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Abstract

Failure of granular media under natural and laboratory loading conditions involves a variety of micromechanical

processes producing several geometrically, kinematically, and texturally distinct types of structures. This paper provides

a geological framework for failure processes as well as a mathematical model to analyze these processes. Of particular

interest is the formation of tabular deformation bands in granular rocks, which could exhibit distinct localized

deformation features including simple shearing, pure compaction/dilation, and various possible combinations thereof.

The analysis is carried out using classical bifurcation theory combined with non-linear continuum mechanics and

theoretical/computational plasticity. For granular media, yielding and plastic flow are known to be influenced by all

three stress invariants, and thus we formulate a family of three-invariant plasticity models with a compression cap to

capture the entire spectrum of yielding of geomaterials. We then utilize a return mapping algorithm in principal stress

directions to integrate the stresses over discrete load increments, allowing the solution to find the critical bifurcation

point for a given loading path. The formulation covers both the infinitesimal and finite deformation regimes, and

comparisons are made of the localization criteria in the two regimes. In the accompanying paper, we demonstrate with

numerical examples the role that the constitutive model and finite deformation effects play on the prediction of the onset

of deformation bands in geomaterials.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Failure in geomaterials such as concrete, soils, and rocks are often accompanied by the appearance of
narrow tabular bands of intense deformation. The most common mode involves a shear offset combined
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with either compaction or dilation. However, basic deformation modes in rocks involving simple shearing
with no significant volumetric increase or decrease, or pure compaction/dilation with no significant shear

offset, also have been observed either in the laboratory or in the field [1–18]. It appears that bands with

compaction and grain fracturing tend to undergo the largest volumetric deformation in natural settings.

Deformation bands in granular media are often interpreted as resulting from material instability

influenced largely by existing defects or imperfections. Unfortunately, such imperfections are difficult if not

impossible to quantify, and thus the occurrence of deformation bands are often analyzed as a bifurcation of

the macroscopic inelastic constitutive behavior. The idea is derived from the works of Hadamard [19], Hill

[20], Thomas [21] and Mandel [22] within the context of acceleration waves in solids, and involves inves-
tigation of the occurrence of alternate kinematical solutions (such as the emergence of tabular deformation

bands) satisfying the governing field equations. Conditions for the onset of such bands in geomaterials have

been presented in the context of elastoplasticity by Rudnicki and Rice [23–25], and in the context of

hypoplasticity by a number of European schools [26–30].

Although the bifurcation theory for the analysis of deformation bands in geomaterials is fairly well

understood, it appears that much application has focused in the past on the shear localization of pressure-

sensitive dilatant materials [23–25]. Quite recently, the same theory has been used to model the occurrence

of compaction bands [13,15,16,31], a certain type of geologic structure observed to form in porous rocks.
Such type of structure could have important geologic implications since they represent fluid barriers and

therefore the prediction of their occurrence is of scientific and engineering value. Finally, recent literature

also indicates the occurrence in the field of so-called dilation bands [7], characterized by a predominantly

opening mode. Such geologic structure provides a sharp contrast to planar opening-mode fractures or

joints with two discrete surfaces, since dilation bands do not result in free surfaces. The latter mode

completes the spectrum of observed localized deformation modes and provides strong motivations for the

development of a unifying geologic and mathematical framework for characterizing these modes.

Our geologic framework for localized deformation in tabular bands is based on the relative contributions
of shear and volumetric deformations. The three extreme modes are pure compaction, pure dilation, and

simple shear; combination modes involve shearing with either compaction or dilation. Section 2 presents a

formal classification of these failure modes as well as describes their geological characteristics. For sim-

plicity we shall limit the scope of this paper to localized deformation modes in granular rocks.

Our point of departure for the mathematical characterization of localized deformation modes in tabular

bands is the balance of traction across a surface where the displacement gradient field may be discontin-

uous. Theory of plasticity is used to characterize the inelastic constitutive response. The formulation results

in a homogeneous system of equations, and conditions are sought for a non-trivial solution. This yields the
critical band orientation at which the eigenvalue problem is first satisfied. The above procedure is fairly

standard [32]; however, a by-product of the analysis that has not been fully exploited in the literature

concerns the fact that the eigenvalue problem also produces a characteristic vector defining the direction of

the relative velocity jump across the thickness of the band. The theory clearly defines not only the orien-

tation of this characteristic vector but also its sense (i.e., direction). Together with the previously deter-

mined critical band orientation, the accompanying eigenvector predicts the nature of the resulting

deformation bands.

We show that the mathematical framework is robust in that it covers the entire spectrum of localized
deformation modes established in the geologic framework, including the extreme cases of pure compaction/

dilation and the simple shear band localization modes. For pure compaction/dilation bands some theo-

retical analyses have been advanced fairly recently in the literature [13,16,31] indicating that the theoretical

orientations of these bands coincide with those of the principal stress planes. In this paper we qualify this

conclusion and restrict its validity to the case of coaxial plastic flow theory in which the principal directions

of the stress tensor are assumed to coincide with those of the plastic strain increment tensor. Strictly, we

show that compaction/dilation bands are theoretically parallel to a principal plane of the plastic strain
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increment tensor, and not necessarily to a principal plane of the stress tensor. This distinction is significant
particularly when dealing with non-coaxial plastic flow deformation.

Prediction of tabular bands as a bifurcation from a homogeneous deformation field is well understood.

The results are known to be strongly dependent on the constitutive description of the homogeneous

deformation. However, to date almost all of the modeling efforts have focused on two-invariant constitutive

representations of the homogeneous deformation, which may not be adequate for cohesive-frictional

materials such as granular rocks. In the first place, these materials exhibit lower yield and failure strengths

in tension than in compression, suggesting some influence of the third stress invariant on the yield and

plastic flow behavior. Indeed, evidence from numerous laboratory tests suggest the significant effect of the
third stress invariant on the description of the mechanical responses of geomaterials [33–44].

Detection of the bifurcation point requires a robust numerical integration procedure for the elastoplastic

constitutive relations. In computational plasticity the return mapping algorithm offers distinct advantages

over the traditional explicit schemes, including simplicity in the implementation, compatibility with the

structure of many existing finite element codes, and facility for extension to the finite deformation regime.

Only very recently, the return mapping algorithm also has been applied to three-invariant plasticity models

delivering optimal performance [45–48]. The next step then would be to use this powerful algorithm for the

more challenging task of accurately capturing the inelastic loading history leading to different failure modes
in granular materials.

Notations and symbols used in this paper are as follows: bold-face letters denote matrices and vectors;

the symbol ‘Æ’ denotes an inner product of two vectors (e.g. a � b ¼ aibi), or a single contraction of adjacent

indices of two tensors (e.g. c � d ¼ cijdjk); the symbol ‘:’ denotes an inner product of two second-order

tensors (e.g. c : d ¼ cijdij), or a double contraction of adjacent indices of tensors of rank two and higher

(e.g. C : �e ¼ Cijkl�
e
kl); the symbol ‘�’ denotes a juxtaposition, e.g. ða� bÞij ¼ aibj. For any symmetric

second-order tensors a and b, we have ða� bÞijkl ¼ aijbkl; ða� bÞijkl ¼ ajlbik; and ða� bÞijkl ¼ ailbjk.
2. Classification of failure modes and their geological characteristics

We consider the entire spectrum of localized deformation in tabular bands resulting from distinct failure

modes in granular rocks. The two top tiers in this spectrum are shear and volumetric deformation bands:

(1) Shear deformation bands

(1.1) Pure shear bands
(1.2) Compactive shear bands

(1.3) Dilatant shear bands

(2) Volumetric deformation bands

(2.1) Pure compaction bands

(2.2) Pure dilation bands

Shear deformation bands, which will be referred to as ‘‘shear bands’’ for simplicity in this paper, are

dominated by a component of velocity gradient parallel to the tabular band boundaries (Fig. 1a). This is
recognizable by a clear evidence of macroscopic shear offset across the band in rocks (Fig. 2a). Similar to

the classification of fractures in fracture mechanics, shear bands may have two basic modes, sliding (mode-

II) and tearing (mode-III), based on the geometry and kinematics of their general propagation direction.

However, this detail is not of further concern in this paper.

Although it is rare, a shear band without any volumetric deformation within the band (top flat line in

Fig. 1b) may occur in nature [2]. This type of shear band will be referred to as pure, or simple shear band

similar to the ‘‘simple shear’’ in mechanics. Most shear bands, however, undergo volumetric deformation in



Fig. 1. Failure modes in granular rocks: (a) an idealized tabular band of localized deformation showing shear, compaction, and

dilation modes; (b) based on a large amount of data in the literature, shear bands show three fundamental trends in terms of the

component of shear and volumetric deformation: simple shear bands have no significant volume change (the flat line defined by 2

measurements); compactive and dilatant shear bands showing mixed-mode shear bands with compaction (18 samples) and dilation (6

samples), respectively; (c) porosity data showing pure compaction (2 samples) and pure dilation bands (4 samples from the same

locality). Data from Refs. [1–4,7,15].
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addition to shearing [1–4]. These mixed-mode bands, regardless of the relative magnitude of shear and

volumetric components of deformation, will be referred to as ‘‘compactive shear bands’’ and ‘‘dilatant

shear bands.’’ Compactive and dilatant shear bands are associated with volume decrease and increase,

respectively (Fig. 1b). It is, therefore, essential to characterize the volume change within tabular bands.
Several methods were employed to determine pore or skeleton volume and porosity within bands and in

relatively pristine rocks nearby. These methods include liquid/helium porosimetry or immersion samples

into a liquid [4], petrographic image analysis [2] and X-ray computerized tomography––CT scanner [3], and

point counting [7].

Volumetric deformation bands lack shearing across the bands and have two diametrically opposite

modes: compaction bands and dilation bands. Compaction bands are tabular bands where the boundaries

move toward each other (Fig. 1a) producing a volume decrease (Fig. 1c); dilation bands are those where the

boundaries move away from each other (Fig. 1a) resulting in a volume increase (Fig. 1c). It is conceivable
that a band may have a greater volumetric deformation component with respect to the shear component.

However, it is not practical to distinguish between the volumetric deformation bands with shear compo-

nents and the shear bands with volumetric deformation components (1.2 and 1.3 under the classification

scheme) in most naturally formed deformation bands. Therefore, bands with shear and volumetric

deformation components are not differentiated based on the relative magnitudes of these components

except for extreme cases in which one of the components is or close to zero.

2.1. Shear bands

Tabular bands of shear in granular rocks were described in the geological literature [3,10]. The diag-

nostic character of shear bands is a macroscopic shear offset (slip) across them, which can be measured



Fig. 2. (a) A shear band (marked by arrow) in the Entrada Sandstone, San Rafael Desert, Utah. The band is about 1–2 mm in

thickness and displaces nearly horizontal beds by a few mm (left-hand side down). Ruler is about 20 cm long. (b) A compaction band in

the Aztec Sandstone at Valley of Fire, Nevada. The band is about one cm thick, has no observable shear offset across it, and shows

significant porosity decrease. Standard size pencil is for scale. (c) Dilation bands (nearly horizontal traces marked by arrows) in

unconsolidated terrace sand near McKinleyville, Northern California. Pencil on the surface of the shear band is for scale. Porosity

distribution across a thin section covering a horizontal band indicates about 7% porosity increase within the band.
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from previously continuous reference markers (depositional beds) cut across by shear bands (Fig. 2a).
Typically, the maximum slip across single shear bands is about a few millimeters to a few centimeters and

occurs either at or near the midpoint along the trace of the bands [11]. The thickness of individual shear

bands observed in rocks deformed under natural forces (Fig. 2a) is also limited to a few millimeters [2–

4,10,11]. Similarly, shear bands produced in rock samples deformed under laboratory conditions have

similar thicknesses [8,14]. Using these values for shear band thickness and slip, typical average shear strain

across shear bands was calculated to be on the order of unity. The consistent values for shear bands

thicknesses and limited slip across them were attributed to grain size and strain hardening, respectively [4].

The length dimension of single shear bands is also limited to about one to 100 m [11] or a few hundred
meters [4] at most. Thus, it is necessary to form new shear bands adjacent to existing ones in order to widen

and lengthen a shear band structure and to accommodate a larger magnitude of slip [5].

Shear bands are commonly associated with grain fracturing and grain size reduction described by the

term ‘‘cataclasis’’ in the geological literature. Thin sections of shear bands when viewed under a petro-

graphic microscope show evidence for grain fracturing and other micromechanical processes responsible

for their formation. In most cases, grain fracturing can be detected at an initial stage or in the periphery of a

shear band where the grains are damaged but not yet demolished. In more advanced stages of shear band

development with a high intensity cataclasis, grain fracturing and grain crushing are reflected by grain size
reduction and change of grain shape from a rounded form outside the band to an angular form within the

band. Typical grain size distribution within shear bands is such that the range of grain size broadens

indicating a poorer sorting due to an increasing number of smaller grains induced by the comminution and

survival of a few original grains in the bands.

Although a majority of shear bands reported in the geological literature are associated with grain size

reduction resulting from grain fracturing described earlier, the process of grain fracturing or the related

comminution is not a prerequisite for shear band formation. It is possible that grain movement by sliding

along grain contacts and pore collapse may localize shear and volumetric strains into a tabular band with
finite thickness especially under low confining pressure and with no or little cement [2,9].

Following the classification scheme presented earlier and the common micromechanical properties

discussed above, it is essential to know about the volume change within tabular deformation bands. The

plots in Fig. 1b summarize some trends with respect to the nature of volume change and the micro-

mechanics of grain fracturing in many naturally occurring shear bands distilled from the literature.

Simple shear bands have no volumetric deformation component by definition (Fig. 1b). Compactive and

dilatant shear bands have compaction and dilation, respectively, in addition to the shearing components. It

appears that those bands with compaction and grain fracturing have undergone the largest volumetric
deformation in natural settings.

2.2. Compaction and dilation bands

Two end members of volumetric deformation bands (Fig. 1c) are: (a) compaction bands characterized by

a volume decrease, and (b) dilation bands characterized by a volume increase with respect to corresponding

undeformed parent rock. Fig. 2b shows an isolated compaction band in the Aztec Sandstone in Valley of

Fire State Park in southeastern Nevada. These were the earliest examples for pure compaction localization
reported in the literature [2,3,6,12]. Compaction bands have later been reported from other locations with

independent evidence for the compactive character of the deformation [15]. The data indicate a porosity

decrease from an average of about 20% to 25% for the undeformed rock to about one to 5% for the band

[2,3], and it is distributed along the bands in form similar to that from an idelized anticrack in accordance

to linear elastic fracture mechanics theory [17].

Deformation bands with porosity increase with respect to the undeformed state of the rock have been

reported from many locations [2,3]. However, the shearing component along these bands or the lack thereof



Fig. 3. Idealized diagram defining the failure mechanism and failure modes in porous rock. Note that shear/dilation/grain fracture and

shear/compaction/grain fracture are permissible.
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was unclear. The only unambiguous case in which shear offset has been ruled out and dilation has been

independently affirmed is that reported by Du Bernard et al. [7]. Photograph in Fig. 2c shows an outcrop

pattern of dilation bands (horizontal bands marked by arrows) from this study. The dilation bands linked
to the segments of the associated shear band (inclined in the photograph marked by pencil). The linkage

points of the dilation bands and the shear band segments appear to be marked by a sharp kink and the

dilation bands occur at the dilational quadrants of a series of segmented shear bands based on the sense of

slip across the shear band segments (right-hand side up). The graph in Fig. 1c representing porosity

measurements from this locality shows about 7% porosity increase within the band.

Pure compaction bands have recently been produced in the laboratory [16,18], and both compaction and

dilation bands have been analyzed theoretically by Issen andRudnicki [13] and others as will be discussed later.

To summarize, we have presented a classification scheme that accounts for the entire spectrum of
deformation field in the form of tabular bands. The end members are simple shear, pure compaction and

pure dilation bands (Fig. 3). The mixed modes include shear with either volume decrease or volume in-

crease. Field data indicate that although the three end members do occur in nature, mixed-mode locali-

zation structures, compactive shear bands and dilatant shear bands are the most common modes of

localized failure. The volumetric deformation is the largest for compactive shear bands and compaction

bands. The mathematical framework to analyze these failures modes, including the computer implemen-

tation of a proposed model, is next described in the following sections.
3. Formulation of deformation bands: infinitesimal case

In this section we revisit the general localization theory of deformation bands with the following main

goals: (a) to demonstrate that the theory is complete in that it defines a necessary condition for the

emergence of a deformation band, the likely orientation of this band, and the nature of the accompanying

localized volumetric response; and (b) to show that the theory encompasses the extreme cases of pure

compaction band and pure dilation band under certain constitutive hypotheses.

3.1. General analysis of deformation bands

The general kinematics of a deformation band in the infinitesimal regime is shown in Fig. 4. Here,

X � Rnsd represents the reference configuration of a body with smooth boundary oX, and x represents the



Fig. 4. Normal parameterization of shear band geometry: infinitesimal deformation case.
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position vector of any particle in X. We consider a smooth material surface S � X where some fields may

be discontinuous. Adopting the notation of [49], we denote points in S by y so that

S ¼ fy ¼ byðn1; n2Þjðn1; n2Þ 2 Bg; ð3:1Þ
where by : B ! Rnsd is a smooth global parameterization. Thus, the unit normal to S is

n ¼ bnðn1; n2Þ ¼ by;1 � by;2=kby;1 � by;2k: ð3:2Þ

The above parameterization for S provides a convenient normal parameterization in the closed tabular

band domain D ¼ S� ½0; h� so that any point bx in the deformation band is defined by the mappingbxðn1; n2; gÞ ¼ byðn1; n2Þ þ gbnðn1; n2Þ for 06 g6 h; ð3:3Þ
where h > 0 is the band thickness, herein assumed to be small but finite. A second smooth surface cS can
then be defined by the set relationcS ¼ fy ¼ bxðn1; n2; hÞjðn1; n2Þ 2 Bg; ð3:4Þ
so that S and cS define opposite surfaces of discontinuity representing boundaries of the band domain.

We define the velocity field by the ramp-like relation

v ¼
�v if g6 0;
�vþ gsvt=h if 06 g6 h;
�vþ svt if gP h;

8<: ð3:5Þ

where �v is a continuous velocity field and svt represents the relative velocity of the opposite faces of the

band. Assuming svt is uniform over Ŝ, the corresponding velocity gradient fields outside and inside the

band take the form

l ¼ r�v in X nD;
r�vþ ðsvt� nÞ=h in D;

�
ð3:6Þ

where D ¼ S� ð0; hÞ is the open band domain and n is the unit normal vector to the band (since h is

assumed small, n may be taken as normal to either S or Ŝ). We note that the orientation of n is perfectly

symmetric in the sense that it may be directed either outward or inward to the band. The velocity gradient is

thus discontinuous across the band, and upon evaluating just inside and just outside the surface of dis-
continuity we obtain the relations

l1 ¼ l0 þ 1

h
svt� n () _�1 ¼ _�0 þ 1

h
symðsvt� nÞ; ð3:7Þ
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where _�1 ¼ symðl1Þ and _�0 ¼ symðl0Þ. Throughout this paper we will use the superscript symbols ‘‘1’’ and

‘‘0’’ to refer to points on S interpreted to lie just inside and just outside this surface, respectively.

We assume an elastoplastic material with a yield function F and a plastic potential function Q, and
denote their gradients with respect to the Cauchy stress tensor as

f ¼ oF
or

; q ¼ oQ
or

: ð3:8Þ

Further, we assume that at the moment of localization we have the inequalities

f : ce : _�1 > 0; f : ce : _�0 > 0; ð3:9Þ

where ce is the fourth-order tensor of elastic moduli. The above conditions imply that the material is

yielding plastically on both sides ofS. The case with loading on one side and unloading on the other side of

S has been investigated in [25], where it was demonstrated that this bifurcation mode is less critical than the

case where plastic yielding occurs on both sides.

Just inside the surface S the rate constitutive equation takes the form

_r1 ¼ ce : ð _�1 � _kqÞ; ð3:10Þ
where _kq :¼ _�p is the plastic component of the strain rate _� (from the flow rule). We recall that the non-

negative plastic multiplier _k satisfies the Kuhn–Tucker complementarity condition [50]

_kP 0; F 6 0; _kF ¼ 0: ð3:11Þ
Furthermore, with isotropy in the elastic response the elasticity tensor ce takes the form

ce ¼ K1� 1þ 2lðI � 1
3
1� 1Þ; ð3:12Þ

where K and l are the elastic bulk and shear moduli, and I is the symmetric fourth-order identity tensor

with components I ijkl :¼ ðdikdjl þ dildjkÞ=2.
The plastic multiplier _k may be determined from the consistency condition

_F ¼ f : _r1 � _kH ¼ f : ce : ð _�1 � _kqÞ � _kH ¼ 0; ð3:13Þ
where H is the plastic modulus. Solving this last equation for _k gives

_k ¼ _�kþ _��k=h; ð3:14Þ

where

_�k ¼ 1

v
f : ce : _�0 > 0;

_��k ¼ 1

v
f : ce : symðsvt� nÞ > 0; ð3:15Þ

and

v ¼ vþ H > 0; v ¼ f : ce : q > 0: ð3:16Þ
The restriction that v be a non-negative function ensures that _�k > 0, since the scalar product f : ce : _�0 is

non-negative by assumption (3.9). The additional restriction that v be a non-negative function rules out an

extreme non-associative plastic flow which could lead to ‘objectionable’ mechanical responses, see [25].

Finally, from the condition that
_��k > 0 it follows from (3.15) that

f : ce : symðsvt� nÞ > 0: ð3:17Þ
This last inequality may be used as a criterion to determine whether the deformation band would exhibit a
dilatant or compactive behavior at localization.
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Substituting (3.14) into Eq. (3.10) leads to a rate constitutive relation just inside the surface of dis-
continuity S of the form

_r1 ¼ cep : _�1; ð3:18Þ
where cep is the elastoplastic constitutive operator given by

cep ¼ ce � 1

v
ce : q� f : ce: ð3:19Þ

From the hypothesis that yielding takes place on both sides of the band, a similar rate constitute equation
may be written just outside the band as

_r0 ¼ cep : _�0: ð3:20Þ
Following standard arguments, a deformation band is then possible provided the traction rate vector across

the surface of discontinuity is continuous,

n � _r0 ¼ n � _r1: ð3:21Þ
Writing svt ¼ _fm, where _f > 0 is the magnitude and m is the unit direction of svt, the traction continuity

condition becomes

ð _f=hÞA �m ¼ 0; A ¼ n � cep � n; ð3:22Þ
where A is the elastoplastic acoustic tensor.

For a non-trivial solution to exist, standard argument requires that

detðAÞ ¼ 0: ð3:23Þ
The onset of a deformation band corresponds to the initial satisfaction of this determinant condition for

some critical band orientation n. Because of the homogeneous form of the localization condition it is not

possible to solve for the strain rate _f=h even if h is known. However, we can always solve for the unit

characteristic vector m of the tensor A once a critical band orientation n has been identified. Because the
characteristic equation has a homogeneous form, two eigenvectors are possible, 	m. Following (3.17) the

correct sign is then chosen such that

f : ce : n > 0; n ¼ symðm� nÞ: ð3:24Þ
Thus, the localization theory determines not only the critical band orientation normal vector n but also

the characteristic tensor n.

The ‘trace’ of the tensor n, trn ¼ n �m, determines the nature of the deformation band at localization.
We define the following possible types of deformation band.

m � n ¼ 1 : pure dilation band;

0 < m � n < 1 : dilatant shear band;

m � n ¼ 0 : simple shear band;

�1 < m � n < 0 : compactive shear band;

m � n ¼ �1 : pure compaction band:

8>>>><>>>>: ð3:25Þ

In a simple shear band the instantaneous velocity jump vector svt is tangent to the band. In a dilatant

(compactive) shear band the angle between the unit vectors n and m is acute (obtuse), and thus the band

exhibits some form of instantaneous expansion (contraction), see Figs. 1 and 5.

The nature of a deformation band obviously depends on the position of the stress point on the yield

surface at the moment of localization. Assuming the metric tensor ce is given by (3.12), we can decompose

f into volumetric and deviatoric parts as



Fig. 5. Representation of dilatant, isochoric, and compactive plastic flow on a semi-meridian plane: p¼mean normal stress; q¼norm

of second invariant of deviatoric stress; F ¼ yield function.
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f ¼ �f 1þ f 0; �f ¼ tr f =3; tr f 0 ¼ 0; ð3:26Þ

and write (3.24) as

f : ce : n ¼ 3K�f trnþ 2lf 0
mn > 0; f 0

mn ¼ m � f 0 � n: ð3:27Þ

We note that in the regime of a pure shear band where trn 
 0, the quantity f 0
mn must be non-negative or the

inequality (3.27) will not be satisfied, while in the regime where f 0 
 0, the relation signð�f Þ ¼ signðtrnÞmust

hold for the scalar product (3.27) to remain positive. The latter case implies that the shear band is either

dilatant or compactive depending on whether the stress point at localization lies on the dilatant or

compactive side of the yield surface. However, in the former case it is possible for a shear band to be

compactive even if the stress point lies on the dilatant side of the yield surface if either �f or trn is small
enough for the scalar product (3.27) to remain positive. Graphical representations of dilatant, isochoric,

and compactive plastic flows are shown in Fig. 5.

3.2. Pure compaction and pure dilation bands

We now investigate the possibility that the determinant condition (3.23) is satisfied for some critical band

orientation n and that the characteristic vector m of the tensor A is parallel to n. Because of the homo-

geneous form of the characteristic equation, it suffices to assume that m ¼ n. The traction continuity
condition then writes

ð _f=hÞA � n ¼ 0: ð3:28Þ
Like the tensor f , we can also decompose the tensor q into volumetric and deviatoric parts,

q ¼ �q1þ q0; �q ¼ trq=3; trq0 ¼ 0: ð3:29Þ
The localization condition then specializes to the form

A � n ¼ an� bn � q0 ¼ 0; ð3:30Þ
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where

a ¼ K þ 4l
3

� 3K�q
v

ð3K�f þ 2lf 0
nnÞ; ð3:31aÞ

b ¼ 2l
v
ð3K�f þ 2lf 0

nnÞ; ð3:31bÞ

f 0
nn ¼ n � f 0 � n, and v is given in (3.16).

Eq. (3.30) can be satisfied if and only if the vector n is parallel to the vector n � q0. Consider now the

following spectral representation of q0

q0 ¼
X3

A¼1

q0An
ðAÞ � nðAÞ; ð3:32Þ

where the q0A’s are the principal values and the nðAÞ’s are the corresponding principal directions. Substituting

in (3.30) gives

an� b
X3

A¼1

q0A cos hAn
ðAÞ ¼ 0; ð3:33Þ

where cos hA ¼ n � nðAÞ is the direction cosine of the angle between the unit band normal vector n and the
principal direction nðAÞ. For this equation to make sense, n ¼ nðAÞ, which means that the unit normal to the

band should coincide with one of the principal directions of q0. Equivalently, n should coincide with one of

the principal directions of the total tensor q itself, since the volumetric part �q1 is ‘neutral’ with respect to the

orientation of the principal axes.

In coaxial flow theory of plasticity on which the present discussion has focused so far, the principal axes

of q coincide with those of the Cauchy stress tensor r. This means that r is also amenable to the spectral

representation

r ¼
X3

A¼1

rAn
ðAÞ � nðAÞ; ð3:34Þ

where the rA’s are the principal values, and the nðAÞ’s are the same principal directions as those of the tensor

q itself (by definition of coaxiality). Consequently, the orientation of a compaction or dilation band
coincides with a principal axis of the stress tensor, which is consistent with the conclusion of Issen and

Rudnicki [13]. However, in non-coaxial flow theory this is not the case [51,52], and thus it must stated that,

strictly speaking, the orientation of a compaction/dilation band coincides with the direction of a principal

axis of the plastic flow direction q and not that of the stress tensor r.

In many cases coaxiality in the principal directions of r and the second-order tensor f may also be

demonstrated. Any isotropic yield function of stresses, for example, produces a stress gradient tensor f that

has the same principal directions as those of r. Thus, we can also write the tensor f 0 in spectral form as

f 0 ¼
X3

A¼1

f 0
An

ðAÞ � nðAÞ: ð3:35Þ

Taking a band orientation n coinciding with a principal direction nðAÞ, the vector equation (3.33) reduces to

K þ 4l
3

� ~qA~fA
v

" #
nðAÞ ¼ 0 ðno sum on AÞ; ð3:36Þ
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where

~qA ¼ 3K�qþ 2lq0A; ~fA ¼ 3K�f þ 2lf 0
A: ð3:37Þ

For non-trivial solution the above equation can be satisfied if and only if the scalar coefficient of nðAÞ

vanishes. Setting this quantity to zero gives

H ¼ K þ 4l
3

� ��1

~qA~fA � v ðno sum on AÞ; ð3:38Þ

where

v ¼ f : ce : q ¼ 9K�f �qþ 2l
X3

A¼1

f 0
Aq

0
A > 0: ð3:39Þ

In a typical loading program where the load–displacement curve exhibits a degrading slope, the plastic
modulus decreases with ongoing plastic deformation. Thus, the orientation for which the localization

condition is first satisfied is that which yields the maximum value of H [24]. With reference to Eq. (3.38),

this means that if a pure compaction/dilation band is to form the critical band orientation must coincide

with one of the three principal directions of q, and specifically at a value of A equal to either 1, 2 or 3 for

which the quantity ~qA~fA is maximized. An ideal condition would be for ~qA and ~fA to carry the same sign in
order for their product to be greater than zero and thus maximize its algebraic value. In fact, the associative

flow rule gives q ¼ f and maximizes the quantity ~qA~fA, thus favoring the development of either a com-

paction or dilation band.

For a deformation band with no shear offset the two possible characteristic tensors are

n ¼ n� n for pure dilation band;
�n� n for pure compaction band:

�
ð3:40Þ

Either tensor only has one non-zero eigenvalue corresponding to the stretching or compression mode,

unlike the general shear band characteristic tensor symðm� nÞ which has two non-zero eigenvalues cor-

responding to the stretching/compression and shearing modes. To determine the actual mode, i.e., com-
pression or dilation, we check the sign

f : ce : n ¼ 	ð3�fK þ 2lf 0
AÞ � 	~fA > 0: ð3:41Þ

If ~fA > 0, then m ¼ n and a pure dilation band would form; if ~fA < 0, then m ¼ �n and we obtain a pure

compaction band. Once again, the framework described above is complete in that it determines the critical

band orientation n as well as the characteristic tensor n.
Remark 1. If plastic flow is non-coaxial, then f 0
nn must be used in lieu of f 0

A and the rest of the formulation

remains true. This is because relations (3.31a,b) are valid regardless of the nature of plastic flow, and f 0
nn

reduces to a principal value only for the case of coaxial theory.

Remark 2. If F and Q are both isotropic functions of stresses, then they are expressible in terms of the

principal stresses, and thus we can write fA ¼ oF =orA and qA ¼ oQ=orA. In this case, the invariants are
�f ¼ ð

P3

A¼1 fAÞ=3 and �q ¼ ð
P3

A¼1 qAÞ=3, and the principal deviatoric values are f 0
A ¼ fA � �f and q0A ¼ qA � �q.

3.3. Spectral representation of tangent constitutive operator

We next turn to the spectral representation of the elastoplastic constitutive operator cep. Here we restrict

the discussion to coaxial flow theory and write the following tensors in spectral form as



2680 R.I. Borja, A. Aydin / Comput. Methods Appl. Mech. Engrg. 193 (2004) 2667–2698
r ¼
X3

A¼1

rAm
ðAÞ; �e ¼

X3

A¼1

�eAm
ðAÞ; f ¼

X3

A¼1

fAmðAÞ; q ¼
X3

A¼1

qAmðAÞ; ð3:42Þ

where rA, �
e
A, fA ¼ oF =orA, and qA ¼ oQ=orA are the spectral values of the respective tensors, mðAÞ ¼ nðAÞ �

nðAÞ are the spectral directions, and the nðAÞ’s are the (mutually orthogonal) unit eigenvectors. That the stress

and elastic strain tensors have the same principal directions is a consequence of isotropy in the elastic

response.

From the spectral forms for r and �e we readily write the elastic constitutive operator ce ¼ or=o�e also in

spectral form as [53]

ce ¼
X3

A¼1

X3

B¼1

aeABm
ðAÞ �mðBÞ þ 1

2

X3

A¼1

X
B 6¼A

rB � rA

�eB � �eA

� �
mðABÞ�

�mðABÞ þmðABÞ �mðBAÞ�; ð3:43Þ

where

½aeAB� ¼
a b b
b a b
b b a

24 35; a ¼ K þ 4l
3
; b ¼ K � 2l

3

is the elasticity matrix in principal axes, and mðABÞ ¼ nðAÞ � nðBÞ. The matrix ½aeAB� relates the principal

Cauchy stress rA to the principal elastic strain eeB for A;B ¼ 1; 2; 3 in accordance with the generalized

Hooke’s law of linear elasticity. As for the expression for ce, the first summations on the right-hand side

represent the contributions of the material part, whereas the second summations reflect the spin of principal

axes.
From the orthogonality of the principal axes, we see that mðABÞ : mðCÞ ¼ ðnðAÞ � nðCÞÞðnðBÞ � nðCÞÞ � 0 for any

combinations of the eigendirections A, B, and C, provided that A 6¼ B. Thus the spin component of ce is
orthogonal to the tensors f and q, implying that its inner products with these tensors vanish. Consequently,

cep is also amenable to the spectral representation

cep ¼
X3

A¼1

X3

B¼1

aepABm
ðAÞ �mðBÞ þ 1

2

X3

A¼1

X
B6¼A

rB � rA

�eB � �eA

� �
mðABÞ�

�mðABÞ þmðABÞ �mðBAÞ�; ð3:44Þ

where ½aepAB� is the matrix of elastoplastic moduli in principal axes with components

aepAB ¼ aeAB �
1

v
~qA~fB; v ¼

X3

A¼1

X3

B¼1

fAaeABqB þ H ; ~fB ¼
X3

C¼1

fCaeCB; ~qA ¼
X3

D¼1

aeADqD: ð3:45Þ

Substituting the spectral form of cep into the localization condition (3.28) for pure compaction/dilation

band gives

A � n ¼
X3

A¼1

X3

B¼1

aepAB cos hA cos
2 hBn

ðAÞ þ 1

2

X3

A¼1

X
B6¼A

ðrB � rAÞ cos hA cos2 hBnðAÞ ¼ 0; ð3:46Þ

where cos hA ¼ n � nðAÞ is the direction cosine of the angle between the potential compaction/dilation band

normal n and the principal direction nðAÞ. This vector equation can have a solution if and only if n ¼ 	nðAÞ,
i.e., if n is parallel to any of the principal axes. The second summations thus drop out (since A 6¼ B), and for

non-trivial solution to exist we must have

aepAAn
ðAÞ ¼ 0 ) aepAA ¼ 0 ðno sum on AÞ: ð3:47Þ
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This is an alternative form of the localization condition (3.36). This result states that for localization to take

place in the form of either pure compaction or pure dilation bands the initial vanishing of the determinant

of the elastoplastic acoustic tensor must be due to the vanishing of a diagonal element of the elastoplastic

constitutive matrix in principal axes. Furthermore, the unit normal to the compaction/dilation band is

parallel to the principal axis corresponding to this particular vanishing diagonal element. If the initial

vanishing of the determinant of the elastoplastic acoustic tensor is not due to the vanishing of any of the

diagonal elements of the elastoplastic constitutive matrix in principal axes, then a pure compaction/dilation

band is not possible and we expect to have a shear band.
4. Formulation of deformation bands: finite deformation case

The general analysis of deformation bands in the finite deformation regime is described in [32] (see also

[54,55]) and only key points relevant to the assessment of the relative contributions of compaction/dilation

and shearing are summarized herein. The kinematics of the problem changes slightly from the infinitesimal

case in that we now deal with two configurations, reference and deformed.

4.1. General analysis of deformation bands

We then let / : B ! B0 be a C1 configuration ofB inB0, whereB andB0 are the reference and deformed

configurations of a body with smooth boundaries oB and oB0, respectively, see Fig. 6. We assume an

emerging deformation band defined by a pair of surfaces S0 and cS0 and separated by the band thickness
Fig. 6. Normal parameterization of shear band geometry: finite deformation case.



2682 R.I. Borja, A. Aydin / Comput. Methods Appl. Mech. Engrg. 193 (2004) 2667–2698
h0, all reckoned with respect to the undeformed configuration. The mathematical representation of S0 � B
is

S0 ¼ fY ¼ bY ðn1; n2Þ j ðn1; n2Þ 2 Bg; ð4:1Þ
where bY : B ! Rnsd is a smooth global parameterization, and n1; n2 are two tangential parameters to S0.

Thus, the unit normal to S0 is

N ¼ bN ðn1; n2Þ ¼ bY ;1 � bY ;2=k bY ;1 � bY ;2k: ð4:2Þ
In the deformed configuration the surface S ¼ /ðS0Þ is given by

S ¼ fy ¼ byðf1; f2Þjðf1; f2Þ 2 /ðBÞg; ð4:3Þ
where, again, by : /ðBÞ ! Rnsd is a smooth global parameterization. The unit normal to S is

n ¼ bnðf1; f2Þ ¼ by;1 � by;2=kby;1 � by;2k: ð4:4Þ

The two unit normal vectors N and n are related by Nanson’s formula, nda ¼ JF�t �NdA, where da and dA
are infinitesimal surface areas whose unit normals are n and N , respectively, F is the deformation gradient,
and J ¼ detðFÞ ¼ dv=dV is the Jacobian [53]. If we denote the band thicknesses as h0 and h in the reference

and deformed configurations, respectively, then dv ¼ hda, dV ¼ h0 dA, and we thus obtain the relation

N � F�1=h0 ¼ n=h: ð4:5Þ
As usual, we herein assume the band thicknesses h0 and h to be small.

We now investigate the emergence of a ramp-like velocity field across the band, and denote the relative

velocity between the opposite band faces S0 and cS0 by sVt. These two surfaces are the same material

surfaces S and cS in the deformed configuration (see Fig. 6), so the relative velocity svt in the deformed

configuration is the same as sVt itself, i.e., sVt ¼ svt � /. The jump discontinuity may be expressed

through the rate of deformation gradient,

_F ¼
_F in B nD0;
_F þ ðsVt�NÞ=h0 in D0;

(
ð4:6Þ

where _F ¼ GRADV , _F ¼ GRADV , V is the continuous velocity field, and D0 ¼ S0 � ð0; h0Þ is the (open)
shear band domain. Alternately, we can define the jump discontinuity through the velocity gradient field,

l ¼
�l in /ðBÞ nD;
�l þ ðsvt� nÞ=h in D;

�
ð4:7Þ

where ðsvt� nÞ=h ¼ ðsVt�N � F�1Þ=h0. Upon evaluating just inside and just outside the surface of dis-

continuity, we obtain the equivalent relations

_F1 ¼ _F0 þ 1

h0
sVt�N () l1 ¼ l0 þ 1

h
svt� n; ð4:8Þ

where _F1 and _F0 (l1 and l0) are the rates of deformation gradients (spatial velocity gradients) just inside and

just outside the surface of discontinuity, respectively.

Next we investigate the mode of deformation at bifurcation, again focusing on the relative shear and

volumetric responses exhibited by the potential deformation band. Here we employ multiplicative plasticity

theory and formulate the constitutive model in terms of the symmetric Kirchhoff stress tensor s ¼ Jr.
Accordingly, we assume that the yield and plastic potential functions, F and Q, respectively, are now ex-

pressed in terms of the stress tensor s, and re-define the stress gradient tensors as f ¼ oF =os and q ¼ oG=os.
As in the infinitesimal theory, we assume the inequalities
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f : ae : l1 > 0; f : ae : l0 > 0; ð4:9Þ

where ae is the fourth-order tensor of hyperelastic moduli relating the Kirchhoff stress rate tensor _s to the

elastic velocity gradient tensor le [32]. The above inequalities suggest plastic yielding on both sides of the

band at localization.

Just inside the surface S we write the rate constitutive equation as

_s ¼ ae : ðl1 � _kqÞ; ð4:10Þ

where _kq :¼ lp and lp is the plastic component of the velocity gradient l1. Here, lp is a symmetric tensor
following a common assumption of zero plastic spin [56]. Issues pertaining to this assumption, as well as the

development of plastic spin in the post-localization regime, are discussed in [56,57]. For continued yielding

inside the band in the finite deformation regime, we must have

f : ae : ðsvt� nÞ ¼ h
h0

f : ae : ðsVt�N � F�1Þ > 0: ð4:11Þ

Note that the full value of the tensor ðsvt� nÞ is now used in the finite deformation case, unlike in the

infinitesimal deformation case where only the symmetric part of this tensor is relevant, cf. (3.17).

In the finite deformation regime the rate constitutive equations just inside and just outside the surface of

discontinuity take the form

_s1 ¼ aep : l1; _s0 ¼ aep : l0; ð4:12Þ
where

aep ¼ ae � 1

v
ae : q� f : ae; v ¼ f : ae : qþ H ; ð4:13Þ

and H is the usual plastic modulus. Introducing the non-symmetric first Piola–Kirchhoff stress tensor

P ¼ s � F�t, the associated rates are

_P1 ¼ Aep : _F1; _P0 ¼ Aep : _F0; ð4:14Þ
where Aep is the elastoplastic tangential moduli tensor with components

Aep
iAjB ¼ F �1

Ak F
�1
Bl a

ep
ikjl; aepikjl ¼ aepikjl � sildjk; ð4:15Þ

sil is a component of the Kirchhoff stress tensor on either side of the band, and djk is the Kronecker delta.
For a deformation band to be possible the nominal traction rate must be continuous,

_P1 �N ¼ _P0 �N : ð4:16Þ
Writing svt ¼ sVt ¼ _fm ¼ _fM, where _f > 0 is the magnitude and m � M is the unit direction of the rel-

ative velocity vector, the localization condition takes the following alternative forms

_f
h0

A �M ¼ 0; Aij ¼ NAA
ep
iAjBNB; ð4:17Þ

or

_fh0
h2

a �m ¼ 0; aij ¼ nka
ep
ikjlnl; ð4:18Þ

where A and a are, respectively, the Lagrangian and Eulerian acoustic tensors related through the band

thickness via the relation A ¼ ðh0=hÞ2a (see [32]).
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For a finite band thickness non-trivial solutions to the above equations exist if and only if

det A ¼ det a ¼ 0: ð4:19Þ
Setting det A ¼ 0 identifies the critical unit band normal vector N reckoned with respect to the reference

configuration, whereas setting det a ¼ 0 gives the unit normal vector n to the same material band, but now

reckoned with respect to the deformed configuration. Since N and n refer to the same material band, the

vanishing of the two determinants occurs at the same time. Furthermore, at the bifurcation point the eigen-

vectors of the acoustic tensors A and a are the same (since A and a are the same tensor save for a scalar
multiplier). The unit eigenvectors are precisely either 	m or 	M , where the correct sign is chosen such that

f : ae : ðm� nÞ > 0: ð4:20Þ
Like in the infinitesimal case the type of the resulting deformation band depends on the value of the scalar

product m � n as defined in (3.25). Note that a pure shear band in the finite deformation case requires that m
be perpendicular to n, i.e., m � n ¼ ðh=h0ÞM � F�t �N ¼ 0. In other words, the orthogonality is defined in the
current configuration and not in the reference configuration.

4.2. Pure compaction and pure dilation bands

Still focusing on the finite deformation case, we again investigate the possibility that the determinant

condition (4.19) is satisfied for some critical band orientation n and that the eigenvector m of the tensor a
(or A) is parallel to n. It suffices to take m ¼ n in (4.18) to get

a � n ¼ 0; aij ¼ nka
ep
ikjlnl: ð4:21Þ

Equivalently, using the second of (4.15) we rewrite (4.21) as

a � n ¼ n � aep : ðn� nÞ � s � n ¼ 0: ð4:22Þ
Once again, we consider spectral representations of the tangent operator aep and the Kirchhoff stress

tensor s to simplify the above localization condition. Assuming isotropic elasticity, we first introduce the
elastic left Cauchy-Green deformation tensor be :¼ Fe � Fet arising from a multiplicative decomposition of F
into elastic and plastic parts [58], and write

s ¼
X3

A¼1

sAn
ðAÞ � nðAÞ; be ¼

X3

A¼1

bAnðAÞ � nðAÞ; ð4:23Þ

where sA (¼ JrA) and bA are the principal values of s and be, respectively; and the vectors nðAÞ are the

corresponding principal directions. Note that s and be have the same principal directions due to the as-

sumed isotropy in the elastic response.

Next, the tensor ae is expressed in the spectral form [45,46]

ae ¼
X3

A¼1

X3

B¼1

aeABm
ðAÞ �mðBÞ þ 1

2

X3

A¼1

X
B 6¼A

sB � sA
bB � bA

� �
bBmðABÞ�

�mðABÞ þ bAmðABÞ �mðBAÞ�; ð4:24Þ

where

½aeAB� ¼
a b b
b a b
b b a

24 35; a ¼ K þ 4l
3
; b ¼ K � 2l

3

is the elasticity matrix in principal axes, mðAÞ ¼ nðAÞ � nðAÞ, and mðABÞ ¼ nðAÞ � nðBÞ. The matrix ½aeAB� relates
the principal Kirchhoff stress rate _sA to the principal elastic logarithmic strain rate _eeB for A;B ¼ 1; 2; 3 in

accordance with the standard hyperelastic Hooke’s law in finite deformation elasticity [59]. As for the
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expression for ae, the first summations on the right-hand side represent the contributions of the material

part, while the second summations represent the effect of the spin of principal axes.

Assuming the yield and plastic potential functions F and Q are now expressed in terms of the invariants

of the Kirchhoff stresses, their stress gradients take the form

f ¼
X3

A¼1

fAnðAÞ � nðAÞ; q ¼
X3

A¼1

qAnðAÞ � nðAÞ; ð4:25Þ

where fA ¼ oF =osA and qA ¼ oQ=osA. Substituting (4.24) and (4.25) into (4.13) gives

aep ¼
X3

A¼1

X3

B¼1

aepABm
ðAÞ �mðBÞ þ 1

2

X3

A¼1

X
B6¼A

sB � sA
bB � bA

� �
bBmðABÞ�

�mðABÞ þ bAmðABÞ �mðBAÞ�; ð4:26Þ

where

aepAB ¼ aeAB �
1

v
~qA~fA; ~fA ¼

X3

C¼1

fCaeCA; ~qA ¼
X3

D¼1

aeADqD;

v ¼ vþ H > 0; v ¼
X3

A¼1

X3

B¼1

fAaeABqB > 0:

ð4:27Þ

Substituting the spectral forms of aep and s into the localization condition (4.22) gives

a � n ¼
X3

A¼1

X3

B¼1

aepAB cos hA cos
2 hBn

ðAÞ þ 1

2

X3

A¼1

X
B6¼A

ðsB � sAÞ cos hA cos2 hBnðAÞ �
X3

A¼1

sA cos hAn
ðAÞ ¼ 0;

ð4:28Þ
where cos hA ¼ n � nðAÞ is the direction cosine of the angle between the potential compaction/dilation band

normal n and the principal direction nðAÞ. This vector equation can have a solution if and only if n ¼ 	nðAÞ,
i.e., if n is parallel to any of the principal axes. However, this causes the second summations on the right-

hand side of (4.28) to drop out due to the orthogonality of the principal directions, and thus the condition

for the onset of compaction/dilation band simplifies to

aepAAð � sAÞnðAÞ ¼ 0 ) aepAA � sA ¼ 0 ðno sum on AÞ: ð4:29Þ
This result states that, in the finite deformation regime, for localization to take place in the form of either

pure compaction or pure dilation bands the initial vanishing of the determinant of the elastoplastic acoustic
tensor must be due to the vanishing of the difference expression aepAA � sA for any specific principal axis A.
Furthermore, the unit normal to the compaction/dilation band is parallel to the principal axis A on which

the above difference expression vanishes. Once again, if the initial vanishing of the determinant of the elasto-

plastic acoustic tensor is not due to the vanishing of any of the above difference expressions for any

principal direction A, then a pure compaction/dilation band is not possible and we expect to have a shear

band.

For the case of pure compaction/dilation bands the critical plastic modulus has the form

H ¼ K
�

þ 4l
3

� JrA

��1

~qA~fA � v: ð4:30Þ

To determine whether a pure compaction or pure dilation band will emerge, we again check the sign

f : ae : n > 0, where n ¼ n� n for pure dilation bands and n ¼ �n� n for pure compaction bands. Note

that the above localization condition for the finite deformation case differs from that for the infinitesimal

deformation case only by an additional stress term JrA, cf. (3.38). Of course, in the present case the
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parameters K and l now take on the meaning of being the tangential hyperelastic bulk and shear moduli

relating the Kirchhoff stress increments to the elastic logarithmic strain increments.

Remark 3. In [34] it was shown that the stress term in the tangent operator enhances the onset of shear

strain localization in finite deformation plasticity since it destroys the symmetry of the tangent operator.

For pure compaction bands a compressive normal stress induced by finite deformation plasticity (i.e.,

rA < 0) decreases the numerical value of the critical plastic modulus and thus delays the initiation of such

bands. The contrast applies equally well with respect to how strain localization is influenced by the plastic
flow rule: a non-associative flow rule favors the development of shear bands, whereas an associative flow

rule favors the development of compaction/dilation bands [13].
5. Constitutive model for granular rocks

In this section we present a class of three-invariant elastoplastic constitutive models applicable to the

analysis of deformation bands in granular rocks. The formulation applies to both infinitesimal and finite
deformation plasticity. As a matter of notation, we shall use the Cauchy stresses of the infinitesimal theory

in the presentation. However, an extension to the finite deformation regime is fairly straightforward––one

simply needs to use the Kirchhoff stresses and the logarithmic strains in lieu of the Cauchy stresses and the

infinitesimal strains [59].

5.1. Formulation of the constitutive model

Consider a convex elastic domain E defined by a smooth yield surface F in the Cauchy stress space r:

E ¼ fðr; jÞ 2 S � R1 j F ðr; jÞ6 0g; ð5:1Þ
where S is the space of symmetric rank-two tensors, and j < 0 is a stress-like plastic internal variable
characterizing the hardening/softening response of the material. The constitutive equation is expressed in

terms of a free energy function Wð�e; vpÞ, where �e is the elastic component of the infinitesimal strain tensor

and vp ¼ trð�pÞ < 0 denotes the compactive plastic volumetric strain conjugate to the plastic internal

variable j. The constitutive equations for r and j take the form

r ¼ oWð�e; vpÞ
o�e

; j ¼ � oWð�e; vpÞ
ovp

: ð5:2Þ

We next consider a plastic potential function Qðr; jÞ, which can be distinct from F ðr; jÞ. The special case
oQ=or ¼ oF =or implies associative flow rule, while the case oQ=oj ¼ oF =oj pertains to associative hard-
ening. Assuming the total infinitesimal strain tensor is given by the sum � ¼ �e þ �p, then the evolution

equations for �e and vp take the form

_�e ¼ _�� _k
oQðr; jÞ

or
; _vp ¼ _k

oQðr; jÞ
oj

; ð5:3Þ

where _k is a plastic consistency parameter satisfying the Kuhn–Tucker complementarity conditions

_kP 0; F ðr; jÞ6 0; _kF ðr; jÞ ¼ 0: ð5:4Þ
Now, if the strain-like plastic internal variable vp is to represent the plastic volumetric strain, then
_vp ¼ trð _�pÞ ¼ _k trðoQ=orÞ by the flow rule, and thus the plastic potential function Q must be constructed

such that oQ=oj ¼ trðoQ=orÞ, which may not necessarily be equal to oF =oj. Thus, we generally have a non-
associative hardening even we have an associative flow rule.
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More specifically, we formulate yield and plastic potential functions appropriate for granular rocks
in terms of translated principal stresses

r1 ¼ r1 � a; r2 ¼ r2 � a; r3 ¼ r3 � a; ð5:5Þ

where a > 0 is a stress offset along the hydrostatic axis accommodating the material’s cohesion (a ¼ 0 for

cohesionless materials). The corresponding invariants of the translated principal stresses are

�I1 ¼ r1 þ r2 þ r3; �I2 ¼ r1r2 þ r2r3 þ r1r3; �I3 ¼ r1r2r3: ð5:6Þ

For future use we also define dimensionless invariant functions

f1 ¼
�I21
�I2
; f2 ¼

�I1�I2
�I3

; f3 ¼
�I31
�I3
: ð5:7Þ

Our goal is to formulate plasticity models in terms of the above stress invariant functions.

The family of yield surfaces of interest is of the form

F ¼ �f l�I1 þ j ¼ 0; f ¼ �c0 þ c1f1 þ c2f2 þ c3f3 > 0; ð5:8Þ

where c0, c1, c2 and c3 are positive dimensionless coefficients denoting the relative contributions of the

second and third stress invariants on the shape of the yield surface on the deviatoric plane; l > 0 is a

material parameter characterizing the shape of the yield surface on meridian planes, and j is the same

stress-like plastic internal variable described earlier. Our region of interest lies in the negative octant of the

principal stress space.
Several classes of yield functions may be recovered depending on the values of the material parameters.

If c0 ¼ 3c1 þ 9c2 þ 27c3, the yield functions can only intersect the hydrostatic axis at �I1 ¼ 0, and they all

open up toward the negative hydrostatic axis to form cones. On the deviatoric plane the cross-sectional

shapes of these cones depend on the parameters c1, c2, and c3. If c2 ¼ c3 ¼ 0 the cross-section is circular; if

any of the coefficients c2 or c3 is non-zero, then the stress invariant will destroy the circular cross-sectional

shape of the yield function on the deviatoric plane. More specifically, if l ! 1, then we can rewrite the

yield function as f ð��I1Þ1=l ¼ ð�jÞ1=l, which approaches f ¼ 1 as l ! 1; and if c0 ¼ 3c1 þ 9c2 þ 27c3 then
we recover the following conical yield surfaces associated with the following plasticity models (see Figs. 7–
9): (a) Drucker–Prager [60] if c1 6¼ 0 and c2 ¼ c3 ¼ 0; (b) Matsuoka–Nakai [42] if c2 6¼ 0 and c1 ¼ c3 ¼ 0;

and (c) Lade–Duncan [37] if c3 6¼ 0 and c1 ¼ c2 ¼ 0. For a finite positive value of l and for the same

expression for c0 the cones flatten out with increasing confining pressures, implying a decreasing effective

friction angle as shown in Figs. 10 and 11 (see also [38]).

If c0 < 3c1 þ 9c2 þ 27c3, the yield function forms a cap on the compression side allowing the yield

surface to close in toward the hydrostatic axis and intersect this axis at a second point given by the

coordinate �I1 ¼ j=ð3c1 þ 9c2 þ 27c3 � c0Þl. If c0 ¼ 0 the yield surface resembles a teardrop on the meridian

plane. If c1 > 0 and c2 ¼ c3 ¼ 0, then we a have a two-invariant yield function and the yield criterion
predicts the same yield stresses in tension and compression. If c3 > 0 and c1 ¼ c2 ¼ 0, then the yield surface

depends on all three stress invariants and its shape resembles an asymmetric teardrop on the meridian

plane, with a higher yield stress predicted in compression than in tension. If c2 > 0 and c1 ¼ c3 ¼ 0, the

yield surface also depends on all three stress invariants but its curvature is sharper on the compression side

and milder on the tension side, see Figs. 12–14. In this paper we shall consider only the case where c0 is

either zero (family of teardrop-shaped yield surfaces), or equal to 3c1 þ 9c2 þ 27c3 (family of conical shaped

yield surfaces).



Fig. 7. Family of conical yield surfaces relative to the Mohr–Coulomb yield surface.
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The family of plastic potential functions of interest is of the form

Q ¼ �qm�I1 � Q1ðjÞ; q ¼ �c0 þ c1f1 þ c2f2 þ c3f3 > 0; ð5:9Þ
where c1, c2 and c3 are the same positive dimensionless coefficients defined earlier, and �c0 is an additional

parameter that is now allowed to vary in the range 06 c0 6 3c1 þ 9c2 þ 27c3. Along with a new exponent m,
the parameters of the above family of plastic potential functions alter the meridional shape from that of a
teardrop to that of an ‘asymmetric cigar,’ see Lade and Kim [36,39,40] who calibrated this plastic potential

function to capture the plastic flow behavior of geomaterials. Fig. 15 shows such a plastic potential function

in principal stress space.

The free energy function of interest is quadratic in the elastic strains and takes the form

W ¼ W0 þ 1
2
�e : ce : �e þW1ðvpÞ; ð5:10Þ

where W0 is a constant and ce is the fourth-order elasticity tensor given in (3.12). The generalized Hooke’s

law is easily recovered from (5.2) as

r ¼ oWð�e; vpÞ
o�e

¼ ce : �e: ð5:11Þ



Fig. 8. Drucker–Prager yield surface.

Fig. 9. Matsuoka–Nakai yield surface.
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For a plastic process the consistency condition writes

_F ¼ oF
or

: _r� _kH ¼ 0; ð5:12Þ

where H is the plastic modulus that takes the form

H ¼ oF
oj

W00
1ðvpÞ

oQ
oj

: ð5:13Þ

We recall that a hardening or softening response depends on the sign of the plastic modulus: hardening

if the sign is positive, softening if the sign is negative, and perfect plasticity if the plastic modulus is equal

to zero.

Now, let us consider the following hardening/softening law

j ¼ a1vp expða2vpÞ; ð5:14Þ
where a1 and a2 are positive scalar coefficients. The above equation postulates a dependence of j on its
strain-like conjugate plastic internal variable vp. Differentiating (5.2) and (5.14) with time gives



Fig. 10. Enhanced Drucker–Prager yield surface.

Fig. 11. Enhanced Matsuoka–Nakai yield surface. Note: friction angle is increased to exaggerate the triangular cross-sectional shape.
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W00
1ðvpÞ ¼ j0ðvpÞ ¼ a1ð1þ a2vpÞ expða2vpÞ: ð5:15Þ

Thus, the plastic modulus H takes the more explicit form

H ¼ �a1ð1þ a2vpÞ expða2vpÞ
X3

A¼1

oQ
orA

: ð5:16Þ

If
P3

A¼1 oQ=orA < 0 so that the plastic volumetric strain increment is compactive, then H is positive for

small values of vp and negative for negatively large values of vp. The transition point at which the plastic

modulus changes in sign is obtained by setting

1þ a2vp ¼ 0 ) vp ¼ �1=a2: ð5:17Þ
Thus, the parameter a2 has the physical significance that the negative of its reciprocal is the critical value
of the plastic volumetric strain vp at which the plastic modulus H changes in sign.



Fig. 12. Family of teardrop-shaped yield surfaces: (a) two-invariant; (b) three-invariant based on I1I2=I3 invariant function; (c) three-
invariant based on I31=I3 invariant function.

Fig. 13. Two-invariant teardrop-shaped yield surface.
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To illustrate the physical significance of the internal variable j, we consider the intersection of the yield
surface with the hydrostatic axis at the point r1 ¼ r2 ¼ r3 < 0. Here, we have f1 ¼ 3, f2 ¼ 9, and f3 ¼ 27.

Thus, along the hydrostatic axis j ¼ ð3c1 þ 9c2 þ 27c3ÞlI1, and j is linearly proportional to �I1. Equiva-
lently, the value of �I1 at the intersection point of the yield surface with the hydrostatic axis is
�I1 ¼ ð3c1 þ 9c2 þ 27c3Þ�lj, which is the geometrical distance between the two extreme points on the yield



Fig. 14. Three-invariant teardrop-shaped yield surface.

Fig. 15. Three-invariant teardrop-shaped plastic potential surface.
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surface intersected by the hydrostatic axis. This makes j and vp legitimate conjugate plastic internal

variables.

Remark 4. The dissipation inequality

D ¼ r : _�� d

dt
Wð�e; vpÞP 0

results in the constitutive equation r ¼ oW=o�e, along with the reduced dissipation inequality

D ¼ r : _�p þ j _vp P 0;

where j ¼ �oW=ovp. Thus, the plastic dissipation must be non-negative, r : _�p P 0, which may not be

satisfied if the stresses are translated excessively on the hydrostatic axis that the stress origin now lies
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outside the yield function. Throughout this paper we assume that this scenario will not occur and that the

yield surface is always large enough to enclose the stress space origin at all times.

5.2. Stress-point integration algorithm

For the family of three-invariant elastoplastic constitutive models described above the numerical inte-

gration is carried out using a recently published return mapping algorithm in principal stress axes

[45,46,48]. This algorithm relies on a decomposition of the stress increment into material and spin parts,
and has a structure that allows an explicit evaluation of the so-called algorithmic tangent operator.

Essential aspects of the algorithm are briefly described below.

Integrating (5.3) using the implicit backward scheme, the evolution of the elastic strain tensor over a

finite load increment takes the form

�enþ1 ¼ �e tr � Dk
oQ
or

����
nþ1

; �e tr ¼ �n þ D�; ð5:18Þ

where �n is the converged elastic strain tensor of the previous load step, and D� is the imposed strain

increment. Since �e and oQ=or have the same spectral directions, it follows that the spectral directions of

the trial elastic strain tensor �e tr are the same as those of �e and oQ=or. Thus the return mapping equation
may be carried out in the principal axes asX3

B¼1

ae�1
AB rB � �e trA þ Dk

oQ
orA

¼ 0; ð5:19Þ

where ½aeAB� is the matrix of elastic moduli having a structure given in (3.43). For a general 3D case, we thus

have a set of three equations in the unknowns r1, r2, r3 and the discrete plastic multiplier Dk.
A fourth equation is provided by the discrete hardening/softening law, herein written in residual form as

j� ĵ ¼ 0; ĵ ¼ a1vp expða2vpÞ; vp ¼ vpn þ Dk
X3

A¼1

oQ
orA

; ð5:20Þ

where vpn is the converged cumulative plastic strain of the previous step. The above equation introduces an

additional unknown parameter j. The fifth and final equation is the discrete consistency condition

F ðr1; r2; r3; jÞ ¼ 0: ð5:21Þ
Eqs. (5.19)–(5.21) constitute a set of five non-linear equations in five unknowns that can be solved itera-
tively by Newton’s method. The ‘driving force’ in the algorithm is the prescribed elastic strain increment

D� describing the evolution of deformation.

For future use let us write the gradient with respect to a principal stress rA of the plastic potential

function Q,

oQ
orA

¼ �qm � �I1mqm�1 oq
orA

; ð5:22Þ

where

oq
orA

¼ c1
of1
orA

þ c2
of2
orA

þ c3
of3
orA

: ð5:23Þ

Closed-form expressions are available for the derivatives of the invariant functions. As for the stress in-

variants themselves, we easily verify
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o�I1
orA

¼ 1;
o�I2
orA

¼ �I1 � rA;
o�I3
orA

¼ �I3=rA; ð5:24Þ

Simple calculus thus gives

of1
orA

¼ 2
�I1
�I2
�
�I21 ð�I1 � rAÞ

�I22
; ð5:25aÞ

of2
orA

¼
�I1ð�I1 � rAÞ

�I3
þ
�I2
�I3
�

�I1�I2
�I3rA

; ð5:25bÞ

and

of3
orA

¼ 3
�I21
�I3

�
�I31
�I3rA

: ð5:25cÞ
5.3. Algorithmic tangent operators

There are two algorithmic tangent operators of interest. The first is used in the local Newton iteration to
calculate the five unknowns r1, r2, r3, j, and Dk. In the context of non-linear finite element analysis, this

tangent operator, or local Jacobian, is used at the Gauss point level by the material subroutine to advance

the solution to the next state for a given strain increment D�. The second tangent operator is the algorithmic

moduli tensor c ¼ or=o� supplied by the material subroutine to the calling element subroutine at the

conclusion of the local iteration. This latter information is used by the finite element program to construct

the overall tangent operator for global Newton iteration. There exists a closed-form relationship between

these two tangent operators as demonstrated in this section. Furthermore, the algorithmic moduli tensor c
may be used to approximate the material constitutive operator for analysis of the onset of deformation
bands.

The first algorithmic tangent operator is determined considering (5.18)–(5.20) as a set of residual

equations rðxÞ in the unknown variables x ¼ fr1; r2; r3; j;Dkg. The local Jacobian, K ¼ r0ðxÞ, has com-

ponents

KAB ¼
ae�1
AB þ DkQ;rArB

� �
0 Q;rA

�ĵ;rB 1 �ĵ;Dk

F;rB F;j 0

24 35
5�5

: ð5:26Þ

The second algorithmic tangent operator has the form [45,46]

c ¼
X3

A¼1

X3

B¼1

aABmðAÞ �mðBÞ þ 1

2

X3

A¼1

X
B6¼A

rB � rA

�e trB � �e trA

� �
mðABÞ�

�mðABÞ þmðABÞ �mðBAÞ�; ð5:27Þ

where

mðAÞ ¼ nðAÞ � nðAÞ; mðABÞ ¼ nðAÞ � nðBÞ; A 6¼ B: ð5:28Þ
The first term of (5.27) represents the linearization of the algorithm in the principal stress axes and reflects

the features of the constitutive model as well as the return mapping algorithm in principal axes, whereas the

second term reflects the spin of the spectral directions. The algorithmic matrix ½aAB� is related to the local

Jacobian K by the simple matrix relation

½aAB� ¼ ½I 3�3j0� � K�1 � I3�3

0

� �
; ð5:29Þ



R.I. Borja, A. Aydin / Comput. Methods Appl. Mech. Engrg. 193 (2004) 2667–2698 2695
where I3�3 is a 3 · 3 identity matrix, i.e., ½aAB� is the upper left-hand 3 · 3 submatrix of K�1, see [45,46] for

further details.

The proposed return mapping algorithm provides closed-form expressions for all the required deriva-

tives, including the second derivatives of the function Q. The latter write

o2Q
orA orB

¼ �mqm�1 oq
orA

�
þ oq
orB

�
� �I1mðm� 1Þqm�2 oq

orA

oq
orB

� �I1mqm�1 o2q
orA orB

; ð5:30Þ

where

o2q
orA orB

¼ c1
o2f1

orA orB
þ c2

o2f2
orA orB

þ c3
o2f3

orA orB
: ð5:31Þ

The second derivatives of the invariant functions are given by

o2f1
orA orB

¼ 2
�I2

�
� 5

�I21
�I22

þ 2
�I41
�I32

�
þ

�I21
�I22

� �
dAB þ 2

�I1
�I22

�
�
�I31
�I32

�
ðrA þ rBÞ þ 2

�I21
�I32

� �
rArB; ð5:32aÞ

o2f2
orA orB

¼ 3
�I1
�I3

� �
�

�I1
�I3

� �
dAB �

1
�I3
ðrA þ rBÞ þ

�I1
�I3

rA

rB

�
þ rB

rA

�
�
�I21 þ �I2

�I3

1

rA

�
þ 1

rB

�
þ 2

�I1�I2
�I3

� �
1

rArB
�

�I1�I2
�I23

� �
RAB; ð5:32bÞ

and

o2f3
orA orB

¼ 6
�I1
�I3

� �
� 3

�I21
�I3

� �
1

rA

�
þ 1

rB

�
þ 2

�I31
�I3

� �
1

rArB
�

�I31
�I23

� �
RAB; ð5:32cÞ

where RAB ¼ o2�I3=orA orB ¼ ð�I3=rArBÞð1� dABÞ is a symmetric matrix with components

½RAB� ¼
0 r3 r2

r3 0 r1

r2 r1 0

24 35:
The remaining derivatives take the form

oĵ
orB

¼ Dkj
X3

A¼1

o2Q
orA orB

;
oĵ
oDk

¼ j
X3

A¼1

oQ
orA

;

where

j ¼ a1ð1þ a2vpÞ expða2vpÞ; vp ¼ vpn þ Dk
X3

A¼1

oQ
orA

: ð5:33Þ

Finally,

oF
orA

¼ �f l � �I1lf l�1 of
orA

;
of
orA

¼ oq
orA

;
oF
oj

¼ 1: ð5:34Þ

Note that if we had worked in the general six-dimensional stress space, these derivatives would not have

been so easy to get.

Remark 5. Comparing (3.44) and (5.27), we observe that if aAB 
 aepAB and �e trA 
 �eA, then c 
 cep. Note that

�e trA 
 �eA if the incremental plastic strain D�p is small compared to the cumulative elastic strain �e. As shown

in [61], under certain circumstances the algorithmic tangent operator may be used equally well to
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approximate the elastoplastic constitutive operator for localization analysis. This could have some im-

plementational advantages since the former tensor is already available from the Newton–Raphson itera-

tion, and thus, need not be re-calculated.
6. Summary

We have presented a geological and mathematical framework for characterizing the appearance of
various types of deformation bands in granular materials. The three end members are simple shear, pure

compaction, and pure dilation bands. Field data indicate that although these three members do occur in

nature, mixed-mode localization structures such as compactive shear bands and dilatant shear bands are

the most common modes of localized failure. All of these modes are captured mathematically by classical

bifurcation theory for planar bands in conjunction with non-linear continuum mechanics and theoretical/

computational plasticity.

The plasticity models must be sufficiently robust to handle mixed-mode (volumetric and deviatoric)

yielding and plastic flow. To this end, we have presented a family of three-invariant elastoplastic consti-
tutive models capable of representing mixed-mode yielding and plastic flow in geomaterials. The models

include some of the well known conical shaped yield surfaces for dilatant frictional materials, as well as a

family of well calibrated teardrop-shaped yield surfaces capable of representing compactive volumetric

yielding and plastic flow occurring in geomaterials at high confining pressures. To advance the solution at

finite load increments, we have used a recently developed return mapping algorithm in principal axes

applicable to any three-invariant plasticity models. Tangent operators are all expressed in spectral form

suitable for efficient numerical implementation.

The resulting mathematical formulation is complete in the sense that the end result clearly defines the
orientation and type of deformation bands expected to form at localization. In a companion paper we

present some results of numerical simulations aimed at capturing the three extreme failure modes, namely,

pure compaction, simple shear, and pure dilation bands, as well as the combination modes described in the

geologic framework.
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