top left) produces a gradient histogram
in both the xy (top middle) and radial (top right) domains.
Similar histograms are extracted from an upright query
patch (center left) and its rotated version (bottom left). We
note that the xy-gradient histograms (center column) ro-
tate with the patch, while the radial-gradient histograms
(right column) maintain the same shape across all rows.

at 26 x the speed. We show that RIFF is also capable
of large-scale retrieval tasks with up to 10° images.

In the rest of the paper, we first introduce and eval-
uate the RIFF descriptor in Section 2. We then show
how to use RIFF for real-time tracking in Section 3,
and evaluate the tracker’s performance in Section 4.
Finally, in Section 5, we demonstrate how RIFF track-
ing can be used with content recognition systems.

2. Rotation-Invariant Descriptors

Any image recognition algorithm for handheld de-
vices must be rotationally invariant. Typical feature
descriptor based systems, such as SIFT [8] and SURF
[9], assign an orientation to interest points before ex-
tracting descriptors. Some systems, such as [15], use
reorientable descriptors, and others, such as MPEG-7
[18], use rotation invariant transforms.

To design a feature descriptor that is fast enough
to use at video frame rates on handheld devices we
must simplify the computation as much as possible.
To achieve 30 frames per second (fps) with 640x480
frames on a 600 MHz processor, we can only expend
65 cycles per pixel. In practice, there are even fewer



cycles available to the MAR application. Because of
this constraint, we choose to use orientation invariant
descriptors which eliminate the computation of finding
an orientation and interpolating the relevant pixels.

2.1. Gradient Binning

To design RIFF, we start with a HoG type descriptor
and identify the two parts of the pipeline that are not
rotation-invariant: spatial binning and gradient bin-
ning. To make gradient binning invariant we apply
an invertible, spatially-varying transform. By rotating
the gradients to the proper angle, we achieve rotation
invariance with no loss of information, yielding the Ra-
dial Gradient Transform (RGT).

As shown in Figure 1, we choose two orthogonal
basis vectors to provide a local, polar reference-frame
for describing the gradient. These basis vectors, r and
t, are the radial and tangential directions at a point p,
relative to the center of the patch, c. We define Ry as
the rotation matrix for angle 6, yielding

p—c

lp —cll’
By projecting onto r and t, we can decompose g into
its local coordinate system as (¢gr) r+(g"t) ¢, such that
the gradient can be represented in the local radial co-
ordinate system as the vector (¢%r,¢g™t). Now assume
that the patch has been rotated about its center by
some angle, 6. This yields a new local coordinate sys-
tem and gradient

t=R=zr
2

(1)

Rogp=1p', Rer=r', Ret=1t, Reg=4g.

The coordinates of the gradient in the local frame are
invariant to rotation, which is easily verified by

(g’Tr', g'Tt') ((Reg)T Ror, (Rog)" Ret)
(9" R§Ror, "Ry Rot)
(g"r, g"t) (2)

All gradients are rotated by the same angle and Ry is
a one-to-one mapping. Thus, the set of gradients on
any given circle centered around the patch is invariant
to rotation, as shown in Figure 2.

Given these rotation-invariant gradients, we apply a
binning technique, as in CHoG [11], to produce his-
tograms of gradients which comprise the descriptor.
We bin the gradient histogram to reduce its dimension-
ality, while maintaining robustness. Figure 3 shows the
gradient binning centers and Voronoi cells which are
used for RIFF. We show a vector quantizer, VQ-17,
and a scalar quantizer, SQ-25. Vector quantization is
flexible and can be matched to the gradient statistics,
while scalar quantization is extremely fast.
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Figure 3. With our spatial binning configuration, Annuli,
we can gain a 2x speedup by only sampling the gray pixels.
Also shown are the bin centers (blue) and Voronoi cells (red)
for histogram quantization. The vector quantizer (VQ-17)
is more flexible, while the scalar quantizer (SQ-25) is faster.

2.2. Spatial Binning

Now that we have discussed rotation-invariant gra-
dient binning, we consider how to perform spatial bin-
ning. A single gradient histogram from a circular patch
would be rotation-invariant, but would not be suffi-
ciently distinct. To improve distinctiveness while main-
taining rotation invariance, we subdivide the patch into
annular spatial bins. An example of this Annuli spatial
binning configuration is shown in Figure 3. Note that
there is a trade-off in performance between the number
of annuli and their width. More spatial bins increases
distinctiveness, but narrower annuli decreases robust-
ness. We typically use four annuli with a total diameter
of 40 pixels.

2.3. Speed Enhancements

We now discuss how to enhance the speed of our pro-
posed descriptors to make them amenable to real-time
tracking on a handheld device. Since we have removed
the orientation assignment stage, we can simply ex-
tract the descriptor from an upright patch around the
interest point. This eliminates the costly step of inter-
polating pixels.

Approximate RGT. A naive implementation of the
RGT would require a large number of costly floating-
point matrix multiplications. Even using fixed-point
arithmetic to speed up the computation would add sig-
nificant complexity to the descriptor. However, the
exact r and t basis vectors can be approximated by a
simpler pair, 7 and £. As seen in Figure 4, these approx-
imate basis vectors are quantized to 45°, which allows
us to directly compute the gradient along that direction
with no additional cost. This gives us an Approximate
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Figure 4. Hlustration of the RGT basis vectors (left), and
the ARGT basis vectors (right). Gradients along the ARGT
bases can be efficiently computed directly from pixel data.

Radial Gradient Transform (ARGT) that is computed
by finding the differences between neighboring pixels
with the appropriate normalization.

Histogram Estimation. Local HoG descriptors
capture the statistics of image content around an inter-
est point. Assuming the image content of two interest
points is the same, then the distribution of gradients
should be similar. This underlying distribution is esti-
mated by a histogram of samples, with more samples
leading to a better estimate. However, each sample re-
quires computing and quantizing the gradient. Hence,
there is a trade-off between the speed of computation
and the quality of the estimate, via the number of sam-
ples. We can improve the speed, with minor degrada-
tion to the estimate, by subsampling pixels around the
interest point. Such a scheme is shown in Figure 3,
where the gray pixels are used to estimate the HoG.

Scalar Quantization. Once we have computed the
ARGT, we quantize the gradient histograms to con-
struct our descriptor. We do so in the same way as
CHoG [11], however, general vector quantization can
be too slow for real-time performance on a handheld
device. This is because gradient binning is performed
an the inner most loop of the RIFF algorithm. To
meet our tight speed constraints, we use a 5x5 scalar
quantizer in place of a vector quantizer. This yields a
100-dimensional RIFF descriptor.

2.4. Descriptor Evaluation

The best way to compare feature descriptors without
the rest of the image matching apparatus is to use the
ROC curve. We generate ROC curves using the meth-
ods of Winder et al. [15], using their Liberty dataset.
The resulting ROC curves are shown in Figure 5. The
RIFF descriptor suffers some performance loss relative
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Figure 5. Receiver operating characteristics for the Liberty
dataset. RIFF underperforms SIFT, but performs signif-
icantly better than MPEG-7 Image Signatures. Approxi-
mating the radial gradients does not effect performance.

to SIFT due to fewer spatial bins. Since the SIFT de-
scriptor is not orientation invariant, we also compare
against MPEG-7 Image Signatures, which perform sig-
nificantly worse than RIFF. Note that there is no per-
formance loss by using the ARGT instead of the RGT.

3. Tracking

Given an extremely fast, high-quality feature de-
scriptor, we can combine tracking and recognition by
using the same descriptors for both tasks. This section
discusses how we use these descriptors for tracking.

First, we apply the FAST [20] interest point detec-
tor on each level of an image pyramid. For speed we
omit non-integer levels of the pyramid, as in [13]. This
provides good coverage in scale space, while not requir-
ing any pixel interpolation beyond 2x downsampling.
When used for recognition, any lack of coverage in scale
space can be overcome by redundancy in the database.

These descriptors are then matched to spatially
neighboring descriptors in the previous frame. If two
descriptors fall within a fixed radius (8 pixels) then
they are considered candidates for a match. The best
candidate is then chosen as that with the minimum dis-
tance in the descriptor domain, subject to a distance
threshold. We use KL-divergence, which provides the
best matching performance, as shown in [11].

To enable descriptor matching at very high frame
rates, we use a fast hashing and spatial binning of
matching candidates according to their location in the
frame. We divide the frame into a spatial grid and place
the current frame’s descriptors into the bin from which



Figure 6. Sample frames from the Laptop (top) and Street
(bottom) videos. Laptop contains pan, zoom, and rotation,
while Street only contains panning. The videos are 320x 240
at 15 fps. The frame number is listed below the frame.

it was detected, as well as into the eight neighboring
bins. This binning allows for fast lookup of spatial
neighbors between frames. To determine matching can-
didates, we simply find the bin into which the current
frame’s descriptor falls. This bin contains a short list
of all neighboring descriptors from the previous frame.

This matching technique provides feature matches
that are sufficiently robust and free of outliers such
that no outlier removal is required. To track the global
movement of the frame, we compute a least-squares
solution to an affine model between the current and
previous frames. The accuracy of this affine model is
discussed in Section 4.

At no additional computational cost, we compile a
backlog of previous frames, their matches, and affine
models. Having this temporally dense information al-
lows us to achieve quality recognition with a very mod-
est number of descriptors per frame.

4. Tracking Evaluation

To evaluate the performance of our tracking scheme,
we compare it with a standard implementation of the
KLT tracker [19], which detects interest points and
tracks them using image intensity. We compare the
tracker’s speed and its resulting global affine models.
For both RIFF and KLT, we track 100 features through
two 15 fps QVGA videos of a laptop and a street. These
videos are illustrated in Figure 6. To compare the
speed, we ran both trackers on a handheld and lap-
top computer. The handheld is a Nokia N900 with a
600 MHz ARM processor, and the laptop is an IBM
T43 with a 1.8 GHz Pentium M processor.

Figure 7 plots the global affine model resulting from
tracking the Laptop dataset. The model is relative to
the first frame. The top plot shows the offset parame-
ters of the affine model. The bottom plot shows the lin-
ear portions of the affine model, where A7 and Ass are
the diagonal elements. We see that the model starts off
as the identity matrix, then pans right and down before
zooming in while rotating. Then, at frame 150, the off-
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Figure 7. Affine model, relative to the first frame, for both
KLT (dashed) and RIFF (solid) tracking with the Laptop
sequence. The top plot shows the offset parameters of the
model, and the bottom plot shows the linear portion.

diagonals approach +1 while the diagonals approach
0, indicating a 90° rotation. The camera motion then
essentially reverses itself.

We note that the difference between the models ob-
tained by the KLT and RIFF trackers is very small.
This shows that RIFF tracking provides global affine
models that can be used in place of those provided by
the KLT tracker. Additionally, we would not expect
the models to be identical, as the two trackers use dif-
ferent interest point detectors, and thus track different
points. Since the scene content is 3D, tracking different
points will lead to different affine models.

To determine the accuracy of each tracker, we cre-
ated palindromic versions of Laptop and Street, where
the video is played forward and then backward. Any
point tracked through such a video should return to
its starting position. Figure 8 shows the start and end
positions of a rectangle tracked with RIFF and KLT.
In both sequences, RIFF is more accurate than KLT.

Figure 9 shows the speed in fps for both tracking
schemes on a laptop and handheld computer. For these



Figure 8. Tracking results from palindromic versions of Lap-
top and Street. A rectangle from the first frame (blue) is
tracked forward and backward through the sequence, and
should end up in the same place in the final frame. The
final RIFF rectangle (green) is closer to the original than
the KLT rectangle (red).
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Figure 9. Frame rate for KLT and RIFF on a PC and Hand-
held computer. RIFF is faster than KLT by 10x on PC,
and 26x on Handheld.

timings, the frames were preloaded into memory, and
thus no disk or camera operations are included. We see
that on the PC, RIFF tracking is 10x faster than KLT
tracking, and this speedup is amplified to 26x on the
handheld. The slow performance of KL'T on the hand-
held is likely due to floating point arithmetic. Note
that RIFF tracking achieves 36 fps on the handheld,
which leaves enough time for camera operations and
recognition while maintaining real-time performance.

5. Recognition

Using RIFF tracking, we can perform real-time fea-
ture descriptor extraction and tracking on a handheld
device. Additionally, we have a buffer of past tracked
features and global affine models. This means that,
even though we only extract 100 features per frame,
over the course of one second at 15 fps we have ex-
tracted and tracked 1500 features. This provides suffi-
cient information for video content recognition.

The unification of tracking and recognition has the
additional benefit of providing temporal coherence to
the recognition data. We can infer the robustness of
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Figure 10. Example image pairs from the CD dataset. A
clean database picture (top) is matched against a real-world
picture (bottom) at various orientations.

feature descriptors by examining their path through
the video stream. This information can be used for
pruning irrelevant data from the query features. In
addition to pruning spurious interest points, we can
improve the description of a robust interest point by
obtaining more samples from neighboring frames.

For many MAR applications we would like to period-
ically query the video stream against a local or remote
database. The querying may be done at a regular inter-
val (say 1 Hz) or only when significant new content is
present, which can be readily inferred from the tracking
data. For outdoor MAR applications, such as [3], we
may use GPS information to prefetch an appropriate
local database, thus limiting the size of the database
to a few thousand. For MAR applications with larger
databases, such as CD recognition [21], the tracking
data can be compressed and queried to a server.

In this section, we show how ROC performance
translates into pairwise image matching and retrieval
performance. Both experiments use images from a
database of 10° CD/DVD/book cover images [22].
Sample images from this CD dataset are shown in Fig-
ure 10. Note that the 500x500-pixel database images
are clean, while the 640x480-pixel queries contain per-
spective distortion, background clutter, and glare.

5.1. Pairwise Matching

We wish to test not only the matching performance,
but also the rotational invariance of our descriptor.
To do so, the query images are rotated in 5° incre-
ments, and matched against the corresponding up-
right database images. We use a ratio-test followed by
RANSAC to ensure that the resulting feature matches
are correct. RIFF and SIFT use the same Difference
of Gaussian (DoG) interest points, while SURF uses
fast Hessian points. The matching results are shown in
Figure 11, where we plot the average number of feature
matches versus the amount of rotation, averaged over
10 image pairs.
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Figure 11. Pairwise matching at various image rotations for
the CD dataset. RIFF performs comparably to SURF, and
is completely rotation invariant. The SURF interest point
detector causes significant variance with orientation.

From these results, we see that the DoG interest
point detector is nearly isotropic, leading to a flat re-
sponse for all of the schemes using it. For reference, we
have included the SURF pipeline which suffers from
significant anisotropy. This is due to the box filter-
ing used in the interest point detector. As shown by
the ROC performance, RIFF performs comparably to
SURF. Both proposed descriptors are orientation in-
variant, as seen by the flat response.

5.2. Database Retrieval

For retrieval evaluation, we vary the database size
from 2000 to 10° images, and use 1000 query images.
We measure the retrieval error rate as the percentage of
query images not correctly retrieved and verified with
our pipeline. We briefly describe our retrieval pipeline,
which is similar to other the state-of-the-art systems,
such as [23, 24, 25, 26].

We first extract about 600 descriptors from DoG in-
terest points in each image. Using these descriptors,
we train a 10° leaf, 6 level, vocabulary tree [23]. We
use symmetric KL-divergence as the distance measure
for both training and querying, since it performs better
than Le-norm for HoG descriptors [27]. KL-divergence
can be incorporated into the k-means clustering frame-
work because it is a Bregman divergence [28]. For more
robustness, we use soft-assignment of descriptors to the
3 nearest centroids, as in [25].

We compute a similarity between the query and
database features using the standard Term Frequency-
Inverse Document Frequency (TF-IDF) scheme that
represents query and database images as sparse vectors
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Figure 12. Accuracy of image retrieval from a database of
CD, DVD, and book covers. The RIFF descriptor performs
well at the retrieval task for all size databases, though ac-
curacy declines as the database size gets very large.

of visual word occurences. We also use the weighting
scheme proposed by Nistér [23], which reduces the con-
tribution of less descriminative descriptors. Once the
best 50 images are selected from the TF-IDF voting
we perform pairwise matching with a ratio-test and a
geometric consistency check.

Figure 12 shows the results of database retrieval us-
ing RIFF-Annuli, SURF, and SIFT. SIFT outperforms
SURF and RIFF at all database sizes, maintaining 96%
accuracy up to 10% images. SURF performs slightly
worse, dropping to 95% at 10° images, while RIFF-
Annuli achieves 77% accuracy at 10® images. Note that
the 94% accuracy of RIFF at 10* images is sufficient
for many recognition tasks.

6. Conclusions

We have presented a method that unifies tracking
and video content recognition for MAR applications.
We have introduced the RGT and its approximation,
which yielded the RIFF descriptor. We have demon-
strated that RIFF is fast enough for real-time tracking,
and robust enough for large scale retrieval tasks. We
showed that RIFF achieves 94% retrieval accuracy from
a database of 10% images. Our tracking scheme obtains
a more accurate global motion-model than the KLT, at
26 x the speed. These models and feature matches can
increase the robustness of video content recognition.
By coupling tracking and recognition, each part of the
system can take mutual advantage of each other in a
natural way. We expect future MAR applications to
benefit from such a unification.
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