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Abstract—Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging method that can be used to measure local information

about the structure of white matter within the human brain. Combining DTI data with the computational methods of MR tractography,

neuroscientists can estimate the locations and sizes of nerve bundles (white matter pathways) that course through the human brain.

Neuroscientists have used visualization techniques to better understand tractography data, but they often struggle with the abundance

and complexity of the pathways. In this paper, we describe a novel set of interaction techniques that make it easier to explore and

interpret such pathways. Specifically, our application allows neuroscientists to place and interactively manipulate box or ellipsoid-

shaped regions to selectively display pathways that pass through specific anatomical areas. These regions can be used in coordination

with a simple and flexible query language which allows for arbitrary combinations of these queries using Boolean logic operators. A

representation of the cortical surface is provided for specifying queries of pathways that may be relevant to gray matter structures and

for displaying activation information obtained from functional magnetic resonance imaging. By precomputing the pathways and their

statistical properties, we obtain the speed necessary for interactive question-and-answer sessions with brain researchers. We survey

some questions that researchers have been asking about tractography data and show how our system can be used to answer these

questions efficiently.

Index Terms—Computer graphics interaction techniques, computer graphics applications, visualization, DTI, MR tractography.
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1 INTRODUCTION

THEbrain is a massively interconnected organ. Individual
neurons in the cortex typically connect to between 1; 000

and 10; 000 nearby neurons within the gray matter. The
entire central core of the brain, known as the white matter,
is comprised of relatively large fiber tracts that mediate
communication between neurons at widely separated
locations. Until recently, scientists have had limited ability
to measure these white matter connections in human brains.

Knowledge about these white matter connections should

enhance our understanding of normal brain function. Such

knowledge should also help diagnose certain pathological

disorders in patients. For example, recent research has

found white matter pathway syndromes related to language

deficits [17], [20], [9]. Furthermore, an understanding of

white matter structure could help surgeons to avoid

damaging important pathways.
Motivated by such concerns, a new technology, called

Diffusion Tensor Imaging (DTI), has emerged, providing a

noninvasive way to measure properties of white matter

pathways. Based on magnetic resonance imaging, DTI

estimates the random diffusion of water molecules within

biological tissue. It is widely believed that water diffuses
fastest along the length of axons (rather than across their
boundaries), which suggests that the principle direction of
diffusion can be used to approximate the local orientation of
nerve fiber bundles. (See Basser et al. [5] for a discussion.)

The inherent complexity of the diffusion data has
motivated a variety of visualization algorithms designed to
assist the researcher in analysis. One class of techniques,
known as MR tractography, seeks to trace the principal
direction of diffusion through the tensor field, connecting
points together into pathways (also referred to in other
literature as “fiber tracts”). As a visual representation,
MRtractography iswell-suited to theproblemofdetermining
white matter structure since it implies possible anatomical
connections between the endpoints of the pathways.

The pathways produced by tractography do not repre-
sent individual nerve fibers, nor do they represent bundles
of these fibers. Rather, these pathways are abstract
representations of possible routes through the white matter
of the brain. While tractography algorithms typically
produce tens of thousands of pathways, neuroscientists
now believe that there are tens of millions of white matter
nerve fibers grouped into hundreds of major fiber tracts.
Nevertheless, the tractography estimates do have the
potential to suggest real neural connections, especially
when there are additional data to corroborate these
estimates. This could include postmortem dissections,
animal studies, or Functional Magnetic Resonance Imaging
(fMRI). fMRI suggests possible connections between regions
of the brain’s gray matter surface based on correlations in
activity [7]; it is particularly compelling since it is non-
invasive, like DTI.

Our contribution (extending the work of Akers et al. [3])
is a new interaction technique to assist in the exploration
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and identification of the pathways suggested by
MR tractography. We precompute the pathways and their
statistical properties and query the resulting database on-
the-fly, allowing for easy exploration of tractography results
using a direct-manipulation interface. We enable the
specification and interactive manipulation of box or
ellipsoid-shaped regions of interest within the brain,
making it possible to selectively display pathways that
pass through specific anatomical regions. The researcher
can also use fMRI data to search for pathways that might
connect several functionally defined regions of the brain’s
gray matter surface. Querying by other path properties such
as length and average curvature allows the researcher to
further limit the data displayed simultaneously, making
results more comprehensible. The dynamic query approach
enables researchers to answer specific questions about brain
connectivity with far less time or effort than is required by
existing approaches.

2 RELATED WORK

A variety of techniques have emerged for the visualization
of diffusion tensor data. Methods based on visual abstrac-
tions of the tensors have been used effectively to convey
information about tensors at local scales within the volume
(see Westin et al. [35] for a summary). Direct volume
rendering techniques [15], [16], [34] provide views of the
larger trends in the data. These methods are not designed to
extract or visualize estimated white matter pathways.

More relevant to our purpose of estimating white matter
connectivity are MR tractography techniques that attempt to
trace white matter pathways from DTI data. Streamlines
Tracking Techniques (STT) trace pathways by following the
principle direction of diffusion [21], [7], [5]. Mori et al. [21]
developed the Fiber Assignment through Continuous Track-
ing (FACT) algorithm, a variable-step STT method that can
changedirectionsat theboundaryof eachvoxel.Conturoet al.
[7] used a constant step size, while Basser et al. [5] suggested
dynamically adjusting the step size to account for pathway
curvature. Lazar et al. [18] described the tensor-deflection

algorithm(TEND)basedonpreviousworkbyWeinstein et al.

[33]. TEND may provide more accuracy in reconstructing

certain anatomical features. Poupon et al. [24] developed a

regularization technique for improved tracking and sug-

gested ways to model branching of nerve fiber bundles.

Zhukov and Barr [37] have used regularization based on

assumptions of anatomical smoothness to extract pathways

in the presence of noisy data.
Many of these techniques have been criticized for their

inability to handle branching or represent uncertainty [4],

but they have been shown to be capable of recovering basic

anatomical structures [37]. Zhang et al. [36] render the

resulting pathways as streamtubes, where the cross-section

of the streamtube is determined by the two smaller

eigenvectors of the diffusion tensor. Da Silva et al. [8] use

streamtubes to visualize differences between diffusion

tensor data sets, comparing both tractography algorithms

and data sets from multiple subjects.
Several groups have pointed out the potential value of

filtering MR tractography data, both for rendering effi-

ciency and simplicity of display. Zhang et al. [36] prefilter

streamtubes based on length, average linear anisotropy, and

distance separating neighboring streamtubes. Conturo et al.

[7] use volumetric regions of interest to select pathways that

connect anatomically or functionally defined regions.

Wakana et al. [32] have combined region-of-interest filters

with AND, OR, and NOT operations to isolate particular

neurological pathways. All three groups filter streamtubes

as a preprocessing step; unlike the present application,

those applications do not describe an interactive filtering

technique.
While there has been significant progress on

DTI visualization algorithms, surprisingly little has been

written about interaction techniques. Zhang et al. [36] have

been displaying streamtubes in a CAVE environment to

explore the possibility that virtual reality will help doctors

to make diagnoses. In addition, interactive volume render-

ing techniques have also been employed for the purposes of

DTI visualization [15], [16], [34].

420 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 1. The corona radiata. Our system uses dynamic queries to find structure in neural pathways suggested by MR tractography.



Our interactive software is basedon theprinciples ofdirect
manipulation [28], [14] and dynamic queries [2]. An
important motivation for our technique has been the
development of recentmethods for visual query andanalysis.
Hochheiser and Shneiderman [13] showed the power and
simplicity of a visual query approach for answering specific
questions about time-series data. By defining andmanipulat-

ing rectangular regions of interest within the data set, a
researcher could select quantities (e.g., stock prices) that
followed certain patterns of behavior over time.Our software
can be seen as an application of their 2D spatio-temporal
method to the 3D spatial domain of the brain.

3 PREPROCESSING

3.1 Acquiring and Processing the Data

All DTI data were acquired from a neurologically normal

male human subject aged 35. The DTI protocol involved
eight three-minute whole-brain scans, averaged to improve
signal quality. We acquired 38 axial slices for two b-values,
b ¼ 0 and b ¼ 800 s=mm2 along 12 different diffusion
directions. We used a 1.5T GE Signa LX and a diffusion-
weighted single-shot spin echo, echo planar imaging
sequence with a nominal 2x2x3 mm voxel size (63 ms TE;
12 s TR; 1 NEX; 90� flip angle; 260 mm FOV; 128x128 matrix
size; �110 kHz bandwidth; partial k-space acquisition).

We also collected high-resolution T1-weighted anatomi-
cal images using an eight minute sagittal 3D-SPGR
sequence (1x1x1 mm voxel size). The DTI data were
coregistered to the T1 data by automatically aligning the
B0 to T1 using a mutual information algorithm [1]. We
confirmed that this coregistration technique aligns the DTI
and T1 images to within a few millimeters (except in
regions prone to susceptibility artifacts, such as orbito-
frontal and anterior temporal regions).

The following anatomical landmarks were defined in the

T1 images: the anterior commissure (AC), the posterior
commissure (PC), and the mid-sagittal plane. With these
landmarks, we utilized a rigid-body transform to convert
both DTI and T1 data to the conventional AC-PC aligned
space. The DTI data were then resampled to 2 mm isotropic
voxels using a spline-based tensor interpolation algorithm
[22], taking care to rotate the tensors to preserve their
orientation with respect to the anatomy. The registration
process took about 20 minutes.

When combined with DTI, fMRI allows the neuroscien-
tists to simultaneously view connectivity and activation
information about specific brain regions [7]. Functional MR
data were acquired with a spiral pulse sequence with 21-30
obliquely oriented slices acquired every 2.4 seconds (30 ms

TE; 1:2 s TR; 2 interleaves; 70� flip angle; 2x2x3 mm

effective voxel size). Each individual functional scan lasted
about four minutes and the subject was given a brief break
between scans. Visual field maps were measured using

rotating wedge and expanding ring stimuli. A thorough
description of the collection of the fMRI data and the
registration of the data with the high-resolution anatomy
data is described by Dougherty et al. [10]. We map the fMRI
data to our cortical surface mesh, as described in Section 3.3.

We demonstrate the coordination of the fMRI data with
pathway queries in an example in Section 5.4.

We precomputed fractional anisotropy values for each
diffusion tensor. Fractional anisotropy (FA) is derived from
the normalized variance of the eigenvalues of each diffusion
tensor [23]. FA is a scalar value that summarizes the
anisotropy of the ellipsoid representation for diffusion. An
FA of zero indicates spherical diffusion, as is found in the
gray matter. As FA increases, the diffusion becomes more
anisotropic. FA values near 0:5 indicate either linear (cigar-
shaped) or planar (pancake-shaped) ellipsoids, as are
typically found in the white matter. As FA approaches 1,
the diffusion becomes increasingly linear, indicated by long
and thin ellipsoids. We use the precomputed FA values to
establish termination criteria for path tracing algorithms
(Section 3.2), to calculate the average FA along pathways for
query purposes (Section 3.4), and in our interactive
application to aid in navigation (Section 4.2). Our decision
to use FA was motivated by its widespread adoption in the
literature; there is reason to consider alternatives if the goal
is to develop new tractography algorithms. See Westin et al.
[35] for a good discussion of anisotropy measures and their
uses in DTI.

3.2 Precomputing Pathways

Most existing tractography software traces pathways dur-
ing interaction: The user selects a region of interest and the
software traces pathways from seed points within this
region. This approach has the disadvantage that path
tracing can be time consuming, leading to frustrating delays
during interaction. Instead, our approach is to precompute
pathways that cover the entire white matter region of the
brain, then use our software interface to efficiently “prune”
these pathways to answer specific questions. Accordingly,
we initialized seed points for path tracing at every other
voxel in each dimension, evenly sampling the volume with
seed points. (A similar seeding approach was described by
Conturo et al. [7].) This sampling strategy ensured that each
white matter region would have at least some pathways
passing through it. However, because the pathway shapes
cannot be predicted at seeding time, some regions contain
more pathways than others. In the future, we may explore
other seeding methods that discard pathways that are too
closely packed, as suggested by Zhang et al. [36] and
Vilanova et al. [31].

We generated our pathways using two standard tracto-
graphy methods. We chose these two algorithms because
they are simple and have already been compared in the
literature [18]:

. STT: This method follows the principal diffusion
direction throughout the volume. We used a
constant step size of 2 mm, an FA termination
threshold of 0:15, and an angular threshold of 90�.
The paths generated by STT often take sharp turns
because they always follow the largest magnitude
eigenvector, even in regions where the two or three
largest eigenvalues are nearly identical.

. TEND: This method uses the tensor at each point to
multiply the incoming path vector, resulting in a
new vector that is deflected toward the principal
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direction of diffusion [18]. As with STT, we used a
constant step size of 2 mm, an FA termination
threshold of 0:15, and an angular threshold of 90�.
The paths generated by TEND are relatively straight
since TEND avoids sharp turns when it encounters
regions of low anisotropy.

To interpolate between tensors during tracing, we used a
simple linear interpolation approach [37]. After threshold-
ing by FA, our precomputation process produced about
26; 000 pathways, including about 13; 000 from each algo-
rithm. All 26; 000 pathways were computed in about
5 minutes on an Intel Pentium 1.6 GHz PC.

3.3 Representing the Cortical Surface

We also precomputed two mesh representations of the
cortical surface to allow a neuroscientist to answer ques-
tions about pathway connectivity to the cortex. First, the
white matter voxels were classified semimanually by a
neuroscientist in a separate custom software platform [30].
This process can take approximately 30 minutes for the
expert to complete, depending on the success of the
automated portion of the segmentation.

Next, we used the Marching-Cubes algorithm [19] to
obtain a triangle mesh for the interface. The resulting
cortical surface mesh is complex to navigate on with its
many folds and creases. To remedy this, we smoothed the
mesh using a windowed sinc filter [29]. Smoothing the
cortical surface was first described by Sereno et al. [27], who
used the smoothed representation to display fMRI data. In
our system, we also used the smoothed cortical surface to
help the researcher to perform surface constrained queries,
as described in Section 4.2.3. The smoothed surface and the
original surface are stored as unstructured meshes of
triangle strips. Both surface meshes utilize the same list of
vertex indices; the smoothed surface is different from the
original surface only by vertex location. For our test subject,
the cortical surface representations each contain about
230,000 vertices. The surface triangulation and smoothing
required approximately 2 minutes on a 1.6 GHz Pentium
laptop PC.

3.4 Precomputing Statistical Properties of
Pathways

Besides precomputing the pathways, the system also
precomputes statistics and other aggregate path informa-
tion that can be used to specify queries. The statistical
criteria we have chosen are meant as examples and by no
means represent an exhaustive set. Currently, we calculate
and store the following properties for each pathway:

. Length: Longer paths are less likely to represent real
anatomical connections since error accumulates
during path tracing. Additionally, very short paths
are often distracting.

. Average Fractional Anisotropy: Pathways that pass
through areas of low FA may be less likely to
represent physical connections. (In these nearly
isotropic regions, tractography algorithms differ
greatly in how to proceed with path tracing.)

. Average Curvature: Pathways that make sharp turns
are often suspect and may represent incorrect

connections. Neuroscientists often have prior knowl-
edge about the shapes of pathways and can use this
property to remove pathways that do not follow
expected shapes. Curvature is computed for each set
of three consecutive points along the path by using
Heron’s formula to find the osculating circle, then
computing the reciprocal of its radius.

. Tractography Algorithm: For later querying, the
system tags each pathway with the algorithm used
to generate it (STT or TEND). Querying by the
algorithm allows the user of our application to
compare the results of several tractography algo-
rithms, as described in Section 5.

4 THE DYNAMIC QUERY APPLICATION

This section describes the user interface to the interactive

application we have developed. The main purpose of our

application is exploratory data visualization: We want to

make it easier for neuroscientists to understand the neural

pathways suggested by MR tractography algorithms. Fig. 2

shows a labeled screen-shot of the application. With our

direct-manipulation interface, it is possible to identify and

display pathways that satisfy statistical constraints or that

pass through specific volumes of interest (VOIs). The inter-

face consists of three components: The VOI panel (bottom

right) allows the investigator to specify box or ellipsoid-

shaped regions for use in queries. The query panel (bottom

left) provides mechanisms to query the pathways based on

intersections with VOIs and statistical properties. The scene

window (top) displays the currently selected pathways and

assists in navigating the volumetric data space.
We explain the use of this interface in Sections 4.2 and

4.3. Please also see the video footage at http://graphics.

stanford.edu/papers/dti-query-extended for examples of

its use.

4.1 Navigating the Scene

Before querying the data, an investigator must be able to

navigate the volumetric data space represented in the scene

window. The investigator can change the camera position

and orientation using a standard trackball/mouse interface.

As a further aid to navigation, the scene window provides

three moveable cutting planes (tomograms), which display

planar reformations of FA data. Features visible in FA are

commonly used by neuroscientists to navigate the brain’s

white matter structures.

4.2 Specifying Dynamic Queries

There are three ways to specify queries using our interface,

as described below.

4.2.1 Querying by Pathway Statistics

Often a query sequence begins with the selection of a set of

desired pathways based on the statistical criteria described

in Section 3.4. A set of slider bars in the query panel allows

for the interactive specification of a range (min, max) of

acceptable values. As the investigator drags any slider bar,

the matching pathways are found and displayed in the

scene window.
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4.2.2 Querying by Volumes of Interest

A key feature of our application involves the use of VOIs to

display pathways that pass through specific anatomical

regions (see Fig. 3). Once specified, VOIs can be used to

form queries by setting the VOI query expression in the

query panel. VOIs can be combined using simple AND and

OR operations or by typing an arbitrary Boolean logic

expression. The VOI editing panel (Fig. 2, lower right)

allows for the exact specification of VOI dimensions and

position. As a VOI is modified using the slider bars or text

widgets, the query is reevaluated immediately and the

scene window is updated with new pathway information.

A VOI can be controlled more directly in the scene window

by using the mouse to click and drag the VOI. The

investigator simply selects a tomogram and then drags the

VOI to any position on the plane. One can also link two

VOIs to move them symmetrically in opposite brain

hemispheres. This was made possible by aligning the data

to AC-PC space, which defines the plane halfway between

the hemispheres.

4.2.3 Querying by Surface-Constrained Volumes of

Interest

As shown in Fig. 4, our application also allows the

neuroscientist to constrain the motion of a VOI to a

representationof the cortical surface.After adding the surface

representation to the scene window, the neuroscientist can

simply drag a VOI along this surface using the mouse.
As described in Section 3.3, we also precomputed a

smoothed version of the original surface. By dragging the

VOI along the smoothed surface, the neuroscientist can

easily reach regions of the brain surface that would

otherwise be obscured from view by the many peaks (gyri)

or valleys (sulci) of the brain. However, this approach is

limited by low anisotropy near the cortical surface, which

causes difficulties for path tracing. Moreover, the cortical

surface is not perfectly aligned to the DTI data because of

registration errors caused by the geometric distortions

introduced during DTI data acquisition (as described in

Section 3.1). This alignment problem is exacerbated by the

mesh smoothing we perform.
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Fig. 2. The user interface to our pathway exploration software. The interface consists of three components: The VOI panel (bottom right) allows the
investigator to specify box or ellipsoid-shaped regions for use in queries. The query panel (bottom left) provides mechanisms to query the pathways
based on statistical properties and intersections with VOIs. The scene window (top) displays the currently selected pathways and assists in
navigating the volumetric data space. Neuroscientists use the VOI and query control panels to identify specific neural pathways, which are then
displayed in the scene window above.



To display the VOI on the smoothed surface, the VOI is
intersected with the original surface mesh and the resulting
triangles arewarped onto the smoothed representation using
the one-to-one vertex correspondence. The warped surface
patch is shaded green, as shown in Fig. 4. To accelerate the
required picking operations on either surface mesh, we
compute and store octree representations of the meshes.

To provide additional information to the neuroscientist,
a color map can be applied to either surface representation.
Coloring based on curvature helps to convey the shape of

the cortical surface, particularly for the smoothed repre-

sentation where the sulci and gyri have been smoothed. In

Fig. 4, the surface of the smoothed and bumpy meshes both

display light shades of gray for peaks and darker shades of

gray for valleys. Optionally, the neuroscientist can overlay a

color map of fMRI data. Coloring based on fMRI data

allows the neuroscientist to drive VOI navigation with brain

activation information. This was used extensively in

Section 5.4 to guide VOI placement.
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Fig. 3. Sequence of dynamic queries identifying the spatial organization of fiber pathways. (a) All 13,000 pathways computed using the STT

algorithm. Patterns are difficult to discern because of visual clutter. (b) Using a length filter, we show only the pathways that are greater than 4 cm in

length (about 30 percent of the total number of pathways). (c) By placing VOI 1 in the scene, we show only the pathways that pass through the

internal capsule (bottom). (d) By placing VOIs 2 and 3, we obtain a picture showing connections between 1 and either 2 or 3.

Fig. 4. Constraining VOI motion to the cortical surface. (a) The cortical surface with an ellipsoid-shaped VOI placed on a section of the back of the

brain. (b) A smoothed representation of the cortical surface with a projection of the same VOI. Both surfaces present a higher intensity gray level for

gyri and a lower intensity gray for the sulci. The smoothed surface allows the neuroscientist to manipulate a VOI on the cortical surface without the

bumps and folds of the original surface obscuring the view to the VOI.



4.3 Pathway Rendering

While others have used streamtubes to represent pathways
[36], we have chosen simply to use lines. Lines can be drawn
much faster than streamtubes and they adequately represent
connectivity information of interest to neuroscientists (at the
cost of losing local information about the underlying tensor
data along the path). To visually distinguish the pathways,
we use a simple “color jittering” technique. In HSV color
space, we compute a random luminance offset for each
pathway. The luminance of each pathway is determined at
startup and is held constant to avoid shimmering artifacts.

Differences in hue are used to establish logical groupings
of pathways, using a process we call “virtual staining.” Here,
the investigator can choose a hue and use it to color all of the
pathways currently displayed in the scene window. This
allows investigators to identify specific pathways and then
visualize them within their surrounding context: As the
query is modified, the original pathways remain stained.
Virtual staining was used extensively in generating the
results shown in Section 5 and in generating Fig. 1.

4.4 Implementation

This section describes the implementation details of our
interactive application. The program was written entirely in
C++ and was designed to work on any modern inexpensive
PC without any special hardware requirements. The
program makes use of the Visualization ToolKit (VTK)
[26] for 3D scene generation and interaction.

Since data exploration naturally involves making itera-
tive adjustments to queries, our main goal has been to make
the system immediately responsive when the investigator
changes a query. One key to this interactivity is the
preprocessing described in the previous section, but this
preprocessing is not enough by itself to make our system
interactive. At runtime, we also need to be able to
interactively compute intersections between VOIs and
pathways. To facilitate fast intersection tests, our program
stores each pathway’s geometry as a hierarchical oriented
bounding box (or OBBTree). For this, we used the freely
available RAPID software from the University of North
Carolina [12]. All VOIs and pathways are represented as
sets of triangles that can be efficiently tested for intersection.
The box or ellipsoid-shaped VOIs are trivial to triangulate
and the pathways are triangulated as very small area (long
and thin) triangles. Since the RAPID software only reports
object intersections between triangles, our application also
tests the endpoints of each pathway to determine whether
the pathway is fully contained within the VOI.

Queries based on precomputed pathway properties are
very fast since the precomputed values need only be
compared against the current range of the query. The
performance of RAPID is described by Gottschalk et al. [12],
but their execution times are based on an older SGI Reality
Engine. In our own benchmarks on a 1.6 GHz Pentium
laptop PC, we are able to intersect a VOI with between
80; 000 and 220; 000 pathways per second, depending on the
size of the VOI. (Larger VOIs require more bounding-box
tests since they intersect with more of the pathways.) This
allows us to maintain a frame rate of 3-8 fps while
manipulating the VOIs. While not the most efficient
solution for intersection with our current ellipsoid and

box VOIs, using RAPID will allow us to implement more
complex (e.g., nonconvex) VOI shapes in the future without
a major change in performance.

On average, each pathway consumes approximately
20KB of memory, including the OBBTree structure and
the points used for rendering. Accordingly, we use 510MB
of memory to represent all 26; 000 pathways. The cortical
surface meshes and all their accompanying data structures
currently occupy about 160MB of memory. This memory is
consumed by the original surface mesh, the smoothed
surface mesh, and the octree acceleration data structure.

5 RESULTS

In this section, we demonstrate some of the capabilities of
our system. First, we acquired a DTI data set collected from
a single normal subject (described in Section 3.1). Using this
data set as input to our system, we identified three types of
queries that are especially useful to neuroscientists. In
particular, we will show how our system has been used to
validate known white matter pathways, to explore pre-
viously unidentified pathways, and to visually compare
tractography algorithms. We will then show results of our
system in a more complex neurobiological investigation of
the pathways between the left and right hemispheres of the
retinotopy map on the cortical surface of the brain. All four
examples were produced by a novice user of our system
who is a neuroscientist specializing in brain imaging.

5.1 Validating Known Pathways

Using our dynamic query system, the neuroscientist easily
identified two known neural pathways in the test subject
data, the left and right Inferior Longitudinal Fasciculi (ILF).
Shown in Fig. 5, these pathways connect the occipital and
frontal lobes in each hemisphere of the brain.1 To locate the
pathways, first our neuroscientist test subject placed a
single VOI covering both occipital lobes, revealing neural
pathways produced by our system which may be involved
in visual processing. Next, he placed an additional VOI in
the right frontal lobe above the eye and used an AND
operation to show pathways connecting the two brain
regions. The many pathways passing between these VOIs
comprise the right ILF. Interested to see whether these
neural pathways were located symmetrically on both sides
of the brain, the researcher moved the second VOI to a
symmetric position in the left hemisphere, identifying the
left ILF. Finally, using virtual staining, the neuroscientist
separately colored the pathways from each hemisphere so
that they could be visually compared. This exploration was
performed in about five minutes.

5.2 Exploring Unidentified Pathways

Our system also enables exploration of novel pathways that
couldmotivate future research. Fig. 6 shows all the pathways
generated by our system which pass between the occipital
lobes (responsible for visual processing). To isolate these
pathways, the neuroscientist placed VOIs on each of the
occipital lobes and displayed the conjunction of the VOI
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queries. The majority of the connections follow a known

neural pathway, crossing the posterior corpus callosum and
terminating at a symmetric location in the opposite hemi-
sphere. Interestingly, some of them travel forward to cross at
what appears tobe the anterior commissure, a small bundleof

fibers connecting the two hemispheres beneath the corpus
callosum. These pathways then return back to the occipital
lobe. Further research is necessary to determine whether this

anterior pathway is real. In situations like this, our system can
help form hypotheses about novel pathways by allowing
researchers to interactively pose and answer specific ques-
tions about connectivity. This exploration was performed in

about five minutes.

5.3 Comparing Tractography Algorithms

As a third example, our system can be used to visually
compare the pathways estimated by different tractography
algorithms. Fig. 7 shows pathways generated by the STT
and TEND algorithms (described in Section 3.2). By

virtually staining pathways passing through a region in
the corpus callosum, the neuroscientist was able to visualize
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Fig. 5. Validation of known white matter pathways. The left and right inferior longitudinal fasciculi are known anatomical pathways that connect the
occipital and frontal lobes in each hemisphere. In four simple steps, a researcher used the system to produce a visual representation of these known
pathways. (a) Placing a VOI covering the occipital lobes shows pathways produced by our system that may be involved in human visual processing.
(b) Placing a second VOI in the right frontal lobe and using an AND operation shows only the pathways that traverse between the occipital lobe and a
position on the right frontal lobe, which are stained blue. (c) Moving the second VOI to a symmetric position on the left captures the pathways
traversing between the occipital lobe and the left hemisphere, which are stained yellow. (d) Removing the second VOI from the query shows the
results of (b) and (c) within the original set of pathways. The pathways shown were all produced using the STT algorithm and were also limited to
lengths greater than 4 cm to reduce visual clutter.

Fig. 6. Exploration of candidate neural pathways. The query results
show many pathways (shown in green) reflecting the well-known
connection between the left and right occipital lobes, passing through
the splenium. Intriguingly, the query also suggests a possible connection
(shown in purple) through the anterior commissure. This suggested
pathway may incite further validation research. Our system helps to form
such hypotheses by allowing researchers to interactively pose and
answer specific questions about connectivity. The pathways shown
were all produced using the STT algorithm and were also limited to
lengths greater than 4 cm to reduce visual clutter.



an important difference between the two algorithms. The

STT algorithm, following the direction of greatest diffusion

at each point, generates only “U-shaped” pathways. The

TEND algorithm additionally produces pathways passing

from the corpus callosum to each temporal lobe. As this

example illustrates, the pathways generated by these

algorithms can differ greatly. Such visualizations are useful

to the neuroscientist who is uncertain about the reliability of

estimates across algorithms and to the expert in tractogra-

phy who wants to understand the consequences of

algorithmic assumptions. This exploration was performed

in about 10 minutes.

5.4 Investigating Interhemispherical Connections
between Visual Areas

Neuroscientists can utilize this system to explore connec-

tions between the left and right hemispheres within visual

areas of the human brain. Fig. 8 shows pathways connecting

the calcarine fissure on the right hemisphere and visual

areas on the left hemisphere. Guided by fMRI activation

data (as described in Section 4.2.3), the neuroscientist placed

a VOI within the calcarine fissure on the right hemisphere

and another VOI on an interesting visual area on the left

hemisphere. The neuroscientist then slowly moved the left

hemisphere VOI to a location slightly below the previous

position. Both VOIs were then iteratively adjusted to

visualize pathway shape and location. By performing

incremental VOI adjustments on the cortical surface, the

neuroscientist was able to explore how pathways may

traverse from the calcarine fissure to dorsal or ventral

regions of the visual areas on the opposite hemisphere.

Such queries allow for neuroscientists to discover pathways

that they can isolate for further study. The examination of

the entire occipital lobe required approximately 10 minutes.

6 DISCUSSION

This section describes the potential applications of our
system, current limitations, and future directions for
research.

6.1 Applications

Our colleagues in neuroscience stressed the significance of
this program as an exploratory tool; quickly browsing
through connections in the brain could be invaluable in
identifying areas of interest for future study. The system
could also assist scientists investigating the neurological
bases of disorders, as has been done with other methods for
analyzing DTI data [20], [9], [17], or provide a diagnostic
tool for such disorders. It could be employed as an
educational aid for students learning about neuroanatomy
as it allows for interactive viewing of the primary
anatomical pathways.

Our system may also be useful for exploring data from
sources other than DTI. Saleem et al. [25] have developed a
method of tracing axonal connections across synapses in
live monkeys. MnCl2 is injected into the monkey brain and
transported along neuronal tracts where it can later be
detected with MRI. This approach may generate large
amounts of verifiable, high-resolution data that could be
browsed efficiently with our system.

6.2 Limitations

The speed we have achieved during dynamic queries relies
upon extensive precomputation and this does have certain
disadvantages. For example, using our system, a neuros-
cientist cannot interactively manipulate the parameters
used to generate the pathways and surfaces that we display.
This is a standard trade-off between speed and flexibility,
and similar trade-offs have been described in other
literatures (e.g., precomputed lighting calculations for
computer graphics).

The connectivity resultswehaveobtainedwith our system
have been limited by the resolution of the data, the geometric
distortions introduced by the data acquisition process, and
the quality of the tractography algorithms. It is important to
realize that these are not limitations of our interactive
technique, but rather they are limitations of the current
acquisition technology and algorithms. Current DTI data are
highly restricted in spatial resolution. The 2x2x3 mm
resolution used in this scan represents the current state of
the art. The voxel dimensions are roughly two orders of
magnitude larger than the cross-sectional width of white
matter axons (between 10 and 50 microns). This makes
ambiguities in tracing inevitable when estimating neural
pathways from the diffusion tensor field. However, despite
limitations in data quality, our system remains viable and
useful for exploring MR tractography data and suggesting
possible hypotheses about connectivity.

6.3 Future Work

The methodology of precomputation and dynamic queries
should yield several interesting enhancements in the future.
In particular, it will be useful to expand our system to
handle multiple data sets. Pathways from multiple subjects
could be used to compare pathological cases (e.g., multiple
sclerosis) to normal ones or simply to understand normal
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Fig. 7. Visual comparison of tractography algorithms. The VOI in this
query is placed within the corpus callosum. The pathways were
computed using the STT (blue) and TEND (yellow) algorithms. Using
virtual staining, a neuroscientist was able to easily inspect the
differences by overlaying the pathways. While both TEND and STT
show callosal projections to superior regions, the TEND pathways also
include callosal projections to both temporal lobes. This example shows
the extent to which the two algorithms can differ. The pathways shown
were limited to lengths greater than 4 cm to reduce visual clutter.



population variance. It could also be used to study

developmental disorders as they unfold over time within

a single subject. While these problems can benefit from a

dynamic query approach, they will also require the

development of methods to coregister the various data sets.
We believe that useful improvements could be made in

the visual representation of the pathways. Currently, the

pathways are drawn simply as lines; however, it might be

advantageous to aggregate pathways into groups or to

simplify their paths for easier interpretation. Such abstrac-

tions could also contain visual cues that measure either

local DTI properties or statistical information regarding the

certainty of the path estimates.

We plan to make the source code to our system freely

available at http://graphics.stanford.edu/projects/dti.

7 CONCLUSION

In summary, we have presented a novel interaction

technique and a software system designed to assist in the

exploration of white matter connectivity in the brain. The

key to our system’s utility is its ability to respond to queries

at interactive rates. This allows neuroscientists to optimize

the critical loop of hypothesis generation and evaluation.
Finding known anatomical pathwayswith our system has

demonstrated the ability to resolve large-scale anatomical
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Fig. 8. Investigation of connections between hemispheres in the retinotopic map. Guided by the fMRI activation data, a neuroscientist investigates
the proposed pathways that connect the calcarine fissure on the right hemisphere to visual areas on the left hemisphere. (a) An fMRI scan is mapped
to the cortical surface, in order to guide the neuroscientist to the appropriate visual areas. The fMRI color map can be toggled on and off as VOIs are
placed. (b) Placing a VOI in the right hemisphere within the calcarine fissure (orange arrow) and a second VOI in the left hemisphere within the visual
areas (blue arrow). (c) The cortical surface representation is removed so that the paths are visible within the context of the tomograms. (d) The VOI
on the left hemisphere (blue arrow) is moved slightly ventrally along the cortical surface. With dynamic queries, the neuroscientist can repeat many
small adjustments to the VOI in the left hemisphere or the VOI in the calcarine fissure on the right hemisphere to understand the types of connections
within the visual areas.



structures with DTI. Using our software as a hypothesis-
generation tool for previously undiscovered pathways has
been intriguing, but risky due to current limitations in
acquisition technology and path tracing algorithms.
Comparing pathways suggested by multiple path tracing
algorithms has pointed out the uncertainty in path tracing,
giving us reason to distrust the pathway estimates
suggested by individual algorithms.

As the field proceeds forward with new acquisition
technologies and more sophisticated path tracing algo-
rithms, we should continue to benefit from the dynamic
query approach. Indeed, this system remains an integral
part of our own long-term plan for answering questions
about brain connectivity.
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