Interhemispheric Connections Related to Reading Skill Measured with Diffusion Tensor Imaging

Bob Dougherty
Stanford Institute for Reading and Learning
SIRL Longitudinal Study of Reading Development

- Behavioral assessment
- Anatomical Imaging
- Diffusion Tensor Imaging
- Functional MRI
- 50 7-11 yr olds
- 3 years (4 measurements)
 - Completed 1st and 2nd measurement (1yr)
SIRL Longitudinal Study of Reading Development

- Behavioral assessment
- Anatomical Imaging
- Diffusion Tensor Imaging
- Functional MRI
- 50 7-11 yr olds
- 3 years (4 measurements)
 - Completed 1st and 2nd measurement (1yr)
What's the Matter?

- Gray matter: the connections (synapses)
 - Functional activity (EEG, MEG, PET, fMRI)
- White matter: the wiring (myelinated axons)
 - Looks white due to high lipid content (myelin)
 - Connections develop early and limit plasticity
 - Connections define cortical modularity
Why You See with the Back of Your Brain

Brain dissection image from: The Virtual Hospital (http://www.vh.org)
White Matter is Crucial for Understanding Brain Development

- Connections form early (genetic program)
- Myelin limits new long-range connections
 - Exuberant connectivity before myelination
 - Experience can:
 - Prune existing connections
 - Strengthen existing connections
- Long-range connections limit adult plasticity
 - Neighboring regions can densely connect
 - Distant regions can increase direct connections only if some connections already exist
Tracking Axons is Hard

- Lethal to the subject
 - Human
 - Freeze-fracture dissection
 - Dil- post-mortem tracer
 - Lesion patients die-> stain for degeneration
 - Non-human
 - Induce lesion-> stain for degeneration
 - Various (toxic) tracers

- Tedious, slow work
Diffusing Water Probes
Microscopic Tissue Structure

• Tissue structures affect water diffusion
• Diffusion through white matter probes:
 • Axon density & myelination, principal fiber
direction and directional coherence
• MR Diffusion weighting measures diffusion
• Fiber tracking using diffusion data
 • Hints at axonal connectivity
 • Your subjects get to live
Protons Precessing in Phase
Diffusion Weighting: First Pulse
Time to Diffuse
Diffusion Weighting: Second Pulse
Reduced Signal from Dephasing
Water Diffusion in the Brain

Unimpeded direction - higher diffusion rate

\[\text{H}_2\text{O} \]

Impeded direction - lower diffusion rate

\[\text{H}_2\text{O} \]
The Diffusion Tensor: 3x3 Covariance Matrix (Ellipsoid)

• Water molecules move in Brownian motion
• 3D Gaussian (3x3 covariance matrix) model
 • Eigenvalues & vectors define ellipsoidal isodiffusion surface

\[
D = \begin{pmatrix}
D_{xx} & D_{xy} & D_{xz} \\
D_{xy} & D_{yy} & D_{yz} \\
D_{xz} & D_{yz} & D_{zz}
\end{pmatrix} =
\begin{pmatrix}
\vdots & \vdots & \vdots \\
\lambda_1 & 0 & 0 \\
\nu_1 & \lambda_2 & 0 \\
\vdots & \vdots & \lambda_3 \\
\vdots & \vdots & \vdots
\end{pmatrix}
\begin{pmatrix}
\cdots & \nu_1 & \cdots \\
\cdots & \nu_2 & \cdots \\
\cdots & \nu_3 & \cdots
\end{pmatrix}
\]
DTI Reveals White Matter Structure

T1

DTI (FA)

DTI (PDD)
Trace Paths Through Tensor Field

- Stream-tubes tracking algorithm
 - Assume principal diffusion direction is tangent to the local fiber tract
 - Runge-Kutta path integral estimate
 - Tri-linear interpolation of tensors
 - 1 mm step size
 - Stop at FA<0.15 or angle > 30°

- Data acquisition
 - 1.5T, DW-EPI, 2x2x2mm voxels, 12 directions, 10-14 repeats

From Watts et. al. (Cornell)
Occipital Fibers
Occipital Callosal Fibers
Occipital Callosal Fibers
Splenial Fiber Pathway in Average Tensor Map (53 Children)

Dougherty et. al. (2005) PNAS; Dougherty et. al. (2005) Annals of the NYAS
Neural Basis of Reading

- Behavior
- Gross Anatomy
 - Brain shape/size analysis
- White matter structure
 - Diffusion imaging
- Cortical activity
 - Functional MRI
Name the ink colors:

XXXXXX

XXXX

XXXXXX

XXX

XXXXXX
Name the ink colors:

red
green
blue
orange
purple
Why the Corpus Callosum?

- CC in developmental dyslexia
 - Morphological differences in shape and size of CC
 - Abnormal language lateralization
- CC in acquired dyslexia (alexia)

Mao-Draayer & Panitch (2004), Alexia without agraphia in multiple sclerosis...

The Virtual Hospital (http://www.vh.org)
Every Brain is Different...
FA is Negatively Correlated with Reading and PA in Splenium

\[r = -0.44 \ (p=0.001) \]

\(N = 53 \)
Reduced FA in Good Readers Could Mean...

- Increased language lateralization
 - Requires fewer inter-hemispheric connections between language regions
- More efficient visual field integration
 - Requires fewer inter-hemispheric connections between visual regions
Previous WM Findings in Reading

- Decreased FA in low readers in temporal-parietal WM region (esp. on left)

Klingberg et. al. 2000
Deutsch et. al. 2005
Beaulieu et. al. 2005

Some overlap in extent; voxels of maximal difference <1cm apart
Why Previous Studies Did Not See FA Differences in CC

- Statistical power for FA varies greatly across brain regions when spatial normalization methods are used.
Unified Hypothesis

• More callosal connections in low readers:
 • Larger posterior CC (e.g. Rumsey et. al. 1996)
 • Higher FA in posterior CC pathway (this study)
 • Decreased FA in posterior corona radiata due to more crossing fibers
 • Increased functional symmetry (e.g. Simos et. al. 2000)

• Axonal guidance receptor gene ROBO1 is a candidate dyslexia gene (Hannula-Jouppi et. al. 2005)
Conclusions

• Splenium FA is *lower* in skilled readers
 • Consistent with previous studies of dyslexia
 • Less lateralized language
 • Enlarged posterior callosum
 • Visual system differences?

• Posterior callosum crucial for skilled reading
 • Lesions there result in alexia
 • But which lobe? Occipital? Parietal? Temporal?
 • Segment callosum by projection zone
Acknowledgements

Michal Ben-Shachar (Psychology)
Arvel Hernandez (Psychology)
Gayle Deutsch (Neurology)
Roland Bammer (Radiology)
Polina Potanina (Psychology)
Girish Mulye (EE)
Armin Schwartzman (Statistics)
Alyssa Brewer (Psychology)
Brian Wandell (Psychology)
All our subjects (kids and parents)

Funding: Schwab Foundation for Learning & NIH EY015000
Thank you!