Measurement of Human Visual Areas Across Individuals

Robert F. Dougherty - Alyssa A. Brewer - Alex A. Wade - Brian A. Wandell

Purpose

Characterize the position and size of human visual areas V1, V2 and V3.

Background

We measure activity in visual cortex with functional MR
-By stimulating different regions of the visual field in sequence, we create traveling waves of activity across cortex
-Retinotopic maps are derived from the phases of the traveling waves, which code position in the visual field

Color codes position in the visual field

Flatten cortical sheet to visualize data and fit templates

Methodological Issues

- All brains have been carefully hand-segmented following an initial automatic segmentation.
- All measurements are made on the 3d cortical surface to avoid the distortions induced by flattening.
-Talairach coordinates are computed based on hand-defined landmarks (AC, PC, mid-sagittal plane, and cerebral boundaries)

Data Processing

Visual areas are defined by fitting templates of the expected patterns of activity to the data. The templates are jointly deformed to fit the data by an affine transform followed by an elastic deformation that
minimizes the differences between the templates and the data

$$
\text { (Error), as well as the Strain Energy of the deformation field }(u, v) \text { : }
$$ Error $(u, v)=T I(x+u, y+v)-R I+T 2(x+u, y+v)-R 2$

Strain Energy $(u, v)=\int \frac{\lambda}{2}\left(u_{x}+v_{y}\right)^{2}+\mu\left(u_{x}^{2}+v_{y}^{2}+\frac{1}{2}\left(u_{y}+v_{x}\right)^{2}\right) d(x, y)$
(Where λ and μ are constants which determine the elasticity properties.)

Results

Foveal Confluence ($0-2 \mathrm{deg}$)

Conclusions

- Our measurements of the size and individual variance of V1 agree with recent post-mortem measurements (Andrews et al, 1997)
- V2 \& V3 surface area is correlated with V1 area across individuals (V1 explains 66% of V 2 and 44% of V 3 variance)
- Sulcal landmarks are more predictive than Talairach coordinates for V1/2/3 location

References

[^0]Wandell (1999) Computational Neuroimaging of Human Visual Cortex. Annual Rev. Neurosci, 10 (22).

[^0]: Andrews, Halpern \& Purves (1997) Correlated Size Variations in
 Geniculate Nucleus, and Optic Tract. J. Neurosci, 17; 2859-2868.
 Fischer \& Modersitzki (1999) Fast Inversion of Matrices Arising in Image Processing. Numerical
 Ilgorithms, 22; 1-11.
 Weurdesci, Chial, \& (5) B Backus (2000) Visualization and Measurement of the Cortical Surface. J. Cog.

