Diffusion Tensor Imaging and Reading Development

Bob Dougherty Stanford Institute for Reading and Learning

Reading and Anatomy

Every brain is different...

Not all brains optimized for highly proficient reading?

Background

 Diffusion of water through a temporoparietal white matter region is correlated with reading skill in adults

(Klingberg et al., Neuron, 2000)

Two Outstanding Questions

- Cause or result of reading?
 - Measure children before reading experience differs
- Lesion or displacement?
 - Measure tract positions
 - Measure diffusion along major tracts

Diffusing Water Probes Microscopic Tissue Structure

- Tissue structures affect diffusion
- MR diffusion measure (DTI) hints at microscopic structure within voxel
- Diffusion through white matter probes:
 - density of axons
 - degree of myelination
 - average fiber diameter
 - directional similarity of axons

Diffusion in the Brain

Apparent Diffusion Coefficient (ADC) is measured in 6 directions

Unimpeded direction- large ADC White matter fibers H_2O

Impeded direction- smaller ADC

DTI- Scalar Indices

- Fractional Anisotropy
 - Normalized variance of elipsoid axis magnitudes (Basser & Pierpaoli, 1996)
 - FA=0 for sphere, FA=1 for tube
- Coherence Index
 - Variance in principal direction measured across array of voxels
 - Random: CI=0, aligned: CI=1

DTI: White Matter Structure

Fractional Anisotropy

Behavioral Measures of Reading

- Normal readers vs. Poor readers
- Groups Matched on:
 - Nonverbal IQ
 - SES, handedness, sex
- Differed on:
 - Reading (W-J letter-word id & word attack, Passage comp., reading fluency)
 - Rapid naming
 - Phonological processing (CTOPP)

Data Analysis

- Spatially normalize FA & CI images
 - Normalize inplane to MNI EPI template
 - Apply params to FA & CI
- Search in volume of interest
- Map significant regions back to unnormalized brains
- Analyze diffusion direction maps

FA & CI Correlated with Reading Skill in Children

Deutsch, Dougherty, Bammer, Siok, Gabrieli, Wandell (in press). Cortex.

Reading & FA in Children

Two Outstanding Questions

- Cause or result of reading?
 - Difference present in children- cause
- Lesion or displacement?
 - Measure tract positions
 - Measure diffusion along major tracts

Lower FA & CI Could Mean...

- Microstructure ("lesion")
 - Less myelination
 - Lower fiber density
 - More disorganized fibers
- Macrostructure ("displacement")
 - Displaced fiber-bundle paths
 - Known anatomical differences related to reading: sulcal patterns, corpus callosum...

Two Outstanding Questions

- Cause or result of reading?
 Difference present in children- cause
- Lesion or displacement?
 - Measure tract positions
 - Measure diffusion along major tracts

Lesion or Displacement?

H1: Intra-pathway Lesion

H1: Intra-pathway Lesion

H2: Pathway Displacement

H2: Pathway Displacement

Principal Diffusion Direction is Related to FA

Elevation: angle from ac-pc plane

Two Outstanding Questions

- Cause or result of reading?
 Difference present in children- cause
- Lesion or displacement?
 - Tract positions differ
 - FA & CI along major tracts do not differ
 - displacement

Conclusions

- White matter differences between good and poor readers are present in children- important for reading
- Differences likely due to differing organization of neural pathways rather than tissue microstructure
 - Involving: Superior Longitudinal Fasiculus, Corona Radiata and perhaps posterior Corpus Callosum

Thank You!

- Gayle Deutsch- SIRL & Neurology
- Roland Bammer- Radiology
- Mark Eckert- Psychiatry
- Wai Ting Siok- Psychology
- John Gabrieli- Psychology
- Brian Wandell- SIRL & Psychology

Ongoing & Future Efforts

- Combine DTI & fMRI
- T1 anatomical measurements
- Tractography Validation
- Longitudinal Study of Reading development

Reading and Lateriazation

- Corpus callosum differences
 - Poor readers have:
 - smaller bending angle (Robichon & Habib, 1998)
 - Larger isthmus & splenium (Rumsey et. al. 1996)
- Laterialization?
- Intra-hemispheric connections?

splenium isthmus truncus genu rostrum

DTI: How it works

- Bipolar gradient pulse ("diffusion-weighting")
 - Pulse pair has no net effect on stationary spins
 - · Second pulse undoes first
 - Spins moving along gradient are not rephased by second pulse and end up phase-shifted
 - · Phase-shift \propto distance moved during time T

