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Abstract

We investigate the performance of a numerical algorithm for the integration of isotropically hardening three-in-

variant elastoplastic constitutive models with convex yield surfaces. The algorithm is based on a spectral representation

of stresses and strains for infinitesimal and finite deformation plasticity, and a return mapping in principal stress di-

rections. Smooth three-invariant representations of the Mohr–Coulomb model, such as the Lade–Duncan and Matsu-

oka–Nakai models, are implemented within the framework of the proposed algorithm. Among the specific features

incorporated into the formulation are the hardening/softening responses and the tapering of the yield surfaces toward

the hydrostatic axis with increasing confining pressure. Isoerror maps are generated to study the local accuracy of the

numerical integration algorithm. Finally, a boundary-value problem involving loading of a strip foundation on a soil is

analyzed with and without finite deformation effects to investigate the performance of the integration algorithm in a

full-scale non-linear finite element simulation.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Plasticity models for frictional materials such as concrete, soil and rock are most conveniently repre-
sented in principal stress space. The general characteristics of the yield surface are described by its cross-

sectional shape on the deviatoric plane and its trace on meridian planes. In frictional materials the form of

the failure envelope is significantly affected by the value of the confining pressure. On a meridian plane the

shape of the failure surface can curve like a parabola, while on the deviatoric plane the shape can vary from

a curvilinear triangle at low confining pressures to nearly circular at high confining pressures [1].

A classical plasticity model that takes into account the shape of the failure surface on the deviatoric plane

is the Mohr–Coulomb (MC) model. Widely used for representing the yield and failure behavior of cohesive-

frictional materials, this model has the shape of an irregular hexagon on the deviatoric plane and predicts a
higher yield/failure strength in compression than in tension. Whereas this model is relatively easy to
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implement in a two-dimensional loading condition, the presence of corners makes the MC model less
straightforward to implement in a general three-dimensional framework. Moreover, on a meridian plane

the shape of the failure/yield surface is a straight line for a constant value of the friction angle, which may

not be realistic for some frictional materials like concrete.

Smooth yield surfaces that very much resemble the shape of the MC surface on the deviatoric plane have

been proposed in the literature to avoid the difficult problem of yielding at a corner. Clearly, these models

must be functions of all three stress invariants to capture the pressure-dependency and the irregular cross-

sectional shape of the surface on the deviatoric plane. Smooth three-invariant models for frictional ma-

terials include the Lade–Duncan (LD) [2] and Matsuoka–Nakai (MN) [3] models, among others (see also
[4–6]). Additional enhancements may be introduced in these plasticity models to capture the curved shape

of the yield/failure surface on the meridian plane [7].

Apart from the complexities of the yield and plastic potential surfaces in principal stress axes, one has to

deal with an obvious problem that the principal stress axes themselves may rotate. In describing the

evolution of the plastic responses, the rotation of the principal stress axes must be considered explicitly in

the formulation of tensorial models of plasticity. When implemented in a large-scale finite element analysis

this creates an enormous difficulty not encountered with simpler plasticity models such as the von Mises J2
and the two-invariant Drucker–Prager plasticity models.
The objective of this paper is to implement a class of stress-point integration algorithms appropriate for

three-invariant isotropically hardening plasticity models that explicitly accounts for the rotation of prin-

cipal stress axes. The formulation is based on a spectral representation of stresses and strains and a return

mapping in the principal stress (or strain) axes. The notion of return mapping in principal stress directions

is not new – Simo [8,9] utilized this approach to implement a product formula algorithm for finite de-

formation multiplicative plasticity. His choice of this approach, however, was motivated primarily by the

problem of geometric non-linearity and not by the complexity of the constitutive model. In the present

paper, we propose to use the same return mapping in principal stress axes to handle the presence of all three
stress invariants in the plasticity theory. Many three-invariant plasticity models are conveniently expressed

in terms of the principal stresses themselves, so a return mapping in principal axes is a natural way of

numerically integrating the elastoplastic rate-constitutive relations in the presence of all three stress in-

variants.

Among the three-invariant plasticity models investigated in this paper are the MC, LD, and MN

plasticity models, widely used for representing the behavior of cohesive-frictional materials such as

concrete, soil and rock. The numerical integration of the MC plasticity model is not trivial due to the

presence of corner or vertex effects. In this paper we accommodate corner effects using a multisurface
plasticity formulation of Koiter [10]. The LD and MN models are two �smooth� versions of the MC

model. There is enough evidence suggesting that these smooth versions in fact capture the mechanical

responses of granular materials more accurately than even the MC model itself, thus further motivating

their consideration. Here, we combine these two models into a more general representation of a class of

smooth three-invariant plasticity models which is numerically integrated using the proposed return

mapping algorithm.

A key component of the algorithm is the linearization of the discrete evolution of stresses necessitating an

algorithmic tangent operator for use in Newton iteration. Whereas the linearization of stresses for the case
of non-rotating principal stress axes results in a unique form for the material component of the tangent

operator, at least two forms are possible for the linearization of the �spin part� characterizing the instan-

taneous rotation of the principal axes. The first possible linearization of the spin part utilizes the approach

proposed by Ogden [11] which requires an explicit evaluation of the eigenvectors nðAÞ, A ¼ 1, 2, 3, of the

principal stresses. In this paper we shall call this technique the eigenvector linearization approach. A second

possible expression for the explicit linearization of the spin part uses a closed-form expression for the ei-

genbases mðAÞ ¼ nðAÞ � nðAÞ together with the use of some important properties of isotropic fourth-order
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tensors [8,9,12–15]. In this paper we shall call this technique the eigenbasis linearization approach. The
numerical performances of both the eigenvector and eigenbasis approaches are assessed in this paper.

As for notations and symbols, bold-face letters denote matrices and vectors; the symbol ��� denotes an
inner product of two vectors (e.g. a � b ¼ aibi), or a single contraction of adjacent indices of two tensors (e.g.
c � d ¼ cijdjk); the symbol �:� denotes an inner product of two second-order tensors (e.g. c : d ¼ cijdij), or a
double contraction of adjacent indices of tensors of rank two and higher (e.g. C : �e ¼ Cijkl�

e
kl); the symbol

��� denotes a juxtaposition, e.g., ða� bÞij ¼ aibj. For any symmetric second order tensors a and b, we have

ða � bÞijkl ¼ aijbkl; ða � bÞijkl ¼ ajlbik; and ða � bÞijkl ¼ ailbjk.

2. Return mapping algorithm for infinitesimal plasticity

In this section we review the return-mapping algorithm in principal directions for small deformation
elastoplasticity. In the next section, we focus on the numerical implementation of a number of specific

three-invariant plasticity models.

2.1. General formulation

Our point of departure is the variational form of the linear momentum balance equation, which, for

quasistatic loading, reads

W ¼
Z

X
ðgradg : r � qg � gÞdV �

Z
oX

g � tdA ¼ 0; ð2:1Þ

where r is the Cauchy stress tensor, q is the mass density, g is the vector of gravity accelerations, t is the
traction vector, g is the weighting function, X is the domain of integration, and oX is the domain boundary.

For dead loading the linearization of this function with respect to the state W0 reads

LW ¼ W0 þ
Z

X
gradg : c : graddudV �

Z
oX

g � dtdA; ð2:2Þ

where u is the displacement field. Here, c is a tangent operator consistent with the linearization of r.

We assume a stress evolution rt emanating from a standard strain-driven problem. The displacement and

strain fields driving the problem are given, respectively, by

ut : unðXÞ 
 ½tn; tnþ1� ! R3; �t ¼ symðrutÞ 2 S; ð2:3Þ
where un is the configuration at time tn and S is the space of symmetric second-order tensors. A specific

form for rt in the context of elastoplasticity is given by the return mapping equation

rt ¼ rtr
t � Dktc

e : gt; ð2:4Þ

where rtr
t is the trial elastic stress predictor, Dkt is the discrete plastic multiplier, and

gt ¼
oG
ort

; G ¼ Gðrt; jtÞ ð2:5Þ

is the gradient to the plastic potential function G, with jt representing a vector of plastic internal variables.

The assumption here is that we are given initial values rn and jn, and the problem is to find the evolution of

these variables over the interval t 2 ½tn; tnþ1�.
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We recall the spectral representation

rt ¼
X3
A¼1

rAm
ðAÞ; mðAÞ ¼ nðAÞ � nðAÞ; ð2:6Þ

where rA and nðAÞ are the principal Cauchy stress and principal direction, respectively. If isotropy in the
elastic response is assumed, then we have

�et ¼ �en þ D�et ¼
X3
A¼1

�eAm
ðAÞ; ð2:7Þ

i.e., the spectral directions of �et coincide with those of rt. In this case, the gradients of any scalar functions

of stress invariants, such as the yield and plastic potential functions F and G, may be evaluated as

oF
or

¼
X3
A¼1

oF
orA

mðAÞ;
oG
or

¼
X3
A¼1

oG
orA

mðAÞ; ð2:8Þ

with mðAÞ being a spectral direction of �et as well.
With isotropy the spectral directions of the trial elastic strain tensor �e trt :¼ �en þ D�t also coincide with

those of rt. This means that the return mapping algorithm may be formulated in principal stress space, a

mathematical convenience, and the relevant expression in principal stress space takes the form

rA ¼ rtr
A � Dkt

X3
B¼1

aeAB
oG
orB

; A ¼ 1; 2; 3; ð2:9Þ

where

½aeAB� ¼
kL þ 2l kL kL

kL kL þ 2l kL
kL kL kL þ 2l

2
4

3
5

is the matrix of elastic moduli, kL is the Lam�ee parameter, and l is the elastic shear modulus. In addition, the

evolution of the plastic internal variables is given by

jt ¼ jn þ Djt: ð2:10Þ
Finally the discrete consistency condition must be satisfied on yielding,

F ðr1; r2; r3; jtÞ ¼ 0: ð2:11Þ

The last three equations may be solved in principle to determine the evolution of the principal stresses rA,

the plastic internal variables jt and the discrete plastic multiplier Dkt. The evolution of the complete stress

tensor may be obtained from the spectral representation (2.6), where the directions mðAÞ are determined
explicitly from the spectral decomposition of �e trt .

A summary of the return mapping algorithm in principal stress axes for an isotropically hardening three-

invariant plasticity model is shown in Box 1. Here, ce is the fourth-order elasticity tensor. For non-linear

hardening and non-planar plastic potential function the solution of the discrete consistency condition, Step

4, may require an iterative process and may have to be done simultaneously with Steps 5 and 6. Note that

the spectral decomposition of rtr
t (or �e trt ) requires the solution of an eigenvalue problem; for three-di-

mensional problems this entails the solution of a cubic equation in closed-form. The elements of the vector

of plastic internal variables jt are not necessarily all �stress-like� in nature––for example, a friction hard-
ening law may lead to an element of j in the form of a tangent of the friction angle.
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Box 1. Return mapping algorithm in principal stress axes for isotropically hardening three-invariant
plasticity model, infinitesimal case

2.2. Algorithmic tangent operator and spin of principal axes

Proper construction of the consistent tangent operator is very critical for the algorithm to work in a

general boundary-value problem. It is known that only with a consistent tangent operator can the algo-

rithm capture the asymptotic rate of quadratic convergence of Newton iteration. In this section we discuss

two possible forms for the consistent tangent operator relevant to the proposed return mapping algorithm.

In the absence of round-off errors the two forms theoretically should yield the same optimal results.

2.2.1. Form 1: Tangent operator constructed from eigenbases

The consistent tangent operator c represents the instantaneous variation of the stress tensor rt with

respect to the strain tensor �t, i.e.,

c ¼ ort

o�t
() drt ¼ c : d�t: ð2:12Þ

Since d�t ¼ d�e trt , we can derive a closed-form expression for c by differentiating (2.6) directly with respect

to �e trt to get

c ¼
X3
A¼1

X3
B¼1

aABmðAÞ �mðBÞ þ
X3
A¼1

rAx
ðAÞ; ð2:13Þ

where aAB ¼ orA=o�
e tr
B is the tangent operator consistent with the return mapping in principal stress di-

rections, and xðAÞ ¼ omðAÞ=o�e trt is a fourth-order tensor reflecting the changing orientation of the spectral

directions. The first term of c is a function of the constitutive response and the algorithm used to track this

response, whereas the second term is a function of the rotation of the principal directions alone and not of
the specific plasticity model used.

A closed form expression is available for the spectral direction (or eigenbasis) mðAÞ of any symmetric real-

valued second-order tensor e (in the present case, we can simply take e � �e trt ). The closed-form expression

is given in [12,13] as

mðAÞ ¼ e2 � ðI1 � eAÞeþ I3e�1A 1

DA
; ð2:14Þ

where

DA :¼ 2e2A � I1eA þ I3e�1A 6¼ 0; ð2:15Þ

Step 1. Compute rtr
t ¼ rn þ ce : D�t

Step 2. Spectrally decompose rtr
t ¼

P3

A¼1 rtr
Am

trðAÞ

Step 3. Check F ðrtr
1 ; r

tr
2 ; r

tr
3 ; jnÞ > 0? No, set rt ¼ rtr

t and exit.

Step 4. Yes, solve F ðDktÞ ¼ 0 for Dkt

Step 5. Compute rA ¼ rtr
A � Dkt

P3

B¼1 a
e
ABoG=orB

Step 6. Update rt ¼
P3

A¼1 rAm
trðAÞ, jt ¼ jn þ Djt and exit.

R.I. Borja et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1227–1258 1231



eA is the eigenvalue corresponding to the eigenbasis mðAÞ, and I1 and I3 are the first and third invariants

of e, respectively. Direct differentiation of mðAÞ with respect to e gives the tangential spin of the principal

axis

xðAÞ ¼ ½I e � ðI1 � eAÞI � e� 1þ e�mðAÞ þ I3e�1A 1� e�1 � I3e�2A 1�mðAÞ

þ eAmðAÞ � 1� I3e�1A mðAÞ � e�1 þ wmðAÞ �mðAÞ�=DA; ð2:16Þ

where

I e ¼ e� 1þ e� 1 ¼ 1� eþ 1� e;

w ¼ I1 þ I3e�2A � 4eA;
ð2:17Þ

and where the symbols � and � are as defined in Section 1.

In using the above analytical expression for xðAÞ it is assumed that the eigenvalues are all distinct and

non-zero, otherwise, for the case of repeated roots some perturbation may be necessary to avoid an in-

determinate solution. Note that to derive the tangential spin xðAÞ it is only necessary to determine the ei-

genvalues eA and not the eigenvectors nðAÞ, since a closed-form solution is available for the eigenbases mðAÞ

via (2.14). Closed-form expressions are available for the eigenvalues of a symmetric second-order tensor,
see, for example, the program PRINC on p. 762 of [16]. Theoretically, in the absence of round-off errors,

the expression (2.14) for the eigenbases mðAÞ should yield the same result as that derived directly from the

construction of nðAÞ � nðAÞ.

2.2.2. Form 2: Tangent operator constructed from eigenvectors

Alternately, the tangent operator c may be represented in terms of both the eigenvalues and eigenvectors,

as proposed in [11]. The alternative expression takes the form

c ¼
X3
A¼1

X3
B¼1

aABmðAÞ �mðBÞ þ 1

2

X3
A¼1

X
B6¼A

rB � rA

�e trB � �e trA

� 	
mðABÞ


�mðABÞ þmðABÞ �mðBAÞ�; ð2:18Þ

where

mðAÞ ¼ nðAÞ � nðAÞ; mðABÞ ¼ nðAÞ � nðBÞ; A 6¼ B: ð2:19Þ
The first term in (2.18) is identical to that in (2.13), but the second term utilizes a formulation based on the
spin of the principal axes. When comparing the two expressions for c, note that (2.13) only requires an

explicit calculation of the eigenbases mðAÞ, whereas (2.18) requires an evaluation of the eigenvectors nðAÞ.
Also note that for the case of repeated roots the spin component of (2.18) becomes indeterminate. In this

case, however, we have a choice of either introducing a perturbation similar to that used in conjunction

with (2.13), or replacing the indeterminate expression ðrA � rBÞ=ð�e trB � �e trA Þ by the expression oðrA � rBÞ=
o�e trB for the case of repeated roots, see [11].

Algorithmic iterative solutions may be employed to calculate both the eigenvalues and the associated

eigenvectors of a symmetric second-order tensor. For example, the IMSL subroutines EVLSF/DEVLSF in
Fortran PowerStation 90 utilize orthogonal similarity transformations to reduce the tensor to an equivalent

symmetric tridiagonal matrix, after which an implicit rational QR algorithm is used to compute the ei-

genvalues of this tridiagonal matrix. The eigenvectors are then evaluated using the eigenvalues as perfect

shifts (see pp. 169 and 172 of [17]). The reduction routine employed in the algorithm is based on the EI-

SPACK routine TRED2, see [18] for the EISPACK routines. This algorithm, advocated and used in [19],

provides an alternative approach for determining the principal values and principal directions of a sym-

metric second-order tensor.
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3. Application to three-invariant plasticity models

This section considers some of the well-known three-invariant isotropic plasticity models with convex

yield surfaces. Most of these models are used to capture the yield behavior of geomaterials (concrete, soils,

rocks), which are known to exhibit different yield stresses in tension and compression. The simplest is the

MC model, although the presence of corners makes it difficult to implement in a general three-dimensional

framework. Smooth approximations to the MC model are also described in this section.

3.1. Mohr–Coulomb plasticity model

Consider the following yield function

F ðr; jÞ ¼ jrA � rBj � 2c cos/ þ ðrA þ rBÞ sin/6 0 ð3:1Þ
and plastic potential function

Gðr; jÞ ¼ jrA � rBj � 2c cosw þ ðrA þ rBÞ sinw; ð3:2Þ
where c is the cohesion, / the friction angle, and w6/ is the dilation angle (the inequality ensures a non-

negative plastic dissipation). Here we define j ¼ ðc;/;wÞ, B ¼ 1þmodðA; 3Þ, and C ¼ 1þmodðB; 3Þ. The
yield function F constitutes six planes in principal stress space, forming six corners and a common vertex on

the tension side of the hydrostatic axis, see Fig. 1. In the following developments we assume that / and w
are constant, but c may vary with plastic deformation.

Except at the vertex, at most two of the six planes comprising the yield function may be active at the same

time. We consider two cases.

Case 1. One active yield surface.

Assume the following yield function is active:

F ðr; jÞ ¼ fABðrA � rBÞ � 2c cos/ þ ðrA þ rBÞ sin/ ¼ 0; ð3:3Þ

Fig. 1. MC yield functions: (a) principal stress space representation; (b) deviatoric plane representation.
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where fAB ¼ signðrtr
A � rtr

B Þ. The corresponding plastic potential function is

Gðr; jÞ ¼ fABðrA � rBÞ � 2c cosw þ ðrA þ rBÞ sinw: ð3:4Þ

The gradient of G with respect to a principal stress is

oG
orI

¼ fABðdAI � dBIÞ þ ðdAI þ dBIÞ sinw ¼ constant; ð3:5Þ

where the ds are the Kronecker delta.
Next, consider the following hardening/softening law

_jj1 ¼ _cc ¼ H
2 cos/

_kk; _jj2 ¼ _// ¼ 0; _jj3 ¼ _ww ¼ 0; ð3:6Þ

where H is the plastic modulus and _kk > 0 is the plastic multiplier. Assuming H is constant, we have the

following evolution of the plastic internal variables

jt ¼ jn þ Djt ¼
cn þ HDkt=ð2 cos/Þ

/
w

8<
:

9=
;: ð3:7Þ

Using (2.9) and (3.3), we get

Dkt ¼
1

v
½jrtr

A � rtr
B j � 2cn cos/ þ ðrtr

A þ rtr
B Þ sin/�;

v ¼ 4l þ 4kL sin/ sinw þ 4l sin/ sinw þ H :

ð3:8Þ

Finally, substituting (3.8) into (2.9) and simplifying, the tangent operator aAB appearing in (2.13) is obtained
as

aAB ¼ aeAB �
1

v

X3
I¼1

X3
J¼1

aeAI
oG
orI

oF
orJ

aeJB: ð3:9Þ

Note that the tangent operator aAB coincides with the elastoplastic constitutive operator suggesting that the
algorithm described above is exact.

Case 2. Two active yield surfaces.

Assume the following yield surfaces are active:

F1ðr; jÞ ¼ fABðrA � rBÞ � 2c cos/ þ ðrA þ rBÞ sin/ ¼ 0;

F2ðr; jÞ ¼ fACðrA � rCÞ � 2c cos/ þ ðrA þ rCÞ sin/ ¼ 0;
ð3:10Þ

where A 6¼ B 6¼ C 6¼ A, and the fs are the same sign symbols. The corresponding active plastic potential

functions are

G1ðr; jÞ ¼ fABðrA � rBÞ � 2c cosw þ ðrA þ rBÞ sinw;

G2ðr; jÞ ¼ fACðrA � rCÞ � 2c cosw þ ðrA þ rCÞ sinw:
ð3:11Þ

We introduce two non-negative discrete plastic multipliers, Dk1 and Dk2, and use Koiter�s rule to obtain

the plastic strain increment as

D�pA ¼ Dk1
oG1

orA
þ Dk2

oG2

orA
; ð3:12Þ
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where

oG1

orI
¼ fABðdAI � dBIÞ þ ðdAI þ dBIÞ sinw;

oG2

orI
¼ fACðdAI � dCIÞ þ ðdAI þ dCIÞ sinw:

ð3:13Þ

Letting Dk ¼ Dk1 þ Dk2 and using the same hardening/softening law as for Case 1, we get

v11 v12
v21 v22

� �
Dk1
Dk2

� �
¼ jrtr

A � rtr
B j � 2cn cos/ þ ðrtr

A þ rtr
B Þ sin/

jrtr
A � rtr

C j � 2cn cos/ þ ðrtr
A þ rtr

CÞ sin/

� �
; ð3:14Þ

where

v11 ¼ v22 ¼ 4l þ 4kL sin/ sinw þ 4l sin/ sinw þ H ;

v12 ¼ 4kL sin/ sinw þ 2lðfABfAC þ fAB sinw þ fAC sin/ þ sin/ sinwÞ þ H ;

v21 ¼ 4kL sin/ sinw þ 2lðfACfAB þ fAC sinw þ fAB sin/ þ sin/ sinwÞ þ H :

ð3:15Þ

In the present case,

aAB ¼ aeAB �
X2
a¼1

X2
b¼1

X3
I¼1

X3
J¼1

vabaeAI
oGa

orI

oFb

orJ
aeJB; ð3:16Þ

where vab is the ab-component of the matrix inverse of ½vab�. In deciding whether one or two yield functions
are active at a time, a search algorithm is required to identify the set of active constraints. For multisurface

plasticity exhibiting corner-like effects a search algorithm for the set of active constraints is presented in [20]

for the case of multiple linearly independent constraints, and in [21] for the case of multiple linearly de-
pendent constraints. As noted in Section 1, these complications are avoided by considering smooth ver-

sions, which it was argued could be more accurate than the MC model.

3.2. A class of three-invariant plasticity models with smooth yield surfaces

Smooth yield functions are often substituted for the MC model to avoid the undesirable corner effects of

the latter model, which are both tricky and unwieldy to implement. Consider then a family of smooth yield

functions of the form

F ðr; jÞ ¼ ðk1I3Þ1=3 � f ðI1; I2Þ6 0; k1 ¼ c0 þ j1

pa
I1

� 	m

; ð3:17Þ

where

I1 ¼ r1 þ r2 þ r3; I2 ¼ r1r2 þ r2r3 þ r1r3; I3 ¼ r1r2r3

are the first, second, and third stress invariants, respectively, c0 and m are model constants, pa < 0 is the

atmospheric pressure expressed in the same units as I1, and j1 2 j is a plastic internal variable charac-

terizing the friction hardening/softening of the material. A similar family of smooth plastic potential
functions may be postulated as

Gðr; jÞ ¼ ðk2I3Þ1=3 � gðI1; I2Þ; k2 ¼ c0 þ j2

pa
I1

� 	m

; ð3:18Þ

where j2 2 j characterizes the material�s plastic dilatational response.
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The hardening/softening law may be expressed in the form

j ¼ j1

j2

� �
¼ jðr; kÞ; k ¼

Z
t

_kkdt: ð3:19Þ

Here, j1 and j2 are non-negative functions. An example of a friction hardening/softening law is

j1ðr; kÞ ¼ a1k expða2I1Þ expð�a3kÞ; ð3:20Þ

where a1, a2, and a3 are positive constants and I1 < 0 is the first stress invariant. A typical plot of j1 as a

function of the cumulative plastic strain k is shown in Fig. 2. The ascending part corresponds to friction

hardening while the descending part suggests softening. The presence of the first stress invariant suggests

that the growth of j1 decays with increasing confining pressure.

The class of plasticity models described above includes the following well-known three-invariant models
widely used for characterizing the yield response of geomaterials such as concrete, soil and rock.

3.2.1. Lade–Duncan model

The LD model [2] is recovered from (3.17) if we take

f ðI1; I2Þ ¼ I1; c0 ¼ 27; m ¼ 0: ð3:21Þ

In this case, plastic yielding takes place when I31=I3 ¼ k1 P 27, and k1 ¼ c0 þ j1. This model is widely used

for characterizing the yield behavior of cohesionless granular materials such as sands under compressive

normal stresses, i.e., I1 < 0 and I3 < 0. The yield function passes through the origin, implying no cohesive

yield strength. The constant value c0 ¼ 27 arises from the constraint that the hydrostatic axis be contained

by the yield function. With the hardening law given by (3.20), in which j1 increases from an initial value of
zero when k ¼ 0, the initial yield function coincides with the hydrostatic axis. Thus, the initial elastic region

reduces to a line. If some finite elastic region is to be represented before the beginning of a loading program,

then c0 must be chosen to be greater than 27.

Fig. 3 shows a cross section of the LD yield function on the deviatoric plane plotted on top of the

hexagonal cross section of the MC yield function. The parameter j1 (or, equivalently, k1) can be related

analytically to the friction angle / used in the MC plasticity model. For example, if the LD yield function is

made to pass through the inner three tension corners of the MC hexagon, then (see Appendix A and [22])

Fig. 2. Hardening/softening relation for parameter j1.
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1

3
sin/t ¼ � a2 � aþ 1

a2 � 5aþ 1
; ð3:22Þ

and if it is made to pass through the outer three compression corners, then

1

3
sin/c ¼

ðaþ 1Þ2 þ
ffiffiffi
3

p
ða2 � 1Þi

ðaþ 1Þ2 þ 8aþ
ffiffiffi
3

p
ða2 � 1Þi

; ð3:23Þ

where �i� is the imaginary number, and

a ¼ j1 � 27þ 6
ffiffiffiffiffiffiffi
3j1

p
i

j1 þ 27

� 	1=3

: ð3:24Þ

Note in the above equations that a has an imaginary part but the right-hand sides of (3.22) and (3.23) are

both real numbers. The variations of /t and /c with j1 are shown in Fig. 4.

3.2.2. Modified Lade model

The modified Lade (ML) model [7] is obtained if we take

f ðI1; I2Þ ¼ I1; c0 ¼ 27; 0 < m < 1: ð3:25Þ
The presence of the exponential term ðpa=I1Þm makes the yield function curve parallel to the hydrostatic axis
with increasing confining pressure. The LD model is a special case of the ML model when m ¼ 0.

The relationships between /t, /c, and the ML model parameters can be obtained by taking

j0 ¼ j1

pa
I1

� 	m

ð3:26Þ

and substituting j0 in lieu of j1 in (3.24). Note that j0 ¼ j1 if m ¼ 0. If m > 0, then j0 ! 0 as I1 ! �1. In

this case,

Fig. 3. LD and MC yield functions: (a) principal stress space representation; (b) deviatoric plane representation.

R.I. Borja et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1227–1258 1237



lim
I1!�1

a ¼ ð�1Þ1=3 ¼ 1

2
þ

ffiffiffi
3

p

2
i; ð3:27Þ

and so, from (3.22) and (3.23), we get

lim
I1!�1

sin/t ¼ lim
I1!�1

sin/c ¼ 0: ð3:28Þ

Thus, the equivalent friction angle is such that the MC yield surface also curves parallel to the hydrostatic

axis with increasing confining pressures. A plot of the ML model on a meridian plane is shown in Fig. 5,

along with a plot of the LD model (with pa ¼ �100 kPa, m ¼ 1 and j1 ¼ 13).

3.2.3. Matsuoka–Nakai model

The MN model [3] is obtained if we take

f ðI1; I3Þ ¼ ðI1I2Þ1=3; c0 ¼ 9; m ¼ 0: ð3:29Þ

Fig. 5. LD and ML yield surfaces on meridian plane.

Fig. 4. Relation among LD parameter j1, MN parameter j1, and MC friction angle parameter /.
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In this case, yielding takes place when I1I2=I3 ¼ k1. The constant c0 ¼ 9 ensures that the hydrostatic axis is

contained in the yield function F . If j1 ¼ 0 when k ¼ 0, then the initial yield function coincides with the

hydrostatic axis. The cross section of the MN model on the deviatoric plane is plotted in Fig. 6 together
with the MC yield surface. Note in this case that the MN yield surface passes through all six corners of the

MC hexagon.

It is possible to relate the parameter k1 of the MN model with the friction angle / of the MC model.

Here, the relationship between the two parameters is unique since there is only one function of the form

(3.26) that passes through all six corners of the irregular hexagon. The relationship is (see Appendix A and

[22])

sin/ ¼ k1 � 9

k1 � 1

� 	1=2

¼ j1

j1 þ 8

� 	1=2

: ð3:30Þ

As j1 increases from an initial value of zero when the yield function coincides with the hydrostatic axis, the

equivalent friction angle also increases (friction hardening); conversely, as j1 decreases from its peak value

according to the hardening/softening law (3.20), the equivalent friction angle also decreases (friction

softening). The variation of / with j1 is also shown in Fig. 4.

The generalized yield function defined by (3.17) allows the extension of the MN model to the case

where the yield function may also curve parallel to the hydrostatic axis with increasing confining pressure,

as in the ML model. Furthermore, in principle the functions f ðI1; I2Þ and gðI1; I2Þ do not necessarily have to
be the same, so a LD yield function, for example, may be combined with a MN plastic potential function,

and vice versa, depending on the desired model features. Several other three-invariant isotropic yield

functions have been analyzed in [1], with the consensus that the LD and MN models ensure convexity of the

yield surfaces while the other forms considered by previous investigators may not. Without loss of gen-

erality this paper will thus focus on the numerical implementation of the family of smooth yield functions

given by (3.17).

Fig. 6. MN and MC yield functions: (a) principal stress space representation; (b) deviatoric plane representation.
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3.3. Return mapping algorithm in principal stress axes

For the three-invariant plasticity models of the form described in Section 3.2, we adopt the following

standard return mapping algorithm in principal stress space:

rA ¼ rtr
A � Dk

X3
B¼1

aeAB
oG
orB

; ð3:31Þ

where Dk > 0 is a discrete plastic multiplier. A rewrite of this equation in principal elastic strain space is

�eA � �e trA þ Dk
oG
orA

¼ 0; ð3:32Þ

where

�eA ¼
X3
B¼1

ae�1AB rB; �e trA ¼
X3
B¼1

ae�1AB rtr
B ð3:33Þ

and

½aeAB�
�1 ¼ 1

E

1 �m �m
�m 1 �m
�m �m 1

2
4

3
5 ð3:34Þ

is the elastic compliance matrix that depends on the elastic Young�s modulus E and Poisson�s ratio m.
Although the stress form return-mapping algorithm (3.31) is more commonly used in practice, the strain

form (3.32) is more robust since it can handle non-linear elasticity as well. For isotropic linear elasticity the
two forms are the same from an implementational standpoint.

We also assume an evolution equation for the internal plastic variables of the form

j � ĵjðb; kÞ ¼ 0; k ¼ kn þ Dk; ð3:35Þ
where ĵj is some prescribed hardening/softening law such as that given by the exponential function (3.20),

and b ¼ fr1; r2; r3g is the vector of principal Cauchy stresses. The above hardening/softening law states

that friction hardening/softening may also depend on the stress state. This latter feature is consistent with
the experimental observations described in [23], for example, where the rate of friction hardening/softening

was shown to be influenced by the value of the first stress invariant as well. For a plastic loading process, we

write the discrete consistency condition as

F ðb; jÞ ¼ 0; ð3:36Þ
where F is the yield function.

In a strain-driven problem we are generally given a fixed set of predictor values rtr
A (or �e trA ), for A ¼ 1, 2,

3, and the goal is to find the corresponding values of b, j, and Dk satisfying (3.31), (3.35) and (3.36). We can

readily solve the non-linear problem using a standard Newton iteration, defining the vector of unknowns

and the local tangent operator as

x ¼
b

j

Dk

8<
:

9=
;; A ¼ r0ðxÞ ¼

ðae�1 þ DkG;bbÞ DkG;bj G;b

�ĵj;b I nj
nj �ĵj;k

F;b F;j 0

2
4

3
5; ð3:37Þ

where r is the residual vector and Inj
nj is an identity matrix of dimension nj, the dimension of the vector j.

The same local tangent operator A may be used to define the consistent tangent operator for the global
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iteration. In this case, the material tangent operator a, with components aAB ¼ orA=o�B, may be obtained

from the tangent operator A as (see [24])

a ¼ ½I3
3j0� � A�1 � I3
3
0

� �
: ð3:38Þ

From a numerical standpoint, all that is necessary is to invert A, and the first 3
 3 submatrix of A�1 defines

the matrix a, which in turn is used in the complete tangent operator c via (2.12).

3.4. Derivatives

Consider the following relationship between the dilatancy parameter j2 and the friction parameter j1:

j2 ¼ aj1; a 2 ½0; 1�: ð3:39Þ

Here, a 6¼ 1 corresponds to the case of non-associative plasticity. For sands a value of a < 1 is typical [7].
Because we have now adopted an explicit relation between j1 and j2, the total number of unknowns can be

reduced in the local Newton iteration problem. Eliminating the variable j2 from the original set of un-

knowns, we can re-write

x ¼
b

j1

Dk

8<
:

9=
;

5
1

; rðxÞ ¼
�eA � �e trA þ DkoG=orA

j1 � ĵj1ðr1; r2; r3; kÞ
F ðr1; r2; r3; j1Þ

8<
:

9=
;

5
1

; ð3:40Þ

where A ¼ 1, 2, 3; b is the vector of principal Cauchy stresses; and �eA and �e trA are defined by (3.33) as linear

functions of b and btr, respectively. In this case the local tangent operator simplifies to

A ¼ r0ðxÞ ¼
ðae�1 þ DkG;bbÞ aDkG;bj2 G;b

�ĵj1;b 1 �ĵj1;k

F;b F;j1 0

2
4

3
5
5
5

: ð3:41Þ

The inverse A�1 may be calculated readily from the IMSL subroutines LSGRR/DLSGRR.

The derivatives of the yield and plastic potential functions are given, respectively, by

oF
orA

¼ 1

3rA
ðk1I3Þ1=3 �

1

3
b1k

�2=3
1 � of

orA
;

oG
orA

¼ 1

3rA
ðk2I3Þ1=3 �

1

3
b2k

�2=3
2 � og

orA
;

ð3:42Þ

where

k1 ¼ c0 þ j1

pa
I1

� 	m

; k2 ¼ c0 þ j2

pa
I1

� 	m

; ð3:43Þ

b1 ¼ mj1

pa
I1

� 	m I1=33

I1
; b2 ¼ mj2

pa
I1

� 	m I1=33

I1
; ð3:44Þ

and

of
orA

¼ og
orA

¼ 1; for LD;
½I1ðI1 � rAÞ þ I2�=½3ðI1I2Þ2=3�; for MN:

�
ð3:45Þ
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For the second stress derivative of the plastic potential function we have

o2G
orA orB

¼ 1

3
ðk2I3Þ1=3

1

3rArB

�
� dAB

r2
A

	
þ k�2=32

9

I1=33

rA

 
þ 2

b2
k2

!
ok2
orB

� 1

3
k�2=32

ob2
orB

� o2g
orA orB

; ð3:46Þ

where

ok2
orB

¼ �mj2

I1

pa
I1

� 	m

;
ob2
orB

¼ b2
I1

I1
3rB

�
� m� 1

	
; ð3:47Þ

o2g=orA orB ¼ 0 for the LD model, and

o2g
orA orB

¼ 1

3
ðI1I2Þ�2=3ð3I1 � rA � rB � I1dABÞ �

2

9
ðI1I2Þ�5=3½I1ðI1 � rAÞ þ I2�½I1ðI1 � rBÞ þ I2� ð3:48Þ

for the MN model.

Finally, we have

o2G
orA oj2

¼ 1

3
k�2=32

pa
I1

� 	m
1

3

I1=33

rA

 
þ 2

3

b2
k2

� m
I1=33

I1

!
ð3:49Þ

and

oF
oj1

¼ 1

3
k�2=31 I1=33

pa
I1

� 	m

: ð3:50Þ

Assuming an exponential form (3.20) for the plastic internal variable j1, we also get

oĵj1

orA
¼ a1a2k expða2I1Þ expð�a3kÞ ð3:51Þ

and

oĵj1

ok
¼ ð1� a3kÞa1 expða2I1Þ expð�a3kÞ; ð3:52Þ

where a �hat� over j1 is used to distinguish the function under consideration from the variable j1 itself,

which is now treated as one of the unknowns.

4. Extension to finite deformation plasticity

As noted in Section 1, the notion of return mapping in principal stress space was developed initially to

address the problem of geometric non-linearity and not the complexity of the constitutive model. Thus, an

�extension� to the finite deformation regime of the proposed algorithmic framework is straightforward

(strictly speaking, the proposed approach has been extended to the infinitesimal case, hence, the in quotes).

In this section we briefly review the structure of the finite deformation theory and present two alternative

methods of constructing the algorithmic tangent operator applicable to the three-invariant constitutive

formulation.

4.1. Variational equation

Once again, our point of departure is the variational form of the linear momentum balance, now written

with respect to the reference configuration as
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W ¼
Z
B

ðGRADg : P � q0g � GÞdV �
Z
oB

g � t0 dA ¼ 0; ð4:1Þ

where P is the unsymmetric first Piola–Kirchhoff stress tensor, q0 is the mass density in the reference

configuration, G is the vector of gravity accelerations, t0 is the nominal traction vector, g is the weighting

function, andB and oB are, respectively, the problem domain and boundary in the reference configuration.

The gradient operator GRAD is a spatial differentiation with respect to the coordinates of the reference

configuration. We note that the stress tensor P is related to the symmetric Kirchhoff stress tensor s through
the deformation gradient F ¼ o/=oX via the relation s ¼ P � F t, and thus we can make the following

substitution in (4.1):

GRADg : P � gradg : s; ð4:2Þ

where grad is a spatial differentiation with respect to the coordinates of the current configuration.

For dead loading the linearization of (4.1) with respect to the state W0 reads

LW ¼ W0 þ
Z
B

gradg : dsdV þ
Z
B

dðgradgÞ : sdV �
Z
oB

g � dt0 dA: ð4:3Þ

In terms of the variation of the displacement field du, we herein write the tangential constitutive equation as

ds ¼ a : graddu; ð4:4Þ

where a is a fourth-order tangent constitutive operator that may also include some stress terms. The
variation of the second term in the integrals of (4.3) takes the form

dðgradgÞ ¼ dðGRADg � F�1Þ ¼ GRADg � dF�1 ¼ �gradg � graddu: ð4:5Þ

Thus, Eq. (4.3) can be rewritten as

LW ¼ W0 þ
Z
B

gradg : a : graddudV �
Z
oB

g � dt0 dA; ð4:6Þ

where

a ¼ a � s � 1 ð4:7Þ
and ðs � 1Þijkl ¼ sildjk. This expression is valid provided that an incremental constitutive relation of the

form (4.4) is available.

4.2. Tangent operators for multiplicative plasticity

We are specifically interested in the form of the tangent constitutive tensor a arising from the product

formula algorithm of multiplicative plasticity as presented in [8,9]. In the interest of brevity, details of the

formulation of the multiplicative plasticity theory will not be repeated here––we simply refer the readers to
[8,9], and to Box 2, which summarizes the important steps of the algorithm. Our goal is to compare two

alternative approaches for constructing the tangent operator a. To this end, we again resort to the proposed

spectral decomposition technique.

First, we write the Kirchhoff stress tensor spectrally as

s ¼
X3
A¼1

sAm
ðAÞ; mðAÞ ¼ nðAÞ � nðAÞ; ð4:8Þ
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Box 2. Return mapping algorithm in principal stress axes for isotropically hardening three-invariant
plasticity model, finite deformation case

where sA and nðAÞ are the eigenvalues and unit eigendirections of s, respectively. We view the constitutive

variation of s as being driven by the elastic left Cauchy–Green deformation tensor be, whose predictor value
is given by

be tr ¼ f � ben � f
t; f ¼ ox

oxn
; ð4:9Þ

where ben is the converged value of be at the configuration /ðB; tnÞ. By isotropy in the elastic response, we

can also decompose be tr spectrally as

be tr ¼
X3
A¼1

bAmðAÞ; ð4:10Þ

where bA ¼ k2A are the squares of the trial elastic principal stretches kA, and mðAÞ are the same spectral di-

rections as those of the stress tensor s. The variation of sA with respect to the principal value bB of the

deformation tensor be tr is linked by the chain rule through the intermediate variable eB :¼ ln kB, the

principal elastic logarithmic strain. Thus, in a deformation-driven format return-mapping may be viewed as
taking place in the principal Kirchhoff stress space according to prescribed predictor values of the principal

elastic logarithmic strains [8,9].

4.2.1. Form 1. Tangent operator constructed from eigenbases

As before, the tangent operator a is obtained by direct differentiation of the spectrally decomposed

Kichhoff stress tensor (cf. (2.13)),

a ¼
X3
A¼1

X3
B¼1

aABmðAÞ �mðBÞ þ
X3
A¼1

sAx
ðAÞ; ð4:11Þ

where aAB ¼ osA=oeB is the tangent operator consistent with the return mapping in principal Kirchhoff stress
directions, and where eB ¼ ln kB and k2B ¼ bB. The tensor xðAÞ reflects the changing orientation of the

spectral directions of s (or be tr) and takes the form [8]

xðAÞ ¼ 2½I b � b� bþ I3b�2A ð1� 1� IÞ þ b2Aðb�mðAÞ þmðAÞ � bÞ
� I3b�2A ð1�mðAÞ þmðAÞ � 1Þ � wmðAÞ �mðAÞ�=DA; ð4:12Þ

where b :¼ be tr, I1 and I3 are the first and third invariants of b,

I b ¼ ðb� bþ b� bÞ=2; w ¼ I1 þ I3b�2A � 4bA ð4:13Þ

Step 1. Compute be tr ¼ f � ben � f
t

Step 2. Spectrally decompose be tr ¼
P3

A¼1 bAm
trðAÞ

Step 3. Compute strA ¼
P3

B¼1 a
e
ABeB for A ¼ 1; 2; 3

Step 4. Check F ðstr1 ; str2 ; str3 ; jnÞ > 0? No, set s ¼
P3

A¼1 strAm
trðAÞ and exit.

Step 5. Yes, solve F ðDkÞ ¼ 0 for Dk
Step 6. Compute sA ¼ strA � Dk

P3

B¼1 a
e
AB oG=osB

Step 7. Update s ¼
P3

A¼1 sAmtrðAÞ, j ¼ jn þ Dj and exit.
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and

DA :¼ 2b2A � I1bA þ I3b�1A 0: ð4:14Þ
To derive the tangential spin xðAÞ we note once again that it only suffices to know the eigenvalues bA and

eigenbases mðAÞ, but not the eigenvectors nðAÞ of the original tensor be tr. As noted in Section 2, closed form

solutions for these eigenvalues and eigenbases are available. The above form for the tangent operator a is

widely used in the computational mechanics literature although it arguably requires more detailed nu-

merical calculations than the one described below.

4.2.2. Form 2. Tangent operator constructed from eigenvectors

Following Ogden�s [11] formulation, we write the variation of the Kirchhoff stress tensor as

ds ¼
X3
A¼1

dsAm
ðAÞ þ

X3
A¼1

X
B6¼A

XABðsB � sAÞmðABÞ; ð4:15Þ

where XAB is the spin of the principal axes of s, and mðABÞ ¼ nðAÞ � nðBÞ. The variation of be tr takes a similar
form,

dbe tr ¼
X3
A¼1

dbAmðAÞ þ
X3
A¼1

X
B 6¼A

XABðbB � bAÞmðABÞ: ð4:16Þ

Note that the spins of the principal axes of s and be tr are the same because of the assumed isotropy in the

elastic response. It thus follows that

ds ¼ u : dbe tr; ð4:17Þ
where u :¼ os=obe tr is a rank-four tangential stress-deformation tensor of the form

u ¼
X3
A¼1

X3
B¼1

osA
obB

mðAÞ �mðBÞ þ 1

2

X3
A¼1

X
B 6¼A

sB � sA
bB � bA

� 	
mðABÞ


�mðABÞ þmðABÞ �mðBAÞ�: ð4:18Þ

We note from the equation above that the spins XAB do not enter into the expression for the tensor u.

From (4.9), we obtain the variation

dbe tr ¼ df � ben � f
t þ f � ben � df

t ¼ graddu � be tr þ be tr � gradt du: ð4:19Þ
On substitution into (4.17), we get

ds ¼ 2u � be tr : graddu � a : graddu; ð4:20Þ
where

a ¼ 2u � be tr ¼ 2u �
X3
C¼1

bCmðCÞ: ð4:21Þ

Noting that

osA
obB

¼ osA
oeB

oeB
okB

okB

obB
¼ aAB
2bB

; ð4:22Þ

where aAB ¼ osA=oeB, we finally have

a ¼
X3
A¼1

X3
B¼1

aABmðAÞ �mðBÞ þ 1

2

X3
A¼1

X
B6¼A

sB � sA
bB � bA

� 	
ðbBmðABÞ �mðABÞ þ bAmðABÞ �mðBAÞÞ: ð4:23Þ
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This tangent operator must be compared to (4.11), which exhibits a very similar structure. The first term of

(4.23) is identical to that of (4.11) and reflects the return mapping algorithm in principal Kirchhoff stress

space. The second term reflects the spin of the spectral directions and appears to have a much simpler

structure than the spin components defined in (4.12), although the spin components of (4.23) do require

explicit evaluation of the eigenvectors. The latter feature should not be viewed as a shortcoming since, as

noted in the previous section, there exist iterative solvers that calculate the eigenvalues and eigenvectors of a

symmetric second-order tensor efficiently. Besides, the spin component of (4.23) is a relatively simple ex-

pression that is very easy to code. An example presented in the next section demonstrates that the two
alternative tangent operators described above are the same.

5. Numerical examples

In this section we present the results of a number of two- and three-dimensional element tests as well as a

full boundary-value problem analysis reporting the performance of the proposed algorithm. In the analyses

we assess the ability of the algorithm to handle (a) the degree of material non-linearity implied by the
smooth three-invariant model, (b) the rotation of principal stress axes, and (c) the finite deformation effects.

5.1. Element tests: simulations with smooth three-invariant models

In the following examples we discuss the implementation of two smooth versions of the MC model––the

ML model and the MN model discussed in Section 3.2. For the ML model with c0 ¼ 27, we assume the

following additional material parameters: Young�s modulus E ¼ 100 MPa; Poisson�s ratio m ¼ 0:2; hard-
ening/softening modulus parameters a1 ¼ 5000, a2 ¼ 0:0005/kPa, and a3 ¼ 50; non-associativity parameter
a ¼ j2=j1 ¼ 0:5; and �curving� parameters m ¼ 0:23, and pa ¼ �100 kPa; for the MN model with c0 ¼ 9, we

take E ¼ 100 MPa; m ¼ 0:2; a1 ¼ 20000; a2 ¼ 0:005/kPa; a3 ¼ 35; a ¼ j2=j1 ¼ 0:5; pa ¼ �100 kPa; and

m ¼ 0 (no �curving� effect). For both models the initial yield surface coincides with the hydrostatic axis and

plastic deformation accumulates right at the onset of loading. Unless otherwise noted, initial stresses were

r1 ¼ r2 ¼ r3 ¼ �200 kPa on the hydrostatic line.

5.1.1. Simple shearing with softening

In this example a shear strain c12 was applied on the plane 1–2, holding the out-of-plane normal strain �33
to zero and the two in-plane normal stresses r11 and r22 to their initial values. Thus, the problem determines

the two in-plane normal strains �11 and �22 such that the resulting internal stresses balance the applied

external stresses r11 and r22 under the plane strain condition �33 ¼ 0. Figs. 7 and 8 show the variations of

the shear stress r12 and the out-of-plane normal stress r33 as functions of the applied strain c12, assuming

the material to be represented by the ML and MN models, respectively. For both models the 100- and 400-

step solutions were practically identical. Softening responses were reached at shear strains of about 3%,

accompanied by an increase in compression in the out-of-plane direction 3 (resulting primarily from di-

lation which, under the condition of zero strain in the direction 3, results in an increase in compression).
Care must be taken in interpreting the calculated element responses as strain localization effects have not

been considered in the analysis. It is possible for localized deformation to accompany a softening response,

in which case the resulting element deformation will not be homogeneous. In this paper, we limit the scope

of the study to the case where the element exhibits homogeneous deformations only.

5.1.2. Biaxial compression with softening

In this example the element was compressed in the two direction while holding r1 and r3 fixed. The

results are plotted in Figs. 9 and 10 in the form of a deviator stress–axial strain curve for the ML and MN
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Fig. 7. Simple shear loading with softening using ML model.

Fig. 8. Simple shear loading with softening using MN model.

Fig. 9. Biaxial compression with softening using ML model.
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simulations, respectively. Note that the softening response is far more prominent in biaxial compression

than in simple shear simulation. Once again, the results shown in these figures only reflect material soft-

ening responses and do not include the effects of strain localization.

Both the eigenvector and eigenbasis approaches predicted the same responses to the applied loads with

the smooth three-invariant models. Furthermore, both iterative approaches resulted in an asymptotic rate

of quadratic convergence in Newton iteration, as shown in Figs. 11 and 12 for the simple shear and biaxial
compression simulations, respectively. However, some sensitivity to time-stepping was noted in some of the

runs. For example, neither the eigenvector nor the eigenbasis approach could converge in the biaxial

compression example when fewer than 20 load increments were used. This could be due to how the repeated

roots have been handled, or to the fact that the constitutive models are highly non-linear.

To get some insight into the accuracy of the algorithm, we constructed isoerror maps as described in [25].

Despite its lack of mathematical rigor, this procedure provides a quick numerical assessment of the ac-

curacy of integration algorithms. In this section we limit our discussion to plane strain conditions in

principal stress (or strain) space, i.e., �33 ¼ �12 ¼ �23 ¼ �13 ¼ 0. Starting from an isotropic compression state
r1 ¼ r2 ¼ r3 ¼ �200 kPa, we applied a series of strain increments and used the algorithm to calculate the

corresponding stresses. Each combination of ðD�1;D�2Þ was prescribed in a single step. Next we calculated

the �exact� stresses resulting from the same strain increments by subdividing the increments until further

refinement produces negligible changes in the calculated stresses. The relative error (mean root error) was

calculated from the equation

ERROR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � r�Þ : ðr � r�Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� : r�

p 
 100%; ð5:1Þ

where r is the stress calculated with the given strain increments in one step, and r� is the corresponding
�exact� stress. Because, the testing of the algorithm in this case involves strain-driven loading and no

constraints on the stresses, the algorithmic tangent plays no role in the calculation of error.

Fig. 13 shows isoerror maps for the ML and MN models, respectively. Due to the isotropy of the

constitutive equations, the relative error is symmetric with respect to the biaxial compression line. For the

ML model the relative error is less than 3.5% while that same error reduces to 1.4% or less for the MN

model. Thus, at moderate strains the algorithm seems to provide good accuracy. We also mention that only

the hardening regime is involved in the generation of the isoerror maps since it would be impractical to try

to reach the softening regime in just one strain increment.

Fig. 10. Biaxial compression with softening using MN model.
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5.2. Strip footing on frictional foundation

Next, we consider the classical strip footing problem on a frictional soil foundation. Due to vertical

symmetry it suffices to consider only half of the domain. The finite element mesh is composed of 717 nodes

and 1344 constant strain triangular (CST) elements deforming in plane strain, as shown in Fig. 14. The

material parameters are assumed as follows: Young�s modulus of elasticity E ¼ 5000 kPa; Poisson�s ratio
m ¼ 0:30; and exponential hardening parameters a1 ¼ 0:02E, and a2 ¼ a3 ¼ 0. Thus, the foundation soil
hardens mildly according to the linear relation j1 ¼ a1k. A non-associative flow rule is assumed, with

a ¼ j2=j1 ¼ 0:5 characterizing the plastic dilatational response. An initial friction angle of / ¼ 30� is as-
sumed, and the parameter m is taken equal to zero, i.e., the friction angle does not change with the confining

pressure. The error tolerance was taken as 10�10 based on the L2-norm of the residual force vector.

To get the solution started, gravity and initial surface loads were applied in one full step, with a soil unit

weight c ¼ 20 kN/m3 and a surface load of q ¼ 20 kPa assumed in the analysis. For the LD model the

assumed initial friction angle corresponds to an initial value of k1 ¼ 38:11, assuming that the yield surface

passes through the tension corners, while for the MN model the corresponding initial value is k1 ¼ 11:67.
With m ¼ 0:30 the initial stress points lie inside the yield functions everywhere for either model. A uniform

Fig. 11. Simple shear test with softening: local and global convergence of Newton iterations for ML and MN plasticity models.
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strip load Dq ¼ 200 kPa was then applied in increments over a foundation half-width of 5 m, and initial

plastic yielding of the foundation was observed to occur at a cumulative incremental footing load of

Fig. 12. Biaxial compression with softening: local and global convergence of Newton iterations for ML and MN plasticity models.

Fig. 13. Isoerror maps: (a) ML model; (b) MN model.
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Dq ¼ 12 kPa for the LD model and Dq ¼ 20 kPa for the MN model (the earlier yielding in the LD sim-

ulation was due to a smaller elastic region predicted by the yield surface that passes through the tension

corners).
Fig. 15 shows the deformed mesh at the conclusion of the simulations. Here, Dq was applied in 50 or 100

loading increments, and the two sets of numerical solutions for nodal displacements are compared at points

A (center line) and B (edge of the strip load) on the ground surface. The numerical values of these dis-

placements are summarized in Table 1. In general, the two sets of solutions are nearly identical, attesting to

the accuracy of the algorithm. We note once again that the above solutions do not account for a possible

Fig. 14. Undeformed finite element mesh for strip footing example.

Fig. 15. Deformed finite element mesh for strip footing example.
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bifurcation and localization of deformation, which could occur with a non-associative plasticity model even

in the hardening regime. The latter issue is currently under investigation in the context of three-invariant

models and will be addressed in a separate publication.

Tables 2 and 3 compare the convergence profiles of Newton iteration for simulations with the LD and

MN models, respectively. Here, the tangent operator constructed with the eigenvector approach utilized

(2.18), while the tangent operator constructed with the eigenbasis approach was based on (2.13). Also, the

latter tangent operator was evaluated in two ways, using the EISPACK routine described in Section 2.2 and
the closed-form solution via the program PRINC on p. 762 of [16]. The accompanying tables show no

apparent difference noted in the performance of the three algorithms, and all algorithms predicted the same

structural responses.

Table 1

Accuracy of numerical integration for strip footing example, infinitesimal plasticity case (Dq ¼ 200 kPa)

Plasticity model 50 steps 100 steps

Panel a: vertical displacement at point A, m

LD )2.59510 )2.59484
MN )2.45176 )2.45169

Panel b: horizontal displacement at point B, m

LD )0.38834 )0.38845
MN )0.38965 )0.38965

Panel c: vertical displacement at point B, m

LD )1.71573 )1.71609
MN )1.64886 )1.64890

Table 2

Convergence profile of Newton iteration for the strip footing problem using the LD plasticity model: L2-norm of the residual force

vector at step number 20 of the 100-step solution

Iteration number Eigenvectora Eigenbasisa Eigenbasisb

0 0.154eþ02 0.154eþ02 0.154eþ02
1 0.353eþ01 0.305eþ01 0.305eþ01
2 0.564e�01 0.112e�00 0.729e�01
3 0.134e�03 0.258e�03 0.144e�03
4 0.135e�05 0.165e�05 0.983e�06
5 – – –

a Eigenvalues/eigenvectors/eigenbases calculated from EISPACK routines [17,18].
b Eigenvalues/eigenbases calculated from closed-form solution [16].

Table 3

Convergence profile of Newton iteration for the strip footing problem using the MN plasticity model: L2-norm of the residual force

vector at step number 20 of the 100-step solution

Iteration number Eigenvectora Eigenbasisa Eigenbasisb

0 0.154eþ02 0.154eþ02 0.154eþ02
1 0.579eþ00 0.583eþ00 0.807eþ00
2 0.801e�02 0.790e�02 0.816e�02
3 0.269e�05 0.179e�05 0.315e�05
4 0.571e�08 0.404e�08 0.683e�08
5 – – –

a Eigenvalues/eigenvectors/eigenbases calculated from EISPACK routines [17,18].
b Eigenvalues/eigenbases calculated from closed-form solution [16].
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5.3. Re-analysis of strip footing problem with finite deformation effects

As a final example, we consider the effects of finite deformation on the frictional foundation problem of

the previous example. All of the data were the same as in the previous example, including the finite element

mesh, material parameters, initial condition, and the imposed loads. The objective of the present example is

merely to investigate the performance of the two tangent operators presented in Section 4.2, so we only

focus on the convergence profiles exhibited by the eigenbasis and eigenvector iterative solutions utilizing the

tangent operators (4.11) and (4.23), respectively.
The deformed mesh has the profile similar to that shown in Fig. 15, in which the middle node A displaces

vertically downward and the edge node B also moves downward as well as displaces to the left. At an

incremental footing load of Dq ¼ 100 kPa applied in 50 increments, the predicted movements of the two

nodes are summarized in Table 4. In all cases identical final displacements are obtained using the two

tangent operators.

Table 5 compares the L2-norms generated by the two tangent operators during the early part of loading

(step number 5) when the material was still behaving elastically and only geometric non-linearities were

present. Note that the L2-norms for both iterations are identical up until the third iteration when round-off
errors start to manifest in the solutions. This, together with the fact that they both produced identical final

displacements, proves that the tangent operators constructed from the eigenvector and eigenbasis ap-

proaches are numerically the same, save for round-off errors. However, it is clear from the third iteration of

Table 5 that the simpler calculations required by the eigenvector approach have resulted in smaller round-

off errors, allowing the relative L2-norm to reach a value as small as 0:345
 10�10=0:154
 102 ¼ Oð10�12Þ,
when the relative L2-norm produced by the more detailed calculations of the eigenbasis approach could not

go below O(10�10).

Table 4

Accuracy of numerical integration for strip footing example, finite deformation plasticity case (Dq ¼ 100 kPa)

Plasticity model Eigenvector Eigenbasis

Panel a: vertical displacement at point A, m

LD )1.23134 )1.23134
MN )1.21749 )1.21749

Panel b: horizontal displacement at point B, m

LD )0.24794 )0.24794
MN )0.24470 )0.24470

Panel c: vertical displacement at point B, m

LD )0.83314 )0.83314
MN )0.83162 )0.83162

Table 5

Convergence profile of Newton iteration for the strip footing problem during the hyperelastic phase of finite deformation analysis: L2-
norm of the residual force vector at step number 5 of the 100-step solution

Iteration number Eigenvector Eigenbasis

0 0.154eþ02 0.154eþ02
1 0.783e�01 0.783e�01
2 0.878e�06 0.878e�06
3 0.345e�10 0.255e�08
4 – –

R.I. Borja et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1227–1258 1253



Tables 6 and 7 compare the same L2-norms at a more advanced stage of loading (step number 50) when
both material and geometric non-linearities were present, again using the three-invariant LD and MN

constitutive models. Quadratic convergence is obtained in both cases, albeit the presence of material non-

linearities required one extra iteration to reach convergence. Unlike the results shown in Table 5 where the

L2-norms are numerically the same, the L2-norms are now only approximately the same with the eigenvector

and eigenbasis calculations due primarily to the round-off errors that have propagated from the early part

of the analyses. Nevertheless, we see that even in the plastic regime the eigenvector approach still produced

slightly smaller relative L2-norms (and smaller round-off errors) compared to the eigenbasis approach.

From this standpoint, and from the point of view of relative ease in the numerical implementation, we
advocate the use of the eigenvector approach to handle the spin of principal axes for the numerical inte-

gration of the three-invariant elastoplastic models considered in this paper.

6. Closure

We have implemented a numerical integration algorithm for a class of three-invariant elastoplastic

constitutive models for frictional materials using a spectral representation of stresses and strains and a
return mapping in principal stress directions. The technique accommodates the spin of principal stress or

strain axes the discrete evolution of which is consistently linearizable in the context of Newton iteration.

With regard to the specific form of the spin component of the algorithmic tangent operator, the eigenvector

and eigenbasis approaches appear to be at par in handling the non-linearities of the constitutive model and

geometric deformation, although the eigenvector approach is simpler to implement and thus produces

smaller round-off errors.

As a further motivation for this work, we recall that the approach taken in this study has significant

advantages over the traditional explicit and semi-implicit approaches still used for numerically integrating

Table 6

Convergence profile of Newton iteration for the strip footing problem using the LD hyperelastic–plastic model with finite deformation

effects: L2-norm of the residual force vector at step number 50 of the 100-step solution

Iteration number Eigenvector Eigenbasis

0 0.154eþ02 0.154eþ02
1 0.469eþ01 0.459eþ01
2 0.178eþ00 0.191eþ00
3 0.138e�03 0.184e�03
4 0.883e�09 0.956e�08
5 – –

Table 7

Convergence profile of Newton iteration for the strip footing problem using the MN hyperelastic–plastic model with finite deformation

effects: L2-norm of the residual force vector at step number 50 of the 100-step solution

Iteration number Eigenvector Eigenbasis

0 0.154eþ02 0.154eþ02
1 0.122eþ01 0.113eþ01
2 0.891e�02 0.913e�02
3 0.603e�06 0.649e�06
4 0.462e�10 0.188e�07
5 – –
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advanced elastoplastic constitutive models for frictional materials (see e.g., [26,27]). Apart from the nu-
merical stability of the backward implicit approach, the advantages of the proposed technique include the

fact that: (1) no subincrementation is required by the algorithm; (2) for a stress increment originating inside

the yield surface and finally landing on the yield surface, the algorithm does not require identification of the

initial contact point on the yield surface; (3) no correction is needed for a yield surface drift since with

convergence the stress point will never drift from the yield surface; and (d) the formulation readily can be

generalized to the finite deformation regime. The trade-off is the implicit nature of the technique, but the

algorithm has available closed-form expressions for the consistent tangent operator, so the implicit nature

of the algorithm should have no adverse effect on its efficiency. Finally, for non-linear elasticity typical in
geomaterials the algorithm may simply be reformulated so that the return mapping is carried out in

principal strain directions, as advocated in [19,28,29].
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Appendix A. Relationships among the MC/LD/MN model parameters

To reduce the yield criteria to more recognizable forms, we transform the coordinate axes according to

the sequence of rotations shown in Fig. 16. First, a positive rotation of p=4 about the r2-axis creates a

transformation ðr1; r2; r3Þ ! ðr0
1; r

0
2; r

0
3Þ; then, a negative rotation of h ¼ cos�1

ffiffiffiffiffiffiffiffi
2=3

p
about the r0

1-axis

produces a transformation ðr0
1; r

0
2; r

0
3Þ ! ðr00

1; r
00
2; r

00
3Þ. This results in a rotated axis r00

3 coinciding with the

space diagonal. The sequence of rotation is described mathematically by the transformation matrices

r1

r2

r3

8><
>:

9>=
>; ¼

ffiffiffi
2

p
=2 0

ffiffiffi
2

p
=2

0 1 0

�
ffiffiffi
2

p
=2 0

ffiffiffi
2

p
=2

2
4

3
5 1 0 0

0
ffiffiffiffiffiffiffiffi
2=3

p
1=

ffiffiffi
3

p

0 �1=
ffiffiffi
3

p ffiffiffiffiffiffiffiffi
2=3

p
2
4

3
5 r00

1

r00
2

r00
3

8<
:

9=
;: ðA:1Þ

We thus have

I1 ¼ r1 þ r2 þ r3 ¼
ffiffiffi
3

p
r00
3 ðA:2Þ

for the first invariant,

I2 ¼ r1r2 þ r2r3 þ r1r3 ¼ ðr00
3Þ

2 � 1
2
½ðr00

1Þ
2 þ ðr00

2Þ
2� ðA:3Þ

for the second invariant, and

I3 ¼ r1r2r3 ¼
ffiffiffi
3

p

9
ðr00

3Þ
3 þ

ffiffiffi
6

p

18
ðr00

2Þ
3 �

ffiffiffi
6

p

6
r00
2ðr00

1Þ
2 �

ffiffiffi
3

p

6
r00
3ðr00

1Þ
2 �

ffiffiffi
3

p

6
r00
3ðr00

2Þ
2 ðA:4Þ

for the third stress invariant.
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Assuming a cohesion c ¼ 0, the six hyperplanes of the MC yield function are given in the transformed

coordinates by

F ðr1; r3Þ :
ffiffiffi
2

p
r00
1 �

ffiffiffi
2

3

r
r00
2

 
� 2ffiffiffi

3
p r00

3

!
sin/ ¼ 0;

F ðr2; r3Þ :
ffiffiffi
2

p

2
r00
1 þ

ffiffiffi
3

2

r
r00
2 �

ffiffiffi
2

p

2
r00
1

 
� 1ffiffiffi

6
p r00

2 �
2ffiffiffi
3

p r00
3

!
sin/ ¼ 0;

F ðr1; r2Þ :
ffiffiffi
2

p

2
r00
1 �

ffiffiffi
3

2

r
r00
2 �

ffiffiffi
2

p

2
r00
1

 
þ 1ffiffiffi

6
p r00

2 þ
2ffiffiffi
3

p r00
3

!
sin/ ¼ 0:

ðA:5Þ

Setting r00
1 ¼ 0 gives the equations for the tension and compression corners of the MC yield function as

r00
2 ¼ � 2

ffiffiffi
2

p
sin/

3þ sin/
r00
3 for a tension corner;

¼ 2
ffiffiffi
2

p
sin/

3� sin/
r00
3 for a compression corner;

ðA:6Þ

where r00
3 < 0.

Fig. 16. Sequence of rotation of principal stress axes and representation of MC yield surface on the deviatoric plane.
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Consider now the LD yield function, I31=I3 � k1 ¼ 0. In the transformed coordinates the yield function
writes

3ðr00
1Þ

2
ffiffiffi
2

p
r00
2

�
þ r00

3

�
� ðr00

2Þ
2

ffiffiffi
2

p
r00
2

�
� 3r00

3

�
� 2ðr00

3Þ
3 k1 � 27

k1

� 	
¼ 0: ðA:7Þ

Setting r00
1 ¼ 0 and dividing by ðr00

3Þ
3
gives the relation

k1 ¼
27

1� g2 3�
ffiffiffi
2

p
g


 �
=2

; g ¼ r00
2

r00
3

; r00
3 6¼ 0: ðA:8Þ

The stress ratio g may be chosen such that the yield function passes through either the tension or com-

pression corners of the MC hexagon, i.e.,

g ¼ �2
ffiffiffi
2

p
sin/=ð3þ sin/Þ for tension corner;

2
ffiffiffi
2

p
sin/=ð3� sin/Þ for compression corner:

�
ðA:9Þ

The final results are

k1 ¼
ð3þ sin/tÞ

3

1þ sin/t � sin2 /t � sin3 /t

ðA:10Þ

for a yield surface passing through the tension corners, and

k1 ¼
ð3� sin/cÞ

3

1� sin/c � sin2 /c þ sin3 /c

ðA:11Þ

for a yield surface passing through the compression corners. The inverse expressions for sin/t and sin/c as

functions of k1 are given in (3.22) and (3.23), respectively.

The MN yield function, I1I2=I3 � k1 ¼ 0, writes in the transformed coordinates as

3ðr00
1Þ

2½ðk1 � 3Þr00
3 þ

ffiffiffi
2

p
k1r00

2� � 3ð3� k1Þðr00
2Þ

2r00
3 � 2ðk1 � 9Þðr00

3Þ
3 �

ffiffiffi
2

p
k1ðr00

2Þ
3 ¼ 0: ðA:12Þ

Setting r00
1 ¼ 0 and dividing by ðr00

3Þ
3
gives the relation

k1 ¼
18� 9g2ffiffiffi

2
p

g3 � 3g2 þ 2
¼ 9

ffiffiffi
2

p
þ 9g

�
ffiffiffi
2

p
g2 þ g þ

ffiffiffi
2

p ; ðA:13Þ

where g is as defined in (A.8). The yield function passes through the tension and compression corners of the
MC hexagon when (A.9) is substituted into (A.13). Either of the two expressions for g gives

k1 ¼
9� sin2 /

1� sin2 /
: ðA:14Þ

The inverse expression for sin/ as a function of k1 is given in (3.30).
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