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Abstract

Natural geomaterials such as fissured rocks and aggregated soils often exhibit a pore size distribution with two dominant pore
scales, usually termed macropores and micropores. High-fidelity descriptions of these materials require an explicit treatment of
the two pore regions as double porosity. We develop a finite element framework for coupled solid deformation and fluid diffusion
in double porosity media that employs a thermodynamically consistent effective stress. Mixed finite elements that interpolate
the solid displacement and pore pressures in the macropores and micropores are used for this purpose. In the limit of undrained
deformation, the incompressibility constraint causes unstable behavior in the form of spurious pressure oscillation at the two pore
scales. To circumvent this instability we develop a variant of the polynomial pressure projection technique for a twofold saddle
point problem. The proposed stabilization allows the use of equal-order (linear) interpolations of the displacement and two pore
pressure variables throughout the entire range of drainage condition.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Natural geomaterials often exhibit a pore size distribution with two dominant pore scales. Examples include
fissured rocks and aggregated soils. In fissured rocks the two pore scales are the fissures and matrix pores, whereas in
aggregated soils they are the inter-aggregate and intra-aggregate pores. Due to the significant difference in pore sizes,
the two pore regions exhibit highly contrasting hydromechanical responses. For example, fissures in rocks serve as
conduits for fluid flow that can significantly influence the preferential flow patterns, whereas the pores in the matrix
can also provide substantial space for fluid transport and storage [1–5]. In aggregated soils, the inter-aggregate pores
form the primary pathways for rapid infiltration, but fluids can also migrate through the contact surfaces between the
aggregates, as well as within the aggregates [6–8]. A number of studies have emphasized that high-fidelity modeling
of such materials require an explicit consideration of fluid flow and/or solid deformation occurring at the two scales
(see [9–25] for some of the most recent work).
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‘Double porosity’ is a conceptual framework for a porous material exhibiting two dominant porosity scales, usually
termed macropores (e.g., fissures, inter-aggregated pores) and micropores (e.g., matrix pores, intra-aggregate pores).
In the double porosity framework, the two pore scales are treated as superimposed and interacting domains with
explicit representations of the two regions through their volume fractions. A key advantage of the double porosity
concept is its capability to handle extremely localized and concentrated flows with relatively simple and homogenized
parameters that could otherwise be very complicated to describe, let alone, quantify.

Since first proposed in Barenblatt et al. [1], the concept of double porosity has been used extensively for de-
scribing fluid flow in fissured/fractured rocks (e.g., [26–33]) and in aggregated/structured soils (e.g., [34,35,7,36]).
Several studies have validated the double porosity framework through homogenization theory [37], laboratory exper-
iments [38,39], and flow inversion problems [40,41]. The present study represents one of the very few attempts to
formulate the double porosity concept into a robust finite element framework for coupled poromechanics. The paper
also proposes a robust stabilization technique in the undrained limit to circumvent the pore pressure oscillation at the
two pore scales.

Mathematical modeling of coupled double porosity flow and deformation poses significant challenges in both the
theoretical formulation and numerical implementation. On the theoretical side, imposing individual conservation laws
for each pore scale is a straightforward way of extending the governing equations to materials with double porosity,
as presented in [42]. However, it is less straightforward to develop hydromechanical constitutive relations for double
porosity materials. With respect to fluid flow, while Darcy’s law may still be applied for transport at each pore scale,
an additional relationship is needed to accommodate fluid mass transfer between the two pore regions. For diffusive
mass transfer some semi-empirical equations have been advanced in the literature [43–45].

With respect to solid deformation, on the other hand, an appropriate form of the so-called effective stress tensor
should be defined for constitutive modeling of the mechanical behavior. Using principles of thermodynamics and
mixture theory, an effective stress tensor that is energy conjugate to the rate of deformation tensor of the solid matrix
has been developed in Borja and Koliji [42] for double porosity media. In Koliji et al. [46], a constitutive model for
aggregated soils with double porosity has been developed, even as the authors highlighted challenges associated with
the measurement of the micropore pressures. However, despite these efforts a finite element framework encapsulating
all of the essential elements mentioned above remains scarce.

Finite element formulation for a deformable solid with double porosity requires an explicit treatment of the
macropore and micropore pressures. This is a natural consequence of the fact that the weighted sum of the two pore
pressures represents the overall pore pressure that determines the effective stress [42]. In this paper we pursue a three-
field mixed finite element formulation with three primary independent field variables, namely, the solid displacement
field, the macropore pressure, and the micropore pressure. Following the standard Galerkin approximation to develop
the finite element matrix equation, we arrive at a global coefficient matrix possessing a 3×3 block structure, in which
the pore pressure contributions from the macropores and micropores occupy 2 × 2 separate matrix blocks. While
this approach may seem to be a natural extension of the single porosity formulation, it is challenged by the mass
transfer terms between the two pore scales, as well as by the high contrast in their permeabilities that could trigger
numerical instabilities. This motivates an unconditionally stable implicit method for the numerical integration in the
time domain.

Another form of instability arises in the spatial interpolations of the field variables during undrained deformation
when there is no relative flow between the solid and fluid. In the single porosity formulation, this problem gives rise
to a coefficient matrix with a 2 × 2 block structure form-identical to that encountered in the solution of Stokes flow
and incompressible elasticity problems. Instability manifests itself in the form of spurious pressure oscillation, and is
widely regarded as the result of the mixed finite element not satisfying the inf–sup condition [47–49]. For a thorough
discussion of the inf–sup instability in computational poromechanics, we refer the readers to [50]. Equal-order
interpolations of displacement and pressure variables are known to exhibit this type of instability, which historically
has been the motivation behind the use of higher-order elements such as the Taylor–Hood elements that employ
one order higher interpolation for displacement compared to pressure [51]. However, such higher-order interpolation
inevitably leads to dramatic increase in the problem size, inhibiting large-scale computations.

To avoid this computational challenge, various stabilization schemes that allow equal-order interpolations of
displacement and pressure fields have been developed, including the Brezzi–Pitkäranta scheme [52], the Galerkin
least-squares approach [53], the variational multiscale method [54], and the polynomial pressure projection (PPP)
technique [55,56]. Successful application of these stabilization schemes has been reported for poromechanics of
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single porosity media [57–60]. However, whereas a few studies have advanced the finite element formulation for
double porosity poromechanics (e.g., [61–66]), none of them has addressed the issue of stabilization.

Due to the presence of two distinct pore scales, stabilization of mixed finite elements for double porosity media is
a challenging endeavor. The micropores typically exhibit a very low permeability, so they generally deform in nearly
undrained fashion; however, the macropores can deform in either undrained or drained mode. A prototype example is
fissured rock: the low-permeability rock matrix typically inhibits drainage and only recharges fluids from the fissures,
where most of the flow takes place. However, when the rate of loading is fast, both the macropores and micropores
can deform in an undrained fashion. With the passage of time, drainage can occur much faster in the macropores
than in the micropores, and as a consequence, pressure jumps, or very steep gradients between the macro- and micro-
pore pressures, could develop. These pressure jumps enhance the rate of mass transfer between the two pore regions,
thereby also affecting their mechanical behavior. Because the two pore pressure fields are treated separately in the
proposed double porosity framework, higher-order elements, such as the Taylor–Hood elements, are now even less
desirable to use. Low-order mixed finite elements are almost a necessity, thus further motivating the development of
robust stabilization techniques for such elements.

In this paper, we present stabilized mixed finite elements for deformable porous media with double porosity. At
the core of our stabilization is a variant of the PPP technique, which was initially developed for Stokes flow [55,56]
and later successfully applied to other single-constraint problems including poromechanics [67,59,68,60]. We begin
with a mixed finite element formulation of coupled solid deformation and fluid diffusion in double porosity media,
based on mixture theory and an effective stress tensor that is energy-conjugate to the rate of deformation of the solid
matrix. Then, we describe a variant of the PPP technique developed for dual treatment of the two pressure constraints
in the undrained limit that leads to a twofold saddle point problem. The performance and efficacy of the proposed sta-
bilization scheme are demonstrated through several numerical examples involving various combinations of drainage
regimes in the two scales. To focus on the topic at hand, namely, stabilization, we shall limit the solid behavior to
linear elasticity in the infinitesimal setting. A modeling framework for elastoplastic double porosity materials in the
finite deformation range, such as those developed for single porosity problems in [69–74], will be presented in future
publications.

2. Coupled formulation

This section specializes the double porosity formulation of [66] for unsaturated porous materials to the fully
saturated case, where instability can arise under undrained conditions. The presence of air in the pore space induces
some compressibility in the solid matrix, thus the unsaturated case is not so critical with respect to this type of
instability. We use a three-field mixed finite element formulation and highlight the role of the two pore pressure
variables in accommodating the volume constraint under undrained conditions.

2.1. Theory

Consider a mixture of solid and fluid, in which the fluid fully saturates the solid’s macropores and micropores. We
use the concept of volume fractions to overlap the solid, fluid in the macropores, and fluid in the micropores:

φs
= dVs/dV, φi

= dVi/dV, φs
+


i=M,m

φi
= 1, (1)

where index s refers to the solid, and index i to the pore scale pertaining to either the macropores M or the micropores
m. Throughout this paper, we use superscripts to denote partial properties and subscripts to denote intrinsic properties
of a constituent.

The partial mass densities can be defined using the volume fractions and intrinsic mass densities as

ρs
= φsρs, ρi

= φiρ f , ρ = ρs
+


i=M,m

ρi , (2)

where ρ is the total mass density of the mixture, index f denotes the pore fluid itself, and ρ with upper and lower
indices denote partial and intrinsic densities of each constituent, respectively. By definition, the pore fraction for a
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pore scale is the ratio between the pore volume occupied by this scale to the total volume of the pores in the mixture,
i.e.,

ψ i
=

φi

1− φs ,


i=M,m

ψ i
= 1. (3)

The mechanical behavior of the solid matrix in porous media is governed by the so-called effective stress. In this
study we employ a thermodynamically consistent effective stress tensor derived in [42], which is energy-conjugate to
the rate of deformation tensor of the solid matrix. Assuming the fluid saturates both the macropores and micropores,
the effective Cauchy stress tensor takes the form

σ ′ = σ + B p̄1, p̄ =


i=M,m

ψ i pi , (4)

where σ and σ ′ are the total and effective Cauchy stress tensor, 1 is the second-order identity tensor, B is the Biot
coefficient, p̄ is the mean pore pressure for the entire mixture defined as the average of the pore fluid pressures pM
and pm weighted according to their pore fractions. The essence of the effective stress concept is to exclude p̄ from the
total stress, and specific expressions for p̄ may depend on the phases and scales of pore fluids. We note that for single
porosity continua (i.e., either ψM

= 1 or ψm
= 1) the effective stress given in (4) reduces to the thermodynamically

consistent effective stress derived by Borja [75], which in turn coincides with the Nur and Byerlee [76] effective stress
in the fully saturated range, and to the Terzaghi effective stress [77] when B = 1.

For the governing equations we use the balance equations for double porosity continua derived in [42,78]. The
balance of linear momentum for the entire mixture under quasi-static condition takes the form

∇ · (σ ′ − p̄1)+ ρg = c̄, (5)

where g is the gravity acceleration vector, and c̄ is the momentum exerted by the mass transfer between the macropores
and micropores. The mass transfer term is expressed as

c̄ =


i=M,m

ci ṽi , (6)

where ṽi is the relative velocity of the pore fluid at pore scale i with respect to the solid motion, and ci are mass
transfer terms between the two pore scales subject to a closure condition


i=M,m ci

= 0. This closure condition is
implicitly used to eliminate the solid velocity in (6) from its original expression in [42,78].

The balance of mass for the pore fluids following the solid motion is given by

φi

K f
( ṗi + ṽi · ∇ pi )+ ψ

i B ∇ · v+∇ · qi = ci , i = M,m, (7)

where the superimposed dot denotes the material time derivative following the solid motion, K f is the bulk modulus
of the pore fluid, v is the solid velocity, qi = φ

i ṽi is the relative discharge (Darcy) velocity of the pore fluid at pore
scale i . Without loss of generality, hereafter we assume that the fluids are incompressible and neglect the first term
in (7).

Constitutive models for the solid and pore fluids are needed to close the formulation. For the constitutive relation
between the effective stress and the deformation of the solid matrix, we use an elastic constitutive model. Defining the
infinitesimal strain tensor for the solid matrix as

ϵ = ∇s u =
1
2
(∇ u+ u∇), (8)

where u is the displacement of the solid matrix, we write the constitutive stress–strain relationship for the solid matrix
in incremental form as

1σ ′ = C : 1ϵ, (9)

where C is a fourth-order elastic tangent tensor. To accommodate fluid diffusion through the solid matrix, we employ
the generalized Darcy’s law for isotropic media that takes the form

qi = −
ki

µ f
· (∇ pi − ρ f g), i = M,m, (10)
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where ki is the intrinsic permeability at pore scale i and µ f is the dynamic viscosity of the pore fluid.
Assuming the pore fluids in the macropores and micropores are of the same type, we next consider the mass transfer

between the two scales by diffusion. In this case, we can introduce a constitutive law that relates the mass transfer
term c f with the pressure difference between the two pore regions. A number of expressions have been proposed in
the literature accounting for such diffusive mass transfer (e.g., [43–45]). Here we adopt a semi-empirical equation
proposed in [45], given by

cM
= ᾱ

k̄

µ f
(pm − pM ), cm

= ᾱ
k̄

µ f
(pM − pm), ᾱ =

β

a2 γ, (11)

where k̄ is the interface permeability, a is the characteristic length of the macropores spacing, β is a dimensionless
coefficient that accounts for the solid matrix geometry, and γ is a dimensionless scaling coefficient suggested to
be 0.4 to fit experimental results. We note that most other equations suggested in the literature take essentially the
same form except for the coefficient ᾱ, and this value also has been estimated from measurements along with inverse
analysis [41]. Following [79], we assume that k̄ is equal to the permeability of the micropores. Note that the foregoing
constitutive expressions automatically satisfy the closure condition cM

+ cm
= 0.

Remarks on the effective stress. Several expressions for the effective stress σ ′ have been proposed in the literature.
Many of them have brought substantial progress in micromechanical modeling beyond mixture theories [80,17,81–
85]. Each expression has its own origin and merits, and, accordingly, some differences in the form of the effective
stress exist. Ultimately, the main considerations for choosing a specific form of the effective stress are the scale of
the problem and the purpose for which it is intended. The expression for σ ′ given in (4) may not allow for detailed
micromechanics, but it is good enough for computationally intensive continuum simulations of multiscale and multi-
physical problems, where simplicity in form offers a welcome relief.

2.2. Strong form

We consider a closed domain denoted by Ω = Ω ∪ Γ , where Ω is an open domain and Γ is the boundary of Ω .
The boundary Γ is assumed to be suitably decomposed as: displacement and traction boundaries for solid, Γu and Γt ,
respectively; pressure and flux boundaries for fluid in the macropores, ΓpM and ΓqM , respectively; pressure and flux
boundaries for fluid in the micropores, Γpm and Γqm , respectively. The boundary relations are

Γ = Γu ∪ Γt and ∅ = Γu ∩ Γt (12)

Γ = ΓpM ∪ ΓqM and ∅ = ΓpM ∩ ΓqM (13)

Γ = Γpm ∪ Γqm and ∅ = Γpm ∩ Γqm (14)

where ∅ is the null set and the overline denotes a closure.
The strong form of the initial boundary-value problem is as follows. Given û, t̂, p̂M , q̂M , p̂m , and q̂m , find u, pM ,

and pm such that

∇ · (σ ′ − p̄1)+ ρg = c̄, (15)

and

ψ i B ∇ · v+∇ · qi = ci , i = M,m, (16)

subject to boundary conditions

u = û on Γu (17)

n · σ = t̂ on Γt (18)

pM = p̂M on ΓpM (19)

−n · qM = q̂M on ΓqM (20)

pm = p̂m on Γpm (21)

−n · qm = q̂m on Γqm , (22)
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and initial conditions

u = u0, pM = pM0, pm = pm0 (23)

for all (x, t) ∈ (Ω × t = 0). Here, t is the traction vector and the hats denote the prescribed boundary conditions.

2.3. Weak form

To develop the variational form of the problem, we first define the spaces of trial functions

Su = {u | u ∈ H1, u = û on Γu}, (24)

S pM = {pM | pM ∈ H1, pM = p̂M on ΓpM }, (25)

S pm = {pm | pm ∈ H1, pm = p̂m on Γpm }, (26)

where H1 denotes a Sobolev space of order one. We then introduce the spaces of weighting functions by imposing
homogeneous Dirichlet boundary conditions to the corresponding trial function spaces,

Vu = {η | η ∈ H1, η = 0 on Γu}, (27)

V pM = {ωM | ωM ∈ H1, ωM = 0 on ΓpM }, (28)

V pm = {ωm | ωm ∈ H1, ωm = 0 on Γpm }. (29)

The weak form of the problem is then stated as: Find {u, pM , pm} ∈ Su ×S pM ×S pm such that for all {η, ωM , ωm} ∈

Vu × V pM × V pm the following equations are satisfied:

(a) Balance of linear momentum
Ω
∇

s η : (σ ′ − B p̄1) dΩ =

Ω

η · (ρg+ c̄) dΩ +

Γt

η · t̂ dΓ . (30)

(b) Balance of mass in the macropores
Ω
ωMψ

M B ∇ · v dΩ −

Ω
∇ ωM · qM dΩ =


Ω
ωM cM dΩ +


ΓqM

ωM q̂M dΓ . (31)

(c) Balance of mass in the micropores
Ω
ωmψ

m B ∇ · v dΩ −

Ω
∇ ωm · qm dΩ =


Ω
ωmcm dΩ +


Γqm

ωm q̂m dΓ . (32)

It is usually more convenient to express the variational equations in time-integrated form. This applies to the two
mass balance equations. Employing the first-order accurate, unconditionally stable backward Euler method, we get
the following time-integrated variational equation for the macropores (after multiplying 1t),

Ω
ωMψ

M B ∇ · (u− un) dΩ −1t

Ω
∇ ωM · qM dΩ = 1t


Ω
ωM cM dΩ +1t


ΓqM

ωM q̂M dΓ , (33)

and the time-integrated variational equation for the micropores,
Ω
ωmψ

m B ∇ · (u− un) dΩ −1t

Ω
∇ ωm · qm dΩ = 1t


Ω
ωmcm dΩ +1t


Γqm

ωm q̂m dΓ , (34)

where subscript n denotes quantities at time tn , and 1t denotes a time increment. For brevity in the preceding two
equations, we have dropped the subscript ‘n+1’ for quantities pertaining to time tn+1. We note that the backward Euler
scheme possesses high-frequency numerical damping, so any spurious oscillation in time is automatically suppressed.
This is specially desirable for the problem at hand where the two pore scales have a high permeability contrast.
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2.4. Matrix form

For the numerical solution of the mixed variational formulation, we consider three-field mixed finite elements
with displacement and two pore pressure degrees of freedom at each node (for Taylor–Hood elements some nodes
may contain displacement degrees of freedom only). Following the standard Galerkin approximation for spatial
discretization, we introduce standard shape function matrices and write

uh
= Nud + N̂u d̂

ph
M = N ppM + N̂ pp̂M

ph
m = N ppm + N̂ pp̂m

 , (35)

where superscript h denotes a spatially discretized function; N is the shape function matrix with superscripts indicating
the fields being interpolated; d, pM , pm are the nodal displacement vector, nodal macropore pressure vector, and nodal
micropore pressure vector, respectively; and the hats pertain to contributions from the Dirichlet boundary conditions.
Here, we distinguish between the shape functions used for displacement and pore pressure interpolations, and use the
same interpolation function for the pressures in the macropores and micropores.

Gradient and divergence of the primary variables can be interpolated accordingly, and here we represent them with
the following symbols:

∇ uh
= Bd + B̂d̂

∇ · uh
= bd + b̂d̂

∇ ph
M = EpM + Êp̂M

∇ ph
m = Epm + Êp̂m

 . (36)

The same shape functions are used for the weighting functions.
Substituting the finite elements approximations to the Galerkin form of (30), (33), and (34), we arrive at the

following residual equations in vector form
(a) Balance of linear momentum:

Rh
u = −


Ω
(BTσ ′ − bT B p̄h) dΩ +


Ω
(Nu)T(ρg+ c̄h) dΩ +


Γt

(Nu)T t̂ dΓ → 0. (37)

(b) Balance of mass in the macropores:

Rh
pM
=


Ω
(N p)TψM B ∇ · (uh

− uh
n) dΩ −1t


Ω

E · qh
M dΩ

−1t

Ω
(N p)TcM dΩ −1t


ΓqM

(N p)Tq̂M dΓ → 0. (38)

(c) Balance of mass in the micropores:

Rh
pm
=


Ω
(N p)Tψm B ∇ · (uh

− uh
n) dΩ −1t


Ω

E · qh
m dΩ

−1t

Ω
(N p)Tcm dΩ −1t


Γqm

(N p)Tq̂m dΓ → 0. (39)

In the foregoing relations, the residual vectors Rh
(·) are used for Newton–Raphson iteration until convergence is

achieved, as implied by the rightward arrows tending to zero.
In general, the residuals defined above are nonlinear in the primary variables d, pM , and pm , except when the

constitutive laws for the solid deformation and fluid flow are linear. Most porous materials exhibit a nonlinear
stress–strain behavior, and even the permeability coefficient may depend on deformation, resulting in a nonlinear
flux-gradient relation. To solve for the primary variables in a general nonlinear setting, we make use of a robust
Newton–Raphson iteration. To this end, we need to evaluate the consistent tangent operator as follows:

R =

Ru
R pM

R pm

 , R′(X) =

 A B1 C1
B2 D E1
C2 E2 F

 , (40)
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where X is the solution vector with components d, pM , and pm . Note that the tangent operator has a 3 × 3 block
structure. The individual matrices comprising the tangent operator are as follows:

A = −

Ω

BTCkB dΩ , (41)

B1 =


Ω

bT BψM N p dΩ +

Ω
(Nu)T


∂ c̄h

∂ph
M


N p dΩ , (42)

C1 =


Ω

bT BψmN p dΩ +

Ω
(Nu)T


∂ c̄h

∂ph
m


N p dΩ , (43)

B2 =


Ω
(N p)T BψM b dΩ , (44)

D = 1t

Ω

ETκ M E dΩ −1t

Ω
(N p)T


∂cM

∂ph
M


N p dΩ , (45)

E1 = −1t

Ω
(N p)T


∂cM

∂ph
m


N p dΩ , (46)

C2 =


Ω
(N p)T Bψmb dΩ , (47)

E2 = −1t

Ω
(N p)T


∂cm

∂ph
M


N p dΩ , (48)

F = 1t

Ω

ETκmE dΩ −1t

Ω
(N p)T


∂cm

∂ph
m


N p dΩ , (49)

where Ck is the consistent stress–strain matrix (k denotes an iteration counter) and κ (·) is the matrix of permeability
over dynamic viscosity.

We remark that when the diffusive mass transfer is zero, all the derivatives of cM and cm with respect to the two
pore pressure variables vanish. In this case, E1 = E2 = 0, B1 = BT

2 , and C1 = CT
2 , leading to a symmetric tangent

operator having a form similar to the 2 × 2 block matrix arising in single porosity formulation [59]. We also remark
that in the limit of undrained deformation, which occurs either when 1t → 0 (fast rate of loading) and/or when
κ M , κm → 0 (impermeable solid), combined with the condition of no diffusive mass transfer, the entire 2 × 2 lower
right-hand side block consisting of submatrices D, E1, E2, and F vanishes, resulting in a coefficient matrix that
potentially could be either singular (i.e., problem is not solvable) or unstable in the sense of the inf–sup condition for
twofold saddle point problems, see [86].

Double porosity formulation could also lead to another interesting scenario, and that is when κm → 0, which leads
to F → 0. The result is an incompressible micropore but a compressible macropore (if drainage in the macropore is
allowed). While this condition may appear to be somewhat similar to that encountered in incompressible elasticity or
Stokes flow, in which a diagonal submatrix block also vanishes, the physics of the present problem is not quite the
same because of the dual nature of porosity. In any case, whether it is the micropore alone that is incompressible,
or it is the entire mixture that cannot change in volume, instabilities in the undrained limit will naturally impact the
performance of many mixed finite elements. Therefore, this issue must be addressed with a suitable stabilization.

3. Stabilized mixed finite elements

The subject of the present stabilization study is the class of low-order mixed finite elements employing equal-order
(linear) interpolations of displacement and pressure fields. These elements do not satisfy the inf–sup condition and are
known to exhibit pronounced pressure oscillation in the undrained limit. We should note, however, that this class of
mixed finite elements generally perform well under drained conditions. Therefore, we seek an effective stabilization
that circumvents the pressure oscillation in the undrained limit but preserves the acceptable performance in drained
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calculations. The added challenge in double porosity stabilization is the high contrast in the permeabilities of the
macropores and micropores. The stabilization needs to address potential oscillation in the micropore pressures even if
the macropore pressure responses seem stable.

Before considering the double porosity stabilization, we first review the general stability condition for mixed
finite elements in single-constraint problems such as Stokes flow, incompressible elasticity, and single porosity
poromechanics, for which the stabilization technique extended in this work was originally proposed. The discrete
inf–sup condition for velocity and pressure interpolations reads [49]

sup
vh∈S h

u


Ω ph
∇ · vh dΩ
∥vh∥1

≥ C∥ph
∥0 (50)

for all ph
∈ S h

p , where S h
u and S h

p are the discrete spaces for velocity and pressure interpolations, respectively, ∥ · ∥k
is the standard Sobolev norm with order k, and C is a positive constant independent of element size h. This condition
determines the bound for an intrinsically stable pair of finite element spaces S h

u and S h
p .

Unfortunately, equal-order linear pair elements do not satisfy the condition described in the preceding paragraph.
However, Bochev et al. [67] showed that they do satisfy a weaker inf–sup condition given by

sup
vh∈S h

u


Ω ph
∇ · vh dΩ
∥vh∥1

≥ C1∥ph
∥0 − C2∥ph

−Π ph
∥0 (51)

for all ph
∈ S h

p , where Π : L2(Ω)→ R0 is a projection operator from spaces of L2 to piecewise constants R0, and C1

and C2 are positive constants independent of h. Comparing (50) and (51), we find that the last term, C2∥ph
−Π ph

∥0
in (51), quantifies the deficiency of the equal-order linear pair elements. The idea behind the PPP technique is then to
penalize this deficiency by augmenting a stabilization term to the discrete variational equation.

The projection operator Π for the discrete pressure field ph can be defined as

Π ph
|Ω e =

1
V e


Ω e

ph dΩ , (52)

where Ω e and V e denote the domain and volume of an element, respectively. In words, the operator Π projects a
given field to its average value within the element. For single-constraint problems, specific stabilization terms for
penalizing the deficiency have essentially taken the same form except for the constants. We emphasize that in all cases
the stabilization term should be sufficiently large to penalize the deficiency, but not too large as to be overly diffusive
and induce undesirable smoothing.

For single porosity poromechanics, a stabilization term has been proposed by White and Borja [59] for the mass
residual term of the form

M =


Ω

1
2G

(ωh
−Πωh)(

˙
ph −Π ph) dΩ , (53)

where G is the shear modulus of the solid matrix and the superimposed dot denotes a time differentiation. After
temporal and spatial discretization, the expression becomes

M′
=

1
1t


Ω

1
2G
[N p
−Π (N p)][(ph

− ph
n )−Π (ph

− ph
n )] dΩ , (54)

where ω and N p are the weighting and shape functions for the pore pressure. We note that the stabilization term
originally proposed by Bochev et al. [67] is inherently parameter-free, much like (53) and (54). However, White
and Borja [59] introduced a parameter τ to avoid over-diffusion that may occur when steep pressure gradients are
involved, such as in localized zones (e.g., faults) where the permeabilities between adjacent material zones are orders
of magnitude different. Recalling that the double porosity framework treats such heterogeneity as different fields, it is
very unlikely that similar over-diffusion in the pressure field would be encountered. Therefore, we shall revert back to
the original parameter-free PPP technique.

To accommodate two pore pressure constraints, we consider a twofold saddle point problem of the generic form
(see [86] for details): Find (u, p1, p2) ∈ Su × S p1 × S p2 such that

a(u, v)+ b1(p1, v)+ b2(p2, v) = f (v) (55)
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b1(q1, u) = g1(q1) (56)

b2(q2, u) = g2(q2), (57)

for all v ∈ Su , q1 ∈ S p1 , and q2 ∈ S p2 , where a, b1, and b2 are bilinear operators. As noted in [86], this can be viewed
as a single saddle point problem on Su × (S p1 × S p2), with bilinear form

b((p1, p2), u) = b1(p1, u)+ b2(p2, u). (58)

The relevant inf–sup condition is given by (see [86])

sup
v∈Su

b1(p1, v)+ b2(p2, v)

∥v∥Su

≥ C(∥p1∥S p1
+ ∥p2∥S p2

) (59)

for all (p1, p2) ∈ S p1 × S p2 , with C > 0.
We are interested in the condition where b1 = b2 ≡ b, and with ∥ · ∥S p1

= ∥ · ∥S p2
≡ ∥ · ∥S p , which is motivated

by the same order of Sobolev spaces for the two pressure fields. In this case, the relevant inf–sup condition, using the
triangle inequality, is given by

sup
v∈Su

b(p1 + p2, v)

∥v∥Su

≥ C(∥p1∥S p + ∥p2∥S p )

≥ C(∥p1 + p2∥S p ) (60)

for all (p1, p2) ∈ S p × S p, with C > 0. One can, of course, make the substitutions p1 ← (1− φ)p1 and p2 ← φp2,
where 0 ≤ φ ≤ 1, so that the inf–sup condition can simply be phrased as a single saddle point problem in the mean
of the two pressures. This motivates the following stabilization for the problem at hand.

Consider the problem of double porosity as a twofold saddle point problem. The inf–sup condition in the discrete
space takes the form

sup
vh∈S h

u


Ω B(ψM ph

M + ψ
m ph

m)∇ · v
h dΩ

∥vh∥1
≥ C(∥BψM ph

M∥0 + ∥Bψ
m ph

m∥0)

≥ C(∥B(ψM ph
M + ψ

m ph
m)∥0) (61)

for all ph
M ∈ S h

p and ph
m ∈ S h

p , with C > 0 independent of h.
Comparing (61) with (50), we find that the pressure constraint p in single-constraint problems is now replaced by

the mean pore pressure weighted according to the pore fractions (and accommodating the Biot coefficient B as well,
to make the representation more physically meaningful):

p̄h
= B(ψM ph

M + ψ
m ph

m). (62)

Note that both p for single porosity and p̄ for double porosity emanate from the effective stress equation. Following
Bochev et al. [67], we now treat the twofold saddle point problem as a single saddle point problem in the mean
pressures, and write the corresponding weaker condition as

sup
vh∈S h

u


Ω p̄h
∇ · vh dΩ
∥vh∥1

≥ C1∥ p̄h
∥0 − C2∥ p̄h

−Π p̄h
∥0 (63)

for all ph
M ∈ S h

p and ph
m ∈ S h

p . Once again, the last term C2∥ p̄h
−Π p̄h

∥0 quantifies the deficiency of the equal-order
interpolations.

The stabilization term to penalize the resulting deficiency can be readily developed. The trial function for the
stabilization term is p̄ defined in (62). Accordingly, the Galerkin formulation dictates a similar form for the weighting
function,

ω̄h
= B(ψMωh

M + ψ
mωh

m). (64)

This gives rise to the following stabilization term patterned after the expression proposed by White and Borja [59]:

M̄ =


Ω

1
2G

(ω̄h
−Π ω̄h)(

˙
p̄h −Π p̄h) dΩ
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=


Ω

1
2G

BψM (ωh
M −Πωh

M )(
˙

p̄h −Π p̄h) dΩ

+


Ω

1
2G

Bψm(ωh
m −Πωh

m)(
˙

p̄h −Π p̄h) dΩ . (65)

Observe that the expression for M̄ naturally splits into components associated with the two weighting functions
for the macropore and micropore pressures. These components provide the necessary stabilization terms for the mass
balance equations for the macropores and micropores. In terms of the residual vectors, we obtain (after temporal and
spatial discretization of (65) and multiplying it by 1t)

R̄ pM = R pM +


Ω

1
2G

BψM
[N p
−Π (N p)][( p̄h

− p̄h
n )−Π ( p̄h

− p̄h
n )] dΩ , (66)

R̄ pm = R pm +


Ω

1
2G

Bψm
[N p
−Π (N p)][( p̄h

− p̄h
n )−Π ( p̄h

− p̄h
n )] dΩ . (67)

Because the residual vectors R̄ pM and R̄ pm have been stabilized, the tangent operator also must be stabilized. The
2× 2 lower right-hand submatrix block now contains the following additional terms

D̄ = D +

Ω

1
2G


BψM2

[N p
−Π (N p)][N p

−Π (N p)] dΩ , (68)

Ē1 = E1 +


Ω

1
2G


B2ψMψm

[N p
−Π (N p)][N p

−Π (N p)] dΩ , (69)

Ē2 = E2 +


Ω

1
2G


B2ψmψM

[N p
−Π (N p)][N p

−Π (N p)] dΩ , (70)

F̄ = F +

Ω

1
2G


Bψm2

[N p
−Π (N p)][N p

−Π (N p)] dΩ . (71)

Consequently the new tangent operator now takes the form A B1 C1
B2 D E1
C2 E2 F

→
 A B1 C1

B2 D̄ Ē1

C2 Ē2 F̄

 . (72)

Note that the additional stabilization terms form a symmetric matrix as a result of the Galerkin formulation.

Before closing this section, we briefly address the issue of solvability of the undrained problem with double
porosity. The extreme case of interest occurs when the matrices D, E1, E2, and F are all zero, which corresponds
to fully undrained condition at the two pore scales and without stabilization. Ignoring the mass transfer terms, the
coefficient matrix becomes symmetric when A = AT, i.e., A B1 C1

B2 D E1
C2 E2 F

→
 A BT

2 CT
2

B2 0 0
C2 0 0

→ 
A GT

G 0


, (73)

where GT
= [BT

2 CT
2 ]. We see that undrained loading in a double porosity medium creates a condition in which the

width of the coupling matrix GT increases about two times relative to that emanating from a single porosity problem.
This means that the null submatrix block on the diagonal also doubles in size relative to the single porosity problem.

The solvability aspects of a problem having a coefficient matrix of the form given by (73) have been addressed
by Brezzi and Bathe [49], who in turn credited Arnold [87] for an ‘elegant presentation’. In a nutshell, the undrained
problem is solvable provided that: (a) the size of A is greater than the size of the null submatrix block on the diagonal,
thus ensuring that the kernel set of G is not an empty set; (b) the square matrix formed from G by eliminating the
elements of the kernel space of G is not singular, and (c) the square submatrix of A associated with the kernel space
of G is not singular. We refer to [86,88] for further discussions on this aspect.
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4. Numerical examples

This section presents numerical examples demonstrating the performance and efficacy of the proposed stabilized
mixed finite elements. We begin by verifying our finite elements through Cryer’s sphere, a classic single porosity
poromechanics problem for which an analytical solution exists. Subsequently, we perform a comparative investigation
into the stabilized low-order mixed finite elements with intrinsically stable high-order and unstable low-order
elements. For this purpose, we first consider an undrained double porosity sphere under spatially varying loading.
We then introduce a plane strain strip footing problem and examine the efficacy of the proposed stabilization scheme
when the permeabilities of the two pore scales are orders of magnitude different. This difference not only affects the
pressure difference between the macropores and micropores, but also controls the combinations of drainage regimes
in the two scales.

The numerical analyses have been conducted using Geocentric, a massively parallel finite element code for
geomechanics that is built upon the deal.II finite element library [89,90], p4est mesh handling library [91], and
Trilinos project [92]. We more or less followed the standard recipes of those libraries except the solver. Due to
a large size of the linear system stemming from a three-field mixed formulation, we implemented an iterative solver
aided by a block-preconditioner that exploits the 3×3 block-partitioned structure and spectral properties of the tangent
operator. In essence, the solution strategy is an extended version of the block preconditioned Newton–Krylov solver
for single porosity proposed in [93].

The following notations are used for referring to the mixed finite elements of interest. The interpolation for
displacement is denoted by Q and for pressure by P, followed by a number representing the order of interpolation. For
example, Q2P1P1 is a mixed element employing second-order (quadratic Lagrangian) interpolation for displacement
and first-order (linear) interpolation for the two pressures, while Q1P1P1 adopts the same linear interpolation for
displacement and the two pressure fields. We also use a lower case ‘s’ to denote stabilization, i.e., Q1P1P1s refers to
the stabilized mixed finite elements investigated in this paper. Throughout this section we have employed the same
level of interpolation for the two pressure fields, and used the same pressure nodes for the micropore and macropore
pressure interpolations.

4.1. Cryer’s sphere

The objective of our first example is to verify the formulation and implementation of our mixed finite elements
for double porosity poromechanics. We are not aware of a closed-form analytical solution to any problem related
to fully coupled double porosity poromechanics, so we have selected Cryer’s sphere problem [94] as a test example.
Cryer’s sphere is a classic single porosity problem that can be solved by Laplace transform. In this problem a saturated
poroelastic sphere is compressed by applying a uniform pressure on its outer surface. The analytical solution of this
problem indicates that the excess pore pressure initially rises before it begins to dissipate, a phenomenon often referred
to in the literature as the Mandel–Cryer effect. This initial pressure increase is a signature feature of coupled responses
between solid deformation and fluid diffusion. Cryer’s sphere problem has served as a useful reference in the past to
verify various formulations and implementation of coupled poromechanics solutions.

For verification we performed single porosity simulations of the Cryer sphere problem with the proposed double
porosity mixed finite elements. This was done by assigning a null porosity to all integration points of the micropores,
and zero micropore pressures for the initial and boundary conditions at the nodes. Mass transfer was ignored as well.
By comparing results from single porosity finite elements, we confirmed that this setting successfully emulates a
single porosity condition by maintaining zero pressures in the micropores throughout all time steps. We also checked
to verify that the double porosity mixed elements could capture the analytical solution by suppressing the macropore
pressures and activating only the micropore pressure degrees of freedom.

We conducted the simulations using three types of mixed finite elements: Q2P1P1, Q1P1P1, and Q1P1P1s. We
modeled an octant of a unit sphere taking advantage of symmetry. For Q2P1P1 the domain was discretized with 3456
quadrilateral elements, resulting in a total of 98,245 degrees of freedom (90,099 for displacement and 4,073 for each
pressure type); for Q1P1P1s the same number of elements resulted in a total of 20,365 degrees of freedom (12,219
for displacement and 4,073 for each pressure type). Note that the total number of degrees of freedom generated by
Q2P1P1 elements is much higher than that generated by the lower-order elements. In addition, higher-order elements
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Fig. 1. Normalized pore pressure p/p0 in Cryer’s sphere with ν = 0 at time factor T = 0.005.

Fig. 2. Comparison of analytical and numerical solutions at the center of Cryer’s sphere.

also require a greater number of integration points. The potentially significant reduction in computing effort is the
primary motivating factor for stabilizing these elements.

The solution of Cryer’s sphere problem is a function of Poisson’s ratio for the solid matrix. Therefore, we
considered three values of Poisson’s ratio: ν = 0, 0.25 and 0.4, and fixed all other parameters at constant values
except for the permeability coefficient that was adjusted to normalize the time axis. The rest of the parameters were
assigned the following values: bulk modulus K = 1000 kPa, ρs = ρ f = 1.0 t/m3, φM

= 0.5 or φm
= 0.5 with

φM
+ φm

= 0.5, µ f = 10−6 kPa · s, and k f = 3.33 × 10−12 to 8.18 × 10−12 m2. We assumed B = 1, which is a
realistic value for soils. We simulated the sphere problem until the non-dimensionalized time factor T = cvt/r2 has
reached a value of 0.2 after 40 time steps, where cv is the coefficient of consolidation, t is time, and r is the drainage
length. In what follows, we express the solutions in terms of normalized pore pressure p/p0, where p is the pore
pressure normalized with respect to the boundary pressure p0.

Fig. 1 shows the distribution of normalized pore pressure p/p0 at the initial time step T = 0.005 when ν = 0. The
three types of element gave virtually the same results, so we only present the solutions from the Q1P1P1 simulations
in this figure. Also, the double porosity simulations obtained by activating either only the macropores or only the
micropores gave identical solutions; therefore, the figure does not distinguish between the two solutions. We find that
even without stabilization equal-order linear interpolations do not exhibit pressure oscillations, since this problem
deals with drained conditions right from the initial time step (note that the focus of this example is only on the
verification of the finite element implementation, and not on stabilization during undrained condition). In Fig. 2 we
show the evolutions of p/p0 at the center of the sphere predicted by the analytical and numerical solutions. The three
mixed elements provided essentially the same results that agree with the analytical solutions. These results thus verify
the formulation and implementation of the mixed finite elements under drained loading conditions.

We note two important observations from this example. First, under drained condition the equal-order unstabilized
element, Q1P1P1, performs well and does not exhibit any instability. Second, the PPP technique does not introduce
any numerical artifacts that significantly alter the drained solution. This latter feature is important because, as noted
earlier, poromechanics problems typically cover the entire range of drainage conditions, from fully undrained to fully
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drained. Therefore, a robust stabilization scheme should not alter the solution in the regime where no stabilization is
needed. The next example shows how the proposed stabilization scheme can improve the performance of an inherently
unstable mixed element in the undrained regime.

4.2. Undrained double porosity sphere

Having verified our mixed finite elements, we now turn our attention to undrained deformation in double porosity
media and consider the same unit sphere as a next example. In this example, all boundaries of the sphere were treated
as no-flux boundaries. The modified problem does not allow an analytical solution, but it does provide a simple setting
for investigating the efficacy of the proposed stabilization technique in a 3D double porosity problem.

We assumed a double porosity material with φM
= 0.3 and kM = 6×10−14 m2 for the macropores, and φm

= 0.1
and km = 6 × 10−17 m2 for the micropores, resulting in a permeability ratio of kM/km = 103. The two pore scales
were coupled with mass transfer terms in which a = 0.1 m, β = 3.0, and γ = 0.4. For the solid matrix we assigned
K = 1000 kPa and ν = 0.25. All other parameters remain the same as in the previous example. To impose pressure
variations in the domain, we applied a spatially varying pressure 1+ 0.5 sin(x) kPa on its outer surface. This pressure
variation perturbed the stress field from the isotropic condition considered by Cryer to a full 3D stress field within the
sphere.

Fig. 3 compares the excess pore pressures obtained using the three mixed elements after 0.1 s of loading. From
the results of simulations with Q2P1P1 elements, we first observe that pressure distributions in the micropores are
more localized than those in the macropores due to the much lower permeability of the micropores. The micropore
pressures predicted by the unstabilized Q1P1P1 elements exhibit a checkerboard pattern, which is a typical spurious
mode associated with numerical instability. We also observe some mild macropore pressure oscillations produced by
the unstabilized Q1P1P1 elements in places with the pressure gradients are high. In contrast, the reference solution
provided by the higher-order Q2P1P1 elements is smooth. Furthermore, the results obtained from the stabilized
Q1P1P1s elements also show a smooth pattern that is nearly identical to those produced by the higher-order Q2P1P1
elements. We note that the stabilization successfully eliminated oscillation at the two scales, resulting in nearly
identical solutions to those provided by the higher-order elements.

4.3. Strip footing

Our next example is a plane strain strip footing problem on a foundation material with double porosity. We
adopted a typical configuration of strip footing for this example. Fig. 4 illustrates the specific geometry and boundary
conditions. Considering symmetry, we modeled only one-half of a 4 m wide footing resting on the ground. The fluid
boundary conditions were identical for both pore scales except for the ground surface, which was assumed to be
a homogeneous Dirichlet boundary for the macropores (i.e., pM = 0) and a Neumann boundary (no flux) for the
micropores.

The reason for suppressing drainage through the micropore ground surface is to eliminate unnecessary oscillations
occurring near the drainage boundary of a low-permeability medium (see [95] for example). This oscillation is due
to sharp pressure gradients, or shocks, which is not related to the spurious pressure oscillation stemming from the
inf–sup instability. It has been shown (see Appendix A of [96]) that shocks in the form of sharp pressure gradients
can be treated by other techniques, such as the finite volume method. Stabilization of such oscillation near drainage
boundaries is a topic of other studies (see e.g., [97]) and will not be covered in this work. To fully focus on the
instability at hand, we assumed the micropore scale as a globally undrained medium. Regarding the displacement
field, we fixed the vertical displacements at the bottom boundary and the horizontal displacements at the two vertical
sides. We selected Point A, which is located 0.5 m below the center of the footing, as a reference point for reporting
the evolutions of the two pore pressures and displacement with time.

We investigated the mesh sensitivity issue by employing two finite element meshes depicted in Fig. 5. The total
number of degrees of freedom with Q2P1P1 and Q1P1P1(s) mixed elements are 8364 and 3444 for Mesh #1, and
32,724 and 13,284 for Mesh #2, respectively. We note that even in 2D analysis, the reduction in the total number
of degrees of freedom engendered by the low-order stabilized elements is still fairly significant, although it is not as
significant in this case as in the 3D problem of the previous example.
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Fig. 3. Excess pore pressures in double porosity sphere after 0.1 s of undrained loading. Surface pressure varies spatially according to 1+0.5 sin(x).

Fig. 4. Schematic illustration for the geometry and boundary conditions of the strip footing problem.

We examined the performance of the proposed stabilization scheme by considering the permeabilities of the
macropores and micropores (k M and km , respectively) to be several orders of magnitude different. For the micropores,
we assumed the following values: φm

= 0.1 and km = 5 × 10−17 m2. For the macropores, we assumed φM
= 0.05

and kM = 1 × 10−10 m2 for Case #1, and decreased the permeability to 5 × 10−15 m2 for Case #2. This leads to a
drop in the permeability ratio kM/km from a value of 2×106 for Case #1 to a value of 1×102 for Case #2. As will be
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Fig. 5. Two meshes used in the strip footing example. Mesh #1 has 800 elements while Mesh #2 has 3200 elements.

(a) Mesh #1.

(b) Mesh #2.

Fig. 6. Pore pressure variations below the center of footing at the initial time step: Case #1 (kM/km = 2× 106).

shown later, this difference in the permeability ratio also alters the combination of drainage conditions from the initial
step. The remaining parameters were identical for both cases.

We activated the diffusive mass transfer between two pore scales, with a = 5 × 10−2 m, γ = 0.4 and β = 11.0.
We assumed the following properties for the pore fluid: ρ f = 1.0 t/m3 and µ f = 1 × 10−6 kPa-s; and for the solid
matrix: ρs = 2.6 t/m3 and B = 0.9. We considered the foundation medium to be linearly elastic with bulk modulus
K = 2000 kPa and Poisson’s ratio ν = 0.2. We applied the footing load as a ramp function that increases from an
initial value of zero to a final value 20 kPa over a period of 180 s, after which it was held constant at 20 kPa for the
next 180 s. Time steps taken were 1t = 5 s during the ramp-loading phase, and 1t = 10 s thereafter.

In what follows, we consider the variation and distribution of the excess pore pressure fields induced by the footing
load. We first focus on the two pore pressure fields at the initial time step when the system is deforming in undrained
fashion within the entire time scale. In particular, we focus on the pressure variations below the center of the footing
(i.e., along the symmetry line). We then present time histories of macropore and micropore pressures at Point A
illustrated in Fig. 5.
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Fig. 7. Contours of macropore and micropore pressures at the initial time step: Case #1 (kM/km = 2× 106) with Mesh #2.

Case #1: Higher permeability contrast
We first consider the case in which the macropores are 2 × 106 times more permeable than the micropores. This

condition is analogous to that of a highly fissured rock, where the permeability of the fissures is several orders of
magnitude higher than that of the rock matrix. Fig. 6 compares the macropore and micropore pressures below the
center of the footing at the initial step. Significant difference can be observed between the two pore pressure fields
both quantitatively and qualitatively. Due to the much lower drainage within the time interval, the micropore pressures
are around two orders of magnitude higher than the macropore pressures. Also, the micropore pressures decrease from
the top drainage surface to the bottom, while the macropore pressures slightly increase with depth.

Setting the foregoing results as the reference solution, we next focus on the stability of the Q1P1P1 mixed
elements with Mesh #1. The macropore pressures calculated with these unstable elements are nearly the same as those
calculated with Q2P1P1 elements. However, the micropore pressures exhibit pronounced spurious oscillations. With
Mesh #2, on the other hand, these oscillations are somewhat suppressed but not completely eliminated. In contrast,
the stabilized Q1P1P1s elements provide smooth solutions that are nearly identical to those obtained with the Q2P1P1
elements. As the mesh is refined (Mesh #2), the stabilized solutions became even closer to those calculated by the
higher-order elements.

In Fig. 7 we compare the two pore pressure fields generated at the same time instant using Mesh #2. As expected,
the two pore pressure fields show completely different distributions throughout the entire domain. With respect to
stability, the unstabilized equal-order pair Q1P1P1 elements exhibit spurious micropore pressure oscillations, although
the macropore pressure distribution shows a smooth, stable pattern. These features are unique to double porosity
formulation and is not encountered in single porosity poromechanics, i.e., stability on one scale does not necessarily
imply stability on another scale. More importantly, the proposed stabilization technique completely circumvents
instabilities irrespective of scale—it suppresses instabilities where they would otherwise arise, and preserves the
‘correct’ response at the scale where no stabilization is needed.

We next examine the time-evolution of pore pressures at Point A shown in Fig. 8. Not surprisingly, all three mixed
elements yield essentially the same macropore pressure–time responses. The micropore pressure response calculated
by the unstabilized Q1P1P1 elements still deviates slightly from that calculated by the higher-order elements, but
the deviation is not significant. No oscillation in the time domain is observed, a testament of the high-frequency
numerical damping of the backward Euler method. Note that both the macropore and micropore pressure histories
show a decreasing trend during the constant footing load period: the macropore pressure decreases as fluid drains into
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(a) Mesh #1.

(b) Mesh #2.

Fig. 8. Time histories of pore pressures at Point A: Case #1 (kM/km = 2× 106).

Fig. 9. Time history of displacement at Point A: Case #1 (kM/km = 2× 106) with Mesh #1.

the ground surface, while the micropore pressure decreases as the micropore fluids drain into the macropores (recall
that the micropore fluids cannot drain into the exterior boundaries because of the no-flux boundary condition on all
exterior surfaces prescribed for the micropore scale). On the other hand, Fig. 9 shows that the displacement at Point
A remains nearly unaffected by the pressure instabilities.
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(a) Mesh #1.

(b) Mesh #2.

Fig. 10. Pore pressure variations below the center of footing at the initial time step: Case #2 (kM/km = 1× 102).

Case #2: Lower permeability contrast
Next we investigate the instability patterns and examine the performance of the proposed stabilization scheme

when the ratio of the two permeabilities is lower, at kM/km = 1 × 102. Fig. 10 shows the pore pressure variations
below the center of the footing at the initial time step. We see that the macropore and micropore pressures calculated
by the Q2P1P1 elements are now fairly close to each other, unlike in the previous simulations where they were orders
of magnitude different. This is attributed to extensive diffusive mass transfer that allowed the two pore pressures to be
nearly the same.

Fig. 10 shows that simulations with Q1P1P1 elements along with the coarser Mesh #1 now exhibit spurious
oscillations in both the macropore and micropore pressures. The oscillations have been somewhat alleviated with
the finer Mesh #2, but not completely circumvented particularly on the micropore scale. However, the proposed
stabilization scheme completely eliminates these oscillations at both scales, suggesting the efficacy of the technique
when simultaneous multiscale stabilization is required. Furthermore, the results show that instabilities do not depend
on the magnitude of the pressure per se, but rather, on the degree of permeability of the material. This can be gleaned
from the fact that the calculated macropore and micropore pressures are nearly the same for this example, yet the
magnitudes of oscillation are significantly different.

Fig. 11 shows the overall distributions of the macropore and micropore pressures at the initial time step obtained
from the finer Mesh #2. Qualitatively, the pore pressure distributions within the two scales are somewhat similar,
although the micropore pressure distribution is a little bit more concentrated below the footing. The unstabilized
Q1P1P1 elements once again exhibit pore pressure oscillations at both scales, although oscillations at the macropore
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Fig. 11. Distributions of macropore and micropore pressures at the initial time step: Case #2 (kM/km = 2× 102) with Mesh #2.

scale concentrate more in places with sharp pressure gradients, and are generally milder. In contrast, the stabilized
Q1P1P1s elements generate smooth pressure distributions throughout, and essentially reproduce the results generated
by the higher-order Q2P1P1 elements,

Fig. 12 shows the time histories of the macropore and micropore pressures at the reference Point A. We see that
the Q1P1P1 solutions with Mesh #1 generated larger numerical errors in the micropore pressures, although errors in
the macropore pressures are much smaller. Even though the permeability of the micropore region is the same as in
the first case considered, the errors in time histories become much larger in the present case. This can be explained
by extending the reasoning provided in the previous case: since the permeability contrast is much lower in the present
case, fluids in the micropores cannot drain as easily into the macropores, because the permeability of the macropores is
now closer to that of the micropores. The virtually constant post-peak pressure, which was decreasing in the previous
case, is evidence of this drainage difference. However, these errors seem to vanish when the finer Mesh #2 is used.
Also, in all cases, the time histories of Q2P1P1 and Q1P1P1s are nearly the same, suggesting that stabilization is
indeed effective. While not presented in this paper, we also point out that the spurious oscillations observed in the
pore pressure fields have not impacted the stability of the displacement field.

5. Closure

We have presented stabilized low-order mixed finite elements for coupled solid deformation and fluid diffusion
in a material exhibiting two pore scales. The stabilization is a variant of the PPP technique developed for dual
treatment of two distinct pore pressure constraints. One appealing aspect of the proposed technique is the physical
motivation behind the stabilization: the mean trial pore pressure is a weighted mean determined according to the
pore fractions, and so the mean weighting function should also be a weighted mean of the pore pressure variations
determined according to the same pore fractions. Remarkably, this physical motivation is backed up by mathematical
developments, in which a twofold saddle point problem is used to develop an equivalent single saddle point problem
in terms of the weighted mean pore pressures. This leads to a parameter-free PPP stabilization technique for the
equivalent single saddle point problem in the mean pore pressures, which allows equal-order interpolations of the solid
displacement and the two pore pressure fields. Numerical examples have demonstrated the efficacy of the proposed
stabilization technique under various drainage conditions, from fully undrained to fully drained conditions, and from
2D to 3D loading and drainage configurations. Results of these studies can have a significant impact on the stabilization
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(a) Mesh #1.

(b) Mesh #2.

Fig. 12. Time histories of pore pressures at Point A: Case #2 (kM/km = 1× 102).

of numerical algorithms related to similar multiphysical and multiscale problems in science and engineering, such as
those arising in contact problems.
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