S. Boyd EE102

Table of Laplace Transforms

Remember that we consider all functions (signals) as defined only on t > 0.
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Notes on the derivative formula at ¢t =0

The formula £(f’) = sF'(s) — f(0-) must be interpreted very carefully when f has a discon-
tinuity at t = 0. We'll give two examples of the correct interpretation.

First, suppose that f is the constant 1, and has no discontinuity at ¢ = 0. In other words,
f is the constant function with value 1. Then we have f’ =0, and f(0_) = 1 (since there is
no jump in f at t = 0). Now let’s apply the derivative formula above. We have F(s) = 1/s,
so the formula reads

L(f)=0=sF(s)—1

which is correct.

Now, let’s suppose that g is a unit step function, i.e., g(t) = 1 for ¢ > 0, and ¢(0) = 0.
In contrast to f above, g has a jump at ¢ = 0. In this case, ¢’ = 4, and ¢g(0_) = 0. Now let’s
apply the derivative formula above. We have G(s) = 1/s (exactly the same as F!), so the
formula reads

L(g)=1=5G(s)—0

which again is correct.

In these two examples the functions f and g are the same except at t = 0, so they have
the same Laplace transform. In the first case, f has no jump at ¢ = 0, while in the second
case g does. As a result, f’ has no impulsive term at ¢t = 0, whereas g does. As long as you
keep track of whether your function has, or doesn’t have, a jump at ¢ = 0, and apply the
formula consistently, everything will work out.



