The Anatomy of Reading

Bob Dougherty
Stanford Institute for Reading and Learning
SIRL Longitudinal Study of Reading Development

- Behavioral assessment
- Anatomical + Diffusion Tensor Imaging
- Functional MRI
- 50 7-11 yr olds
- 3 years (4 measurements)
 - Completed 1st and 2nd measurement (1yr)
Overview

• Proficient reading is an impressive skill
• Garden-variety brains
• The anatomy of reading
 • Key cortical regions
 • Connected by important white matter pathways
 • But- some brains aren't optimized for reading
• Conclusions
Name the ink colors:

xxxxxx

xxxxxxx

xxxx

xxxxxx

xxx

xxxxxx
Name the ink colors:

- red
- green
- blue
- orange
- purple
Reading Numbers

Typical reading rate: 250 words/minute
Fixation duration: 225 ms (skewed distribution)
Saccade distance: 7-10 letters (2 deg)
Duration of 2 deg saccade: 30 ms
Regressive saccades: 10-15%, ↑ with difficulty
Minimal saccade latency: 150 ms
Probability of fixation: 2-3 letter words: 0.25
> 7 letter words: ~1.0
Sensory Aspects of Reading

- Maintain fixation
 - Identify currently fixated word
 - Preprocess parafoveal words
- Program saccades
- Execute saccades
- Ignore irrelevant retinal motion
Visual Processing of Words is Fast

• ~150 ms to program a saccade
• Visual info influences fixation duration and subsequent saccade target
• Relevant info extracted and processed within ~75ms (+ overlap w/ saccade program?) during fluent reading
Explaining Reading Development

• Most variance is explained by social factors and general cognitive ability
• Significant variance remains...
 • What are the neurological factors?
• Identify biological correlates
 • Explain individual differences in reading development with variation in anatomy and physiology
 • Predict & intervene before reading failure
Neural Basis of Reading

- Behavior
- Gross Anatomy
 - Brain shape/size analysis
- White matter structure
 - Diffusion imaging
- Cortical activity
 - Functional MRI
Every Brain is Different...
What's the Matter?

- Gray matter: the connections (synapses)
 - Site of functional activity (EEG, MEG, fMRI)
- White matter: the wiring (myelinated axons)
 - Looks white due to high lipid content (myelin)
 - Long-range connections
 - Connections develop early and limit plasticity
 - Connections define cortical modularity (Müller's law of specific nerve energies)
Why You See with the Back of Your Brain

Brain dissection image from: The Virtual Hospital (http://www.vh.org)
Diffusing Water Probes
Microscopic Tissue Structure

• Tissue structures affect water diffusion
• Diffusion through white matter probes:
 • Axon density & myelination, principal fiber direction and directional coherence
• MR Diffusion weighting measures diffusion
• Fiber tracking in diffusion data
 • Hints at axonal connectivity
Water Diffusion in the Brain

Unimpeded direction - higher diffusion rate

Impeded direction - lower diffusion rate
The Diffusion Tensor:
3x3 Covariance Matrix (Ellipsoid)

- Water molecules move in Brownian motion
- 3D Gaussian (3x3 covariance matrix) model
 - Eigenvalues & vectors define ellipsoidal isodiffusion surface
DTI Reveals White Matter Structure

T1 DTI (FA) DTI (PDD)
Trace Paths Through Tensor Field

• Connecting the dots to make fiber tract estimates

• Stream-tubes tracking (STT)
 • Assume PDD is tangent to fiber tract estimate
 • Go where PDD leads (Runge-Kutta path integral)
 • Tri-linear interpolation of tensors
 • 1 mm step size
 • Stop at FA<0.15 or angle > 30°

From Watts et. al. (Cornell)
Occipital Fibers
Occipital Callosal Fibers

1 cm scale bars
Occipital Callosal Fibers

1cm scale bars
Left-Right Convergence: Mean-Centered Density

Left Occipital Fibers

Right Occipital Fibers

Dougherty et al. 2005 PNAS; Dougherty et al. 2005 NYAS

N=53 children (7-12yr)
Left and Right Fibers Converge

Unshifted \((r^2 = 0.88) \)

Mean-shifted \((r^2 = 0.94) \)

Dougherty et al. 2005 PNAS; Dougherty et al. 2005 NYAS
Splenium Map in 53 Children

left/right convergence (r^2):

<table>
<thead>
<tr>
<th></th>
<th>LD</th>
<th>LV</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD</td>
<td>0.87</td>
<td>0.73</td>
<td>0.21</td>
</tr>
<tr>
<td>RV</td>
<td>0.47</td>
<td>0.89</td>
<td>0.38</td>
</tr>
<tr>
<td>RL</td>
<td>0.37</td>
<td>0.50</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Previous WM Findings in Reading

- Decreased FA in low readers in temporal-parietal WM region (esp. on left)

Klingberg et. al. 2000 Deutsch et. al. 2005 Beaulieu et. al. 2005

Some overlap in extent; voxels of maximal difference <1cm apart
Principal Diffusion Direction:
Group Means

Good Readers

Poor Readers
A PDD Difference in Anterior WM
(Schwartzman, Dougherty, Taylor, 2005, MRM)

Good Readers

Poor Readers

Bipolar Watson Distribution

FA difference

Ages 8-12; N = 14

Significant at FDR<0.01
Limits of the SPM Analysis

- Statistical power varies greatly across brain regions
- Interpretation is often ambiguous
 - Differences may be due to WM properties or structural differences
Statistical Power for FA SPMs

- Assumptions:
 - T-test (mean difference between groups)
 - N=10 in each group
 - Mean FA difference = 0.12
 - Uncorrected p=0.001
 - Spatial normalization to MNI T1 template
Statistical Power for FA SPMs

- Assumptions:
 - T-test (mean difference between groups)
 - N=15 in each group
 - Mean FA difference = 0.12
 - Uncorrected p=0.001
 - Spatial normalization to MNI T1 template
Low Power in CC with FA SPM

N=10
Low Power in CC with FA SPM

N=15
Low Power in CC with FA SPM

N=25
ROI-based Methods

• More statistical power
 • Eliminate much anatomical variance
 • Many fewer statistical tests
• Easier to interpret
• But:
 • Labor-intensive
 • ROI boundaries are subjective
 • Need a-priori hypotheses
Tracing Virtual Fibers
Why The Callosum?

- CC in alexia
 - Mid-splenial lesions can cause alexia
- CC in developmental dyslexia
 - Morphological differences in shape and size
 - Reduced hemispheric asymmetry in anatomy and function
Defining Callosal ROIs
Defining Callosal ROIs
Defining Callosal ROIs

- Genu/Rostrum
- Body
- Isthmus
- Splenium

1/3, 2/3, 1/5
FA Negatively Correlated with Phonological Awareness in Splenium

\[r = -0.44 \quad (p=0.001) \]

\[N = 53 \]
FA Negatively Correlated with Phonological Awareness in Splenium

$\text{r} = -0.44 \ (p=0.001)$

$N = 53$
Phonological Awareness is Correlated with Reading

$r = 0.67$ ($p<0.0000001$)
FA and Reading in the Splenium

[Image of brain scans with highlighted areas and scatter plots showing correlation between FA and passage comprehension/phonological awareness vs. mean FA.]
Grand Unification Hypothesis

• More left-right connections in low readers
 • larger CC
 • higher FA in CC pathways
• Increased CC connections cause decreased FA in other pathways
 • More crossing fibers, esp. in corona radiata
• Increased hemispheric connectivity causes more anatomical and functional symmetry
• But- is increased hemispheric connectivity a cause or an effect?
Conclusions

- Splenium FA is lower in skilled readers
 - Consistent with previous studies of dyslexia
 - Less lateralized language
 - Enlarged posterior callosum
 - Greater callosal bending angle (?)

- Posterior callosum crucial for skilled reading
 - Lesions there result in alexia
 - Segment callosum by projection zone
Acknowledgements

Brian Wandell (Psychology)
Gayle Deutsch (Neurology)
Michal Ben-Shachar (Psychology)
Roland Bammer (Radiology)
Polina Potanina (Psychology)
Arvel Hernandez (Psychology)
Armin Schwartzman (Statistics)
Alyssa Brewer (Psychology)
All our subjects (kids and parents)

Funding: Schwab Foundation for Learning & NIH EY015000