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Abstract

Source coding with correlated decoder side information is considered. We impose the practical constraint
that the encoder be unaware of even the statistical dependencies between source and side information. Two
classes of rate-adaptive distributed source codes, both based on Low-Density Parity-Check (LDPC) codes, are
developed and their design is studied. Specific realizations are shown to be better than alternatives of linear
encoding and decoding complexity. The proposed rate-adaptive LDPC Accumulate (LDPCA) codes and Sum
LDPC Accumulate (SLDPCA) codes (of length 6336 bits) perform within 10% and 5% of the Slepian-Wolf bound
in the moderate and high rate regimes, respectively.
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1. Introduction

Asymmetric distributed source coding is de-
picted in Fig. 1. A finite-alphabet source X is
to be transmitted without loss using the least av-
erage number of bits. Statistically dependent side
information Y (not necessarily discrete) is avail-
able at the decoder only. The encoder must there-
fore compress X in the absence of Y , whereas the
decoder uses Y to aid the recovery of X. Slepian
and Wolf proved in 1973 that lossless compres-
sion is achievable at rates R ≥ H(X|Y ), the con-
ditional entropy of X given Y , for X and Y dis-
crete [1]. Observe that this rate bound is the same
as if Y were known to the encoder as well as the
decoder. Wyner and Ziv extended this result to
the cases of lossy compression [2] and non-discrete
X and Y [3].

The application of channel codes to source cod-
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Fig. 1. The asymmetric distributed source coding scenario

ing problems was proposed by Blizard [4] in 1969
and Hellman [5] in 1975. Slepian and Wolf [1] and
Wyner [6] noted the relationship between chan-
nel coding and source coding with side informa-
tion. Pradhan and Ramchandran revived the ap-
proach with their DISCUS framework [7]. The
distributed source encoder compresses X into its
syndrome S with respect to a channel code C.
Upon receipt of the syndrome, the distributed
source decoder can narrow down the possible val-
ues of X to the coset represented by S in C. It
then disambiguates X from among these coset el-
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ements as the most likely one given the corre-
lated side information Y . The impressive poten-
tial of this approach has been demonstrated by
various implementations of the system with turbo
codes [8] [9] [10] and Low-Density Parity-Check
(LDPC) codes [11]. In these schemes, achieving
compression close to the Slepian-Wolf bound de-
pends on choosing an appropriate channel code;
the dependencies between X and Y play the role
of the channel statistics in this context. If the
statistics of this ‘dependency channel’ are known
at both encoder and decoder, they can agree on
a good code and a rate close to the Slepian-Wolf
limit can be used.

For many practical applications, the statisti-
cal dependency between X and Y may not be
known at the encoder. Low complexity video cod-
ing via distributed source coding, for example,
treats a frame of video as the source X and its
prediction at the decoder as the side information
Y [12]. Since video data are highly non-ergodic,
the achievable compression ratio varies and can-
not be foretold by the encoder. In this situation,
a rate-adaptive scheme with feedback is an at-
tractive solution. The encoder transmits a short
syndrome based on an aggressive code and the
decoder attempts decoding. In the event that
decoding is successful, the decoder signals this
fact to the encoder, which then continues with
the next block of source data. However, if de-
coding fails, the encoder augments the short syn-
drome with additional transmitted bits, creating
a longer syndrome based on a less aggressive code.
The process loops until the syndrome is sufficient
for successful decoding. Obviously, this approach
is viable only if a feedback channel is available
and the round-trip time is not too long.

Punctured turbo codes [13] were used to imple-
ment rate-adaptive source coding with and with-
out decoder side information in [12] and [14], re-
spectively. The latter addressed the design of
the codes and puncturing via EXIT chart anal-
ysis [15]. Punctured LDPC codes [16] [17] [18],
though they may be applied to this problem,
perform poorly after even moderate punctur-
ing. Recently, Chen et al. presented a better
rate-adaptive distributed source coding architec-
ture with decoding complexity of O(n log n) [19],

where n is the blocklength of the code.
The primary contribution of this paper is the

development and design of LDPC-based rate-
adaptive distributed source codes that have bet-
ter performance than alternative codes of linear
complexity encoding and decoding. In Sec. 2
and 3, we introduce rate-adaptive LDPC Accu-
mulate (LDPCA) codes and Sum LDPC Accu-
mulate (SLDPCA) codes, respectively. Sec. 4
discusses properties of these codes and strate-
gies for their design. In Sec. 5, we compare the
performance of the two proposed classes of rate-
adaptive distributed source codes with the per-
formance of the turbo-coded system of [12] over
various code lengths and source and conditional
statistics.

2. LDPC Accumulate (LDPCA) Codes

As noted in Sec. 1, LDPC codes (in syndrome
code form) have been used effectively in fixed-
rate distributed source coding [11]. A näıve way
to use such a code as part of a rate-adaptive
scheme would be to transmit the syndrome bits
in stages and allow decoding after receipt of each
increment of the syndrome. However, the perfor-
mance of the high compression codes so derived
is very poor because their graphs contain uncon-
nected or singly-connected source nodes; these
structural features impede the transfer of infor-
mation via the LDPC iterative decoding algo-
rithm [20] [21]. Instead, we now present a method
for constructing LDPC-based rate-adaptive codes
for distributed source coding, whose performance
does not degrade at high compression ratios.

The LDPCA encoder consists of an LDPC
syndrome-former concatenated with an accumu-
lator. An example is shown in Fig. 2. The
source bits (x1, . . . , x8) are first summed mod-
ulo 2 at the syndrome nodes according to the
LDPC graph structure, yielding syndrome bits
(s1, . . . , s8). These syndrome bits are in turn
accumulated modulo 2, producing the accumu-
lated syndrome (a1, . . . , a8). The encoder buffers
the accumulated syndrome and transmits it incre-
mentally to the decoder. This encoder structure
can be recast straightforwardly as the encoder for
an extended Irregular Repeat Accumulate (eIRA)
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channel code [22]. The eIRA interpretation, how-
ever, treats the accumulated syndrome nodes as
degree 2 variable nodes, inducing a degree distri-
bution different to that of the underlying LDPC
code. Section 4 demonstrates that only this un-
derlying degree distribution is invariant under the
rate-adaptive operation of LDPCA codes. Hence,
we avoid conflating the concepts of LDPCA and
eIRA codes.

Fig. 2. The LDPCA encoder

The LDPCA decoder handles rate-adaptivity
by modifying its decoding graph each time it re-
ceives an additional increment of the accumu-
lated syndrome. First assume, for the sake of
argument, that the entire accumulated syndrome
(a1, . . . , a8) has been received. Then taking the
consecutive differences modulo 2 of these values
yields the syndrome (s1, . . . , s8). The syndrome-
adjusted LDPC iterative decoding method of [11]
can be applied on the same graph (shown in
Fig. 3a) that was used for encoding (s1, . . . , s8)
from (x1, . . . , x8). For decoding, the source nodes
are seeded with conditional probability distri-
butions of the source bits given the side infor-
mation, namely Pr{X1|Y }, . . . ,Pr{X8|Y }. Then
messages are passed back and forth between the
source nodes and the syndrome nodes (according
to the equations in [11]) until the estimates of the
source bits converge. The correctness of the re-
covered source values can be tested with respect
to the syndrome bits, with very small chance of
a false positive. When the number of received
bits equals the number of source bits, as in this

case, the performance achieved by transmitting
(a1, . . . , a8) is no different to that had by trans-
mitting (s1, . . . , s8) since the resulting decoding
graphs are identical.

Fig. 3. Decoding graphs if the encoder transmits (a) the
entire accumulated syndrome, (b) the even-indexed accu-
mulated syndrome bits, (c) the even-indexed syndrome
bits.

The modification of decoding graph structure
manifests at higher compression ratios. Consider,
for instance, a compression ratio of 2. In our
example, this corresponds to the transmission of
only the even-indexed subset of the accumulated
syndrome (a2, a4, a6, a8). The consecutive differ-
ence modulo 2 operation at the decoder then pro-
duces (s1 + s2, s3 + s4, s5 + s6, s7 + s8). Fig. 3b
shows the graph which would have encoded (s1 +
s2, s3+s4, s5+s6, s7+s8) from (x1, . . . , x8). This
graph maintains the degree of all source nodes
compared to Fig. 3a. Therefore, it can be used
for effective iterative decoding with source bit
seeding Pr{X1|Y }, . . . ,Pr{X8|Y }. Upon comple-
tion of decoding, the recovered source can be
tested against the syndrome to verify correct-
ness. For comparison, if the syndrome subset
(s2, s4, s6, s8) were transmitted instead of the ac-
cumulated syndrome subset, the decoding graph
(shown in Fig. 3c) would be severely degraded
and unsuitable for iterative decoding.

Finally, note that the encoding and decoding
complexity of these LDPCA codes is linear in
the number of edges, which is invariant under the
proposed construction. Moreover, the number of
edges is linear in the length of the code for a fixed
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degree distribution. Therefore, the complexity of
encoding and decoding is O(n), where n is the
blocklength of the code in bits.

3. Sum LDPC Accumulate (SLDPCA) Codes

Serially Concatenated Accumulate codes have
been proposed for the rate-adaptive distributed
source coding problem [19]. For this class of
codes, the encoder is the concatenation of an in-
verse accumulator with one or more rate-adaptive
base codes. The base codes considered in [19]
are simple product codes and extended Ham-
ming codes, yielding overall Product Accumulate
codes [23] and extended Hamming Accumulate
codes [24]. Both of these systems incur decod-
ing complexity of up to O(n log n) since that is
the soft decoding complexity for the base codes.
In this section, we consider using LDPCA codes
of Sec. 2 as base codes to create rate-adaptive
SLDPCA codes, which are linear in encoding and
decoding complexity with respect to their code
lengths.

The SLDPCA encoder is the concatenation of
a consecutive summer (i.e. inverse accumula-
tor) with an LDPCA encoder; an example is de-
picted in Fig. 4. Here, the source bits (x1, . . . , x8)
are consecutively summed into intermediate bits
(i1, . . . , i8), which are then coded in the same
fashion as in Fig. 2 to produce the accumulated
syndrome (a1, . . . , a8). As with the previous rate-
adaptive scheme, the encoder buffers the accumu-
lated syndrome and transmits it incrementally to
the decoder.

Although the SLDPCA decoder employs a dif-
ferent decoding algorithm, its rate-adaptive func-
tionality is the same as that of the decoder in
Sec. 2. That is, when the decoder receives each
increment of accumulated syndrome bits from the
encoder, it modifies the LDPC portion of its de-
coding graph to reflect this information.

To understand the decoding algorithm, first ob-
serve the following property of the encoder in
Fig. 4: the source bits (x1, . . . , x8) are the accu-
mulated sum of the intermediate bits (i1, . . . , i8)
modulo 2. In other words, (x1, . . . , x8) are the
output of a very simple IIR filter with input
(i1, . . . , i8). This means that the decoder can

Fig. 4. The SLDPCA encoder

employ the Bahl-Cocke-Jelinek-Raviv (BCJR) al-
gorithm [25] to obtain soft information about
(i1, . . . , i8) when the source nodes are seeded
with the conditional probability distributions
Pr{X1|Y }, . . . ,Pr{X8|Y }. Meanwhile, a single
iteration of the syndrome-adjusted LDPC decod-
ing algorithm of [11] provides different soft in-
formation about (i1, . . . , i8) originating from the
received accumulated syndrome bits. The soft in-
formation interchange at the intermediate nodes
works as follows: each incoming message to an in-
termediate node is answered by the net informa-
tion of all other incoming message to that node.
Simultaneous BCJR and LDPC decoding itera-
tions follow. Decoding continues in this way until
the estimates of the intermediate bits converge.
Finally, the source bits can be recovered from
the decoded intermediate bits by accumulation
modulo 2. Just like LDPCA codes, the correct-
ness of the recovered source values can be tested
with respect to the syndrome bits, with very small
chance of a false positive.

The decoding complexities of the BCJR and
LDPC iterations are linear in the code length
and the number of LDPC edges, respectively.
Once again, for a rate-adaptive set of codes with
fixed LDPC degree distribution on the interme-
diate nodes, the number of LDPC edges is linear
in the code length. Hence, the overall decoding
complexity is O(n); the encoding complexity of
SLDPCA codes is also O(n).
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4. Code Design

We now consider some properties of the pro-
posed LDPCA and SLDPCA codes and show how
to leverage existing LDPC design techniques.

We begin with the observation that the decod-
ing graph of Fig. 3b is obtained from the graph
of Fig. 3a by merging adjacent syndrome nodes.
The edges connected to each merged node are
those that were connected to one of its constituent
nodes, but not both (because double edges can-
cel out in modulo 2). Ensuring that no edges are
lost over several merging steps requires very care-
ful design of the lowest compression ratio code.

A simpler strategy to guarantee a constant
number of edges for all decoding graphs is to be-
gin the design with the highest compression ratio
graph. Knowing the transmission order of the
accumulated syndrome allows the derivation of
graphs for each of the lower compression ratio
codes. Each additional accumulated syndrome
bit received results in the division of a syndrome
node into two adjacent ones. The key to main-
taining a constant number of edges across all
graphs is to partition the edge set of the old syn-
drome node into the edge sets of the new pair.
Furthermore, this approach keeps invariant the
degrees of the source and intermediate nodes for
the LDPCA and SLDPCA codes, respectively.
Thus, the global degree distribution can be used
to tune the performance of the codes [26]. In fact,
degree distributions optimized for LDPC channel
codes (for example, using [27]) can be applied di-
rectly to LDPCA codes due to the similarity of
their decoding algorithms.

When the number of received bits equals the
number of source bits, there is an additional de-
sign objective: the equations that generate the
accumulated syndrome bits should be indepen-
dent in the source bits. So, for the coding rate
of 1, this guarantees decoding of the source via
straightforward linear algebra, regardless of the
quality of the side information.

Constructing the graphs from the highest com-
pression ratio code to lowest also has implica-
tions on local graph structure. Define a stopping
set A to be a set of source nodes, all of whose
(syndrome node) neighbors are connected to at

least two nodes of A. The stopping number of a
graph, the size of its smallest stopping set, affects
the performance of iterative LDPC decoding on
that graph [28]; the larger the stopping number
is, the more likely it is that decoding will succeed.
We now show that the generation of lower com-
pression ratio codes by the division of syndrome
nodes into pairs does not decrease the stopping
number of the graph. Suppose that the subset
of source nodes A is not a stopping set of the
higher compression ratio graph. So, there exists
a syndrome node sA that is singly-connected to A.
The graph for the lower compression ratio code is
obtained by dividing syndrome nodes into pairs,
such that the edge sets of the pair form a partition
on the edge set of the original syndrome node. If
sA is not divided in this way, it remains singly-
connected to A. If sA is divided, exactly one of
the resulting pair of syndrome nodes is singly-
connected to A. In both cases, A is not a stop-
ping set of the new graph. Hence, stopping sets
are not created by the syndrome division opera-
tion, so the stopping number does not decrease as
lower compression ratio codes are generated from
higher compression ratio ones. Moreover, various
stopping set elimination heuristics [29] [30] can be
applied to create the LDPC graph for the lowest
compression ratio code. Therefore, this construc-
tion of LDPCA and SLDPCA codes propagates
good local graph structure.

The design of LDPCA and SLDPCA codes,
thus, leverages existing work on degree distribu-
tion optimization and stopping set elimination.

5. Simulation Results

In this section, the performance of various
LDPCA and SLDPCA codes are compared with
respect to different LDPC degree distributions
and code lengths. Simulation results are also pre-
sented for different conditional statistics between
source and side information and different source
distributions. The LDPC subgraphs of all codes
presented here were constructed by the method
suggested in Sec. 4: starting with the highest
compression ratio graph, the other graphs are ob-
tained by successively dividing syndrome nodes
into pairs. We assume that the decoder can detect
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lossless recovery of the source bits perfectly. The
simulations also reflect the fact that decoding is
always successful if the number of received accu-
mulated syndrome bits equals the source length,
as long as the received bits are generated by in-
dependent functions of the source bits. The rate
points plotted are the average of 75 trials each.

Fig. 5 compares three LDPCA code systems of
differing degree distributions with rate-adaptive
turbo codes, all of source length 6336 bits, with
i.i.d. binary symmetric (BSC) statistics between
X and Y . The turbo codes, whose encoder is
specified in [13], are those used in [12]. The
regular LDPCA codes have a degree distribution
given by (δ3 = 1), where δr is the proportion of
nodes of degree r. One set of irregular LDPCA
codes has a degree distribution of (δ2 = 0.3, δ3 =
0.4, δ4 = 0.3). The other irregular LDPCA codes
shown have the following degree distribution se-
lected from [27]: (δ2 = 0.316, δ3 = 0.415, δ7 =
0.128, δ8 = 0.069, δ19 = 0.020, δ21 = 0.052). For
comparison, we demonstrate the extremely poor
performance of the underlying LDPC codes under
näıve incremental transmission of syndromes. We
also plot the performance of the irregular LDPC
code of fixed rate 0.5 and length 10000 bits, pre-
sented in [11]. The Slepian-Wolf bound indicates
the performance of an ideal distributed source
code; namely, rate equal to H(X|Y ).

Fig. 5. Performance of regular and irregular LDPCA codes
of length 6336 bits over i.i.d. BSC statistics

Fig. 6 compares two SLDPCA code systems of
differing degree distributions with rate-adaptive
turbo codes, all of source length 6336 bits, with
i.i.d. BSC statistics between X and Y . The turbo
codes are identical to those in Fig. 5. The regu-
lar SLDPCA codes have an LDPC degree distri-
bution over intermediate nodes given by (δ2 =
1), while the intermediate nodes of the irregular
SLDPCA codes have an LDPC degree distribu-
tion of (δ1 = 0.3, δ2 = 0.4, δ3 = 0.3). Figs. 5
and 6 indicate that LDPCA and SLDPCA codes
are superior to turbo codes over a large range of
rates. Moreover, some irregular codes can out-
perform their regular counterparts for the entire
range of rates. We demonstrate also that irregu-
lar LDPCA codes can perform within 10% of the
Slepian-Wolf bound at moderate rate, while ir-
regular SLDPCA codes can operate within 5% of
the bound at high rate.

Fig. 6. Performance of regular and irregular SLDPCA
codes of length 6336 bits over i.i.d. BSC statistics

The effect of varying the length of the codes is
demonstrated in Fig. 7, which compares codes of
length 396 and 6336 for BSC statistics between
X and Y . The turbo codes are once again from
[13]. Both sets of LDPCA codes have degree dis-
tribution of (δ2 = 0.3, δ3 = 0.4, δ4 = 0.3), and
both sets of SLDPCA codes have degree distri-
bution of (δ1 = 0.3, δ2 = 0.4, δ3 = 0.3). The
plot indicates that reducing the length of the code
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degrades compression performance slightly, if at
all. The discrepancy is not as large as for fixed-
rate distributed source codes [11] because rate-
adaptive codes are opportunistic. Over several
trials, even though the maximum rate required
by the short codes exceeds the maximum rate for
the long ones, the minimum rate for the short
ones is also less than that for the long codes.

Fig. 7. Performance of rate-adaptive codes of lengths 396
and 6336 bits over i.i.d. BSC statistics

Fig. 8 investigates the application of LDPCA
and SLDPCA codes to different conditional
statistics between X and Y . The two models con-
sidered are i.i.d. BSC and i.i.d. Z (in which ones
in X may be flipped into zeros in Y , but zeros in
X cannot be flipped to ones in Y ). The turbo,
LDPCA and SLDPCA codes are the same length
6336 as used in Fig. 7.

Fig. 9 compares the performance of LDPCA
and SLDPCA codes for BSC statistics between
X and Y , when the source X is biased and un-
biased. For the biased scenarios, X is modeled
to be 90% zeros and 10% ones. In this plot, the
turbo, LDPCA and SLDPCA codes are the same
length 6336 ones as those in Fig. 7. Note that,
when the source is so biased, the conditional en-
tropy of the side information does not exceed 0.5
bits. Figs. 8 and 9 show that the performance of
LDPCA and SLDPCA codes are not degraded by
asymmetries in conditional statistics and source
distribution.

Fig. 8. Performance of rate-adaptive codes of length 6336
bits over i.i.d. Z and i.i.d. BSC statistics

6. Conclusion

This paper presents rate-adaptive LDPCA and
SLDPCA codes for the case of asymmetric dis-
tributed coding in which the encoder is not aware
of the joint statistics between source and side in-
formation. Our constructions guarantee the per-
formance of the codes at all compression ratios by
fixing the LDPC degree distribution across them.
In addition, good local structure (with respect to
stopping sets) is propagated through the graphs
from low compression ratios to high.

The proposed rate-adaptive codes have been
demonstrated to be superior to linear encoding
and decoding complexity alternatives for asym-
metric distributed source coding. LDPCA and
SLDPCA codes (of length 6336 bits) are able to
perform within 10% and 5% of the Slepian-Wolf
bound in the moderate and high rate regimes,
respectively. We have also shown that the perfor-
mance of the codes diminishes only slightly when
the code length is reduced, and is not degraded by
asymmetries in conditional statistics and source
distribution.
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