The Anatomy of Reading **Bob Dougherty** Stanford Institute for Reading and Learning

SIRL Longitudinal Study of Reading Development

- Behavioral assessment
- Anatomical + Diffusion Tensor Imaging
- Functional MRI
- 50 7-11 yr olds
- 3 years (4 measurements)
 - Completed 1st and 2nd measurement (1yr)

Overview

- Proficient reading is an impressive skill
- Garden-variety brains
- The anatomy of reading
 - Key cortical regions
 - Connected by important white matter pathways
 - But- some brains aren't optimized for reading
- Conclusions

Name the ink colors:

XXXXXX

XXXX

XXXXX

XXX

XXXXXX

Name the ink colors: red green blue orange purple

Reading Numbers

Typical reading rate: Fixation duration: Saccade distance: Duration of 2 deg saccade: Regressive saccades: Minimal saccade latency: Probability of fixation: 250 words/minute 225 ms (skewed distribution) 7-10 letters (2 deg) 30 ms 10-15%, \uparrow with difficulty 150 ms 2-3 letter words: 0.25 > 7 letter words: ~1.0

Sensory Aspects of Reading

- Maintain fixation
 - Identify currently fixated word
 - Preprocess parafoveal words
- Program saccades
- Execute saccades
- Ignore irrelevant retinal motion

Visual Processing of Words is Fast

- ~150 ms to program a saccade
- Visual info influences fixation duration and subsequent saccade target
- Relevant info extracted and processed within ~75ms (+ overlap w/ saccade program?) during fluent reading

Explaining Reading Development

- Most variance is explained by social factors and general cognitive ability
- Significant variance remains...
 - What are the neurological factors?
- Identify biological correlates
 - Explain individual differences in reading development with variation in anatomy and physiology
 - Predict & intervene before reading failure

Neural Basis of Reading

- Behavior
- Gross Anatomy
 - Brain shape/size analysis
- White matter structure
 - Diffusion imaging
- Cortical activity
 - Functional MRI

Every Brain is Different...

What's the Matter?

- Gray matter: the connections (synapses)
 - Site of functional activity (EEG, MEG, fMRI)
- White matter: the wiring (myelinated axons)
 - · Looks white due to high lipid content (myelin)
 - Long-range connections
 - Connections develop early and limit plasticity
 - Connections *define* cortical modularity (Müller's law of specific nerve energies)

Why You See with the Back of Your Brain

Diffusing Water Probes Microscopic Tissue Structure

- Tissue structures affect water diffusion
- Diffusion through white matter probes:
 - Axon density & myelination, principal fiber direction and directional coherence
- MR Diffusion weighting measures diffusion
- Fiber tracking in diffusion data
 - Hints at axonal connectivity

Water Diffusion in the Brain

Unimpeded direction-higher diffusion rate

Impeded direction-lower diffusion rate

The Diffusion Tensor: 3x3 Covariance Matrix (Ellipsoid)

- Water molecules move in Brownian motion
- 3D Gaussian (3x3 covariance matrix) model
 - Eigenvalues & vectors define ellipsoidal isodiffusion surface

DTI Reveals White Matter Structure

DTI (FA)

T1

DTI (PDD)

Trace Paths Through Tensor Field

- Connecting the dots to make fiber tract estimates
- Stream-tubes tracking (STT)
 - Assume PDD is tangent to fiber tract estimate
 - Go where PDD leads (Runge-Kutta path integral)
 - Tri-linear interpolation of tensors
 - 1 mm step size
 - Stop at FA<0.15 or angle > 30°

From Watts et. al. (Cornell)

Occipital Fibers

Occipital Callosal Fibers

Occipital Callosal Fibers

Left-Right Convergence: Mean-Centered Density

Dougherty et. al. 2005 PNAS; Dougherty et. al. 2005 NYAS

Left and Right Fibers Converge

Dougherty et. al. 2005 PNAS; Dougherty et. al. 2005 NYAS

Fiber density (fibers/mm²)

Previous WM Findings in Reading

• Decreased FA in low readers in temporalparietal WM region (esp. on left)

Some overlap in extent; voxels of maximal difference <1cm apart

Principal Diffusion Direction: Group Means

 \bigcirc

Poor Readers

A PDD Difference in Anterior WM (Schwartzman, Dougherty, Taylor, 2005, MRM)

Good Readers

Poor Readers

Bipolar Watson Distribution

Ages 8-12; N = 14

Limits of the SPM Analysis

- Statistical power varies greatly across brain regions
- Interpretation is often ambiguous
 - Differences may be due to WM properties or structural differences

Statistical Power for FA SPMs

- Assumptions:
 - T-test (mean difference between groups)
 - N=10 in each group
 - Mean FA difference = 0.12
 - Uncorrected p=0.001
 - Spatial normalization to MNI T1 template

Statistical Power for FA SPMs

- Assumptions:
 - T-test (mean difference between groups)
 - N=15 in each group
 - Mean FA difference = 0.12
 - Uncorrected p=0.001
 - Spatial normalization to MNI T1 template

Low Power in CC with FA SPM

0 0.25 0.5 0.75 1 FA Power

N=10

Low Power in CC with FA SPM

0 0.25 0.5 0.75 1 FA Power

N=15

Low Power in CC with FA SPM

0 0.25 0.5 0.75 1 FA Power

ROI-based Methods

- More statistical power
 - Eliminate much anatomical variance
 - Many fewer statistical tests
- Easier to interpret
- But:
 - Labor-intensive
 - ROI boundaries are subjective
 - Need a-priori hypostheses

Tracing Virtual Fibers

Tracing Virtual Fibers

Why The Callosum?

- CC in alexia
 - Mid-splenial lesions can cause alexia
- CC in developmental dyslexia
 - Morphological differences in shape and size
 - Reduced hemispheric asymmetry in anatomy and function

Defining Callosal ROIs

Defining Callosal ROIs

Defining Callosal ROIs

FA Negatively Correlated with Phonological Awareness in Splenium

FA Negatively Correlated with Phonological Awareness in Splenium

Phonological Awareness is Correlated with Reading

r = 0.67 (p < 0.000001)140 O Phonological Awareness 120 Q O O ၀ ထ၀ 00 100 00 80 8 60 80 100 120 140 Passage Comprehension

FA and Reading in the Splenium

Grand Unification Hypothesis

- More left-right connections in low readers
 - larger CC
 - higher FA in CC pathways
- Increased CC connections cause decreased FA in other pathways
 - More crossing fibers, esp. in corona radiata
- Increased hemispheric connectivity causes more anatomical and functional symmetry
- But- is increased hemispheric connectivity a cause or an effect?

Conlcusions

- Splenium FA is *lower* in skilled readers
 - Consistent with previous studies of dyslexia
 - Less lateralized language
 - Enlarged posterior callosum
 - Greater callosal bending angle (?)
- Posterior callosum crucial for skilled reading
 - Lesions there result in alexia
 - But which lobe? Occipital? Parietal? Temporal?
 - Segment callosum by projection zone

Acknowledgements Brian Wandell (Psychology) Gayle Deutsch (Neurology) Michal Ben-Shachar (Psychology) Roland Bammer (Radiology) Polina Potanina (Psychology) Arvel Hernandez (Psychology) Armin Schwartzman (Statistics) Alyssa Brewer (Psychology) All our subjects (kids and parents) Funding: Schwab Foundation for Learning & NIH EY015000