Lecture 3 The Laplace transform

- definition \& examples
- properties \& formulas
- linearity
- the inverse Laplace transform
- time scaling
- exponential scaling
- time delay
- derivative
- integral
- multiplication by t
- convolution

Idea

the Laplace transform converts integral and differential equations into algebraic equations
this is like phasors, but

- applies to general signals, not just sinusoids
- handles non-steady-state conditions
allows us to analyze
- LCCODEs
- complicated circuits with sources, Ls, Rs, and Cs
- complicated systems with integrators, differentiators, gains

Complex numbers

complex number in Cartesian form: $z=x+j y$

- $x=\Re z$, the real part of z
- $y=\Im z$, the imaginary part of z
- $j=\sqrt{-1}$ (engineering notation); $i=\sqrt{-1}$ is polite term in mixed company
complex number in polar form: $z=r e^{j \phi}$
- r is the modulus or magnitude of z
- ϕ is the angle or phase of z
- $\exp (j \phi)=\cos \phi+j \sin \phi$
complex exponential of $z=x+j y$:

$$
e^{z}=e^{x+j y}=e^{x} e^{j y}=e^{x}(\cos y+j \sin y)
$$

The Laplace transform

we'll be interested in signals defined for $t \geq 0$
the Laplace transform of a signal (function) f is the function $F=\mathcal{L}(f)$ defined by

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

for those $s \in \mathbf{C}$ for which the integral makes sense

- F is a complex-valued function of complex numbers
- s is called the (complex) frequency variable, with units $\mathrm{sec}^{-1} ; t$ is called the time variable (in sec); st is unitless
- for now, we assume f contains no impulses at $t=0$
common notation convention: lower case letter denotes signal; capital letter denotes its Laplace transform, e.g., U denotes $\mathcal{L}(u), V_{\text {in }}$ denotes $\mathcal{L}\left(v_{\text {in }}\right)$, etc.

Example

let's find Laplace transform of $f(t)=e^{t}$:

$$
F(s)=\int_{0}^{\infty} e^{t} e^{-s t} d t=\int_{0}^{\infty} e^{(1-s) t} d t=\left.\frac{1}{1-s} e^{(1-s) t}\right|_{0} ^{\infty}=\frac{1}{s-1}
$$

provided we can say $e^{(1-s) t} \rightarrow 0$ as $t \rightarrow \infty$, which is true for $\Re s>1$:

$$
\left|e^{(1-s) t}\right|=\underbrace{\left|e^{-j(\Im s) t}\right|}_{=1}\left|e^{(1-\Re s) t}\right|=e^{(1-\Re s) t}
$$

- the integral defining F makes sense for all $s \in \mathbf{C}$ with $\Re s>1$ (the 'region of convergence' of F)
- but the resulting formula for F makes sense for all $s \in \mathbf{C}$ except $s=1$ we'll ignore these (sometimes important) details and just say that

$$
\mathcal{L}\left(e^{t}\right)=\frac{1}{s-1}
$$

More examples

constant: (or unit step) $f(t)=1$ (for $t \geq 0)$

$$
F(s)=\int_{0}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}=\frac{1}{s}
$$

provided we can say $e^{-s t} \rightarrow 0$ as $t \rightarrow \infty$, which is true for $\Re s>0$ since

$$
\left|e^{-s t}\right|=\underbrace{\left|e^{-j(\Im s) t}\right|}_{=1}\left|e^{-(\Re s) t}\right|=e^{-(\Re s) t}
$$

- the integral defining F makes sense for all s with $\Re s>0$
- but the resulting formula for F makes sense for all s except $s=0$
sinusoid: first express $f(t)=\cos \omega t$ as

$$
f(t)=(1 / 2) e^{j \omega t}+(1 / 2) e^{-j \omega t}
$$

now we can find F as

$$
\begin{aligned}
F(s) & =\int_{0}^{\infty} e^{-s t}\left((1 / 2) e^{j \omega t}+(1 / 2) e^{-j \omega t}\right) d t \\
& =(1 / 2) \int_{0}^{\infty} e^{(-s+j \omega) t} d t+(1 / 2) \int_{0}^{\infty} e^{(-s-j \omega) t} d t \\
& =(1 / 2) \frac{1}{s-j \omega}+(1 / 2) \frac{1}{s+j \omega} \\
& =\frac{s}{s^{2}+\omega^{2}}
\end{aligned}
$$

(valid for $\Re s>0$; final formula OK for $s \neq \pm j \omega$)
powers of t : $f(t)=t^{n}(n \geq 1)$
we'll integrate by parts, i.e., use

$$
\int_{a}^{b} u(t) v^{\prime}(t) d t=\left.u(t) v(t)\right|_{a} ^{b}-\int_{a}^{b} v(t) u^{\prime}(t) d t
$$

with $u(t)=t^{n}, v^{\prime}(t)=e^{-s t}, a=0, b=\infty$

$$
\begin{aligned}
F(s)=\int_{0}^{\infty} t^{n} e^{-s t} d t & =\left.t^{n}\left(\frac{-e^{-s t}}{s}\right)\right|_{0} ^{\infty}+\frac{n}{s} \int_{0}^{\infty} t^{n-1} e^{-s t} d t \\
& =\frac{n}{s} \mathcal{L}\left(t^{n-1}\right)
\end{aligned}
$$

provided $t^{n} e^{-s t} \rightarrow 0$ if $t \rightarrow \infty$, which is true for $\Re s>0$ applying the formula recusively, we obtain

$$
F(s)=\frac{n!}{s^{n+1}}
$$

valid for $\Re s>0$; final formula OK for all $s \neq 0$

Impulses at $t=0$

if f contains impulses at $t=0$ we choose to include them in the integral defining F :

$$
F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t
$$

(you can also choose to not include them, but this changes some formulas we'll see \& use)
example: impulse function, $f=\delta$

$$
F(s)=\int_{0-}^{\infty} \delta(t) e^{-s t} d t=\left.e^{-s t}\right|_{t=0}=1
$$

similarly for $f=\delta^{(k)}$ we have

$$
F(s)=\int_{0-}^{\infty} \delta^{(k)}(t) e^{-s t} d t=\left.(-1)^{k} \frac{d^{k}}{d t^{k}} e^{-s t}\right|_{t=0}=\left.s^{k} e^{-s t}\right|_{t=0}=s^{k}
$$

Linearity

the Laplace transform is linear: if f and g are any signals, and a is any scalar, we have

$$
\mathcal{L}(a f)=a F, \quad \mathcal{L}(f+g)=F+G
$$

i.e., homogeneity \& superposition hold

example:

$$
\begin{aligned}
\mathcal{L}\left(3 \delta(t)-2 e^{t}\right) & =3 \mathcal{L}(\delta(t))-2 \mathcal{L}\left(e^{t}\right) \\
& =3-\frac{2}{s-1} \\
& =\frac{3 s-5}{s-1}
\end{aligned}
$$

One-to-one property

the Laplace transform is one-to-one: if $\mathcal{L}(f)=\mathcal{L}(g)$ then $f=g$ (well, almost; see below)

- F determines f
- inverse Laplace transform \mathcal{L}^{-1} is well defined (not easy to show)
example (previous page):

$$
\mathcal{L}^{-1}\left(\frac{3 s-5}{s-1}\right)=3 \delta(t)-2 e^{t}
$$

in other words, the only function f such that

$$
F(s)=\frac{3 s-5}{s-1}
$$

is $f(t)=3 \delta(t)-2 e^{t}$
what 'almost' means: if f and g differ only at a finite number of points (where there aren't impulses) then $F=G$
examples:

- f defined as

$$
f(t)= \begin{cases}1 & t=2 \\ 0 & t \neq 2\end{cases}
$$

has $F=0$

- f defined as

$$
f(t)= \begin{cases}1 / 2 & t=0 \\ 1 & t>0\end{cases}
$$

has $F=1 / s$ (same as unit step)

Inverse Laplace transform

in principle we can recover f from F via

$$
f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{s t} d s
$$

where σ is large enough that $F(s)$ is defined for $\Re s \geq \sigma$
surprisingly, this formula isn't really useful!

Time scaling

define signal g by $g(t)=f(a t)$, where $a>0$; then

$$
G(s)=(1 / a) F(s / a)
$$

makes sense: times are scaled by a, frequencies by $1 / a$
let's check:
$G(s)=\int_{0}^{\infty} f(a t) e^{-s t} d t=(1 / a) \int_{0}^{\infty} f(\tau) e^{-(s / a) \tau} d \tau=(1 / a) F(s / a)$
where $\tau=a t$
example: $\mathcal{L}\left(e^{t}\right)=1 /(s-1)$ so

$$
\mathcal{L}\left(e^{a t}\right)=(1 / a) \frac{1}{(s / a)-1}=\frac{1}{s-a}
$$

Exponential scaling

let f be a signal and a a scalar, and define $g(t)=e^{a t} f(t)$; then

$$
G(s)=F(s-a)
$$

let's check:

$$
G(s)=\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=F(s-a)
$$

example: $\mathcal{L}(\cos t)=s /\left(s^{2}+1\right)$, and hence

$$
\mathcal{L}\left(e^{-t} \cos t\right)=\frac{s+1}{(s+1)^{2}+1}=\frac{s+1}{s^{2}+2 s+2}
$$

Time delay

let f be a signal and $T>0$; define the signal g as

$$
g(t)= \begin{cases}0 & 0 \leq t<T \\ f(t-T) & t \geq T\end{cases}
$$

(g is f, delayed by T seconds \& 'zero-padded' up to T)

then we have $G(s)=e^{-s T} F(s)$
derivation:

$$
\begin{aligned}
G(s)=\int_{0}^{\infty} e^{-s t} g(t) d t & =\int_{T}^{\infty} e^{-s t} f(t-T) d t \\
& =\int_{0}^{\infty} e^{-s(\tau+T)} f(\tau) d \tau \\
& =e^{-s T} F(s)
\end{aligned}
$$

example: let's find the Laplace transform of a rectangular pulse signal

$$
f(t)= \begin{cases}1 & \text { if } a \leq t \leq b \\ 0 & \text { otherwise }\end{cases}
$$

where $0<a<b$
we can write f as $f=f_{1}-f_{2}$ where

$$
f_{1}(t)=\left\{\begin{array}{ll}
1 & t \geq a \\
0 & t<a
\end{array} \quad f_{2}(t)= \begin{cases}1 & t \geq b \\
0 & t<b\end{cases}\right.
$$

i.e., f is a unit step delayed a seconds, minus a unit step delayed b seconds hence

$$
\begin{aligned}
F(s) & =\mathcal{L}\left(f_{1}\right)-\mathcal{L}\left(f_{2}\right) \\
& =\frac{e^{-a s}-e^{-b s}}{s}
\end{aligned}
$$

(can check by direct integration)

Derivative

if signal f is continuous at $t=0$, then

$$
\mathcal{L}\left(f^{\prime}\right)=s F(s)-f(0)
$$

- time-domain differentiation becomes multiplication by frequency variable s (as with phasors)
- plus a term that includes initial condition (i.e., $-f(0)$)
higher-order derivatives: applying derivative formula twice yields

$$
\begin{aligned}
\mathcal{L}\left(f^{\prime \prime}\right) & =s \mathcal{L}\left(f^{\prime}\right)-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

similar formulas hold for $\mathcal{L}\left(f^{(k)}\right)$

examples

- $f(t)=e^{t}$, so $f^{\prime}(t)=e^{t}$ and

$$
\mathcal{L}(f)=\mathcal{L}\left(f^{\prime}\right)=\frac{1}{s-1}
$$

using the formula, $\mathcal{L}\left(f^{\prime}\right)=s\left(\frac{1}{s-1}\right)-1$, which is the same

- $\sin \omega t=-\frac{1}{\omega} \frac{d}{d t} \cos \omega t$, so

$$
\mathcal{L}(\sin \omega t)=-\frac{1}{\omega}\left(s \frac{s}{s^{2}+\omega^{2}}-1\right)=\frac{\omega}{s^{2}+\omega^{2}}
$$

- f is unit ramp, so f^{\prime} is unit step

$$
\mathcal{L}\left(f^{\prime}\right)=s\left(\frac{1}{s^{2}}\right)-0=1 / s
$$

derivation of derivative formula: start from the defining integral

$$
G(s)=\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t
$$

integration by parts yields

$$
\begin{aligned}
G(s) & =\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty} f(t)\left(-s e^{-s t}\right) d t \\
& =\lim _{t \rightarrow \infty} f(t) e^{-s t}-f(0)+s F(s)
\end{aligned}
$$

for $\Re s$ large enough the limit is zero, and we recover the formula

$$
G(s)=s F(s)-f(0)
$$

derivative formula for discontinuous functions
if signal f is discontinuous at $t=0$, then

$$
\mathcal{L}\left(f^{\prime}\right)=s F(s)-f(0-)
$$

example: f is unit step, so $f^{\prime}(t)=\delta(t)$

$$
\mathcal{L}\left(f^{\prime}\right)=s\left(\frac{1}{s}\right)-0=1
$$

Example: RC circuit

- capacitor is uncharged at $t=0$, i.e., $y(0)=0$
- $u(t)$ is a unit step
from last lecture,

$$
y^{\prime}(t)+y(t)=u(t)
$$

take Laplace transform, term by term:

$$
s Y(s)+Y(s)=1 / s
$$

(using $y(0)=0$ and $U(s)=1 / s)$
solve for $Y(s)$ (just algebra!) to get

$$
Y(s)=\frac{1 / s}{s+1}=\frac{1}{s(s+1)}
$$

to find y, we first express Y as

$$
Y(s)=\frac{1}{s}-\frac{1}{s+1}
$$

(check!)
therefore we have

$$
y(t)=\mathcal{L}^{-1}(1 / s)-\mathcal{L}^{-1}(1 /(s+1))=1-e^{-t}
$$

Laplace transform turned a differential equation into an algebraic equation (more on this later)

Integral

let g be the running integral of a signal f, i.e.,

$$
g(t)=\int_{0}^{t} f(\tau) d \tau
$$

then

$$
G(s)=\frac{1}{s} F(s)
$$

i.e., time-domain integral becomes division by frequency variable s example: $f=\delta$, so $F(s)=1 ; g$ is the unit step function

$$
G(s)=1 / s
$$

example: f is unit step function, so $F(s)=1 / s ; g$ is the unit ramp function $(g(t)=t$ for $t \geq 0)$,

$$
G(s)=1 / s^{2}
$$

derivation of integral formula:

$$
G(s)=\int_{t=0}^{\infty}\left(\int_{\tau=0}^{t} f(\tau) d \tau\right) e^{-s t} d t=\int_{t=0}^{\infty} \int_{\tau=0}^{t} f(\tau) e^{-s t} d \tau d t
$$

here we integrate horizontally first over the triangle $0 \leq \tau \leq t$

let's switch the order, i.e., integrate vertically first:

$$
\begin{aligned}
G(s)=\int_{\tau=0}^{\infty} \int_{t=\tau}^{\infty} f(\tau) e^{-s t} d t d \tau & =\int_{\tau=0}^{\infty} f(\tau)\left(\int_{t=\tau}^{\infty} e^{-s t} d t\right) d \tau \\
& =\int_{\tau=0}^{\infty} f(\tau)(1 / s) e^{-s \tau} d \tau \\
& =F(s) / s
\end{aligned}
$$

Multiplication by t

let f be a signal and define

$$
g(t)=t f(t)
$$

then we have

$$
G(s)=-F^{\prime}(s)
$$

to verify formula, just differentiate both sides of

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

with respect to s to get

$$
F^{\prime}(s)=\int_{0}^{\infty}(-t) e^{-s t} f(t) d t
$$

examples

- $f(t)=e^{-t}, g(t)=t e^{-t}$

$$
\mathcal{L}\left(t e^{-t}\right)=-\frac{d}{d s} \frac{1}{s+1}=\frac{1}{(s+1)^{2}}
$$

- $f(t)=t e^{-t}, g(t)=t^{2} e^{-t}$

$$
\mathcal{L}\left(t^{2} e^{-t}\right)=-\frac{d}{d s} \frac{1}{(s+1)^{2}}=\frac{2}{(s+1)^{3}}
$$

- in general,

$$
\mathcal{L}\left(t^{k} e^{-t}\right)=\frac{(k-1)!}{(s+1)^{k+1}}
$$

Convolution

the convolution of signals f and g, denoted $h=f * g$, is the signal

$$
h(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

- same as $h(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau$; in other words,

$$
f * g=g * f
$$

- (very great) importance will soon become clear in terms of Laplace transforms:

$$
H(s)=F(s) G(s)
$$

Laplace transform turns convolution into multiplication
let's show that $\mathcal{L}(f * g)=F(s) G(s)$:

$$
\begin{aligned}
H(s) & =\int_{t=0}^{\infty} e^{-s t}\left(\int_{\tau=0}^{t} f(\tau) g(t-\tau) d \tau\right) d t \\
& =\int_{t=0}^{\infty} \int_{\tau=0}^{t} e^{-s t} f(\tau) g(t-\tau) d \tau d t
\end{aligned}
$$

where we integrate over the triangle $0 \leq \tau \leq t$

- change order of integration: $H(s)=\int_{\tau=0}^{\infty} \int_{t=\tau}^{\infty} e^{-s t} f(\tau) g(t-\tau) d t d \tau$
- change variable t to $\bar{t}=t-\tau ; d \bar{t}=d t$; region of integration becomes $\tau \geq 0, \bar{t} \geq 0$

$$
\begin{aligned}
H(s) & =\int_{\tau=0}^{\infty} \int_{\bar{t}=0}^{\infty} e^{-s(\bar{t}+\tau)} f(\tau) g(\bar{t}) d \bar{t} d \tau \\
& =\left(\int_{\tau=0}^{\infty} e^{-s \tau} f(\tau) d \tau\right)\left(\int_{\bar{t}=0}^{\infty} e^{-s \bar{t}} g(\bar{t}) d \bar{t}\right) \\
& =F(s) G(s)
\end{aligned}
$$

examples

- $f=\delta, F(s)=1$, gives

$$
H(s)=G(s)
$$

which is consistent with

$$
\int_{0}^{t} \delta(\tau) g(t-\tau) d \tau=g(t)
$$

- $f(t)=1, F(s)=e^{-s T} / s$, gives

$$
H(s)=G(s) / s
$$

which is consistent with

$$
h(t)=\int_{0}^{t} g(\tau) d \tau
$$

- more interesting examples later in the course . . .

Finding the Laplace transform

you should know the Laplace transforms of some basic signals, e.g.,

- unit step $(F(s)=1 / s)$, impulse function $(F(s)=1)$
- exponential: $\mathcal{L}\left(e^{a t}\right)=1 /(s-a)$
- sinusoids $\mathcal{L}(\cos \omega t)=s /\left(s^{2}+\omega^{2}\right), \mathcal{L}(\sin \omega t)=\omega /\left(s^{2}+\omega^{2}\right)$
these, combined with a table of Laplace transforms and the properties given above (linearity, scaling, . . .) will get you pretty far
and of course you can always integrate, using the defining formula

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \ldots
$$

Patterns

while the details differ, you can see some interesting symmetric patterns between

- the time domain (i.e., signals), and
- the frequency domain (i.e., their Laplace transforms)
- differentiation in one domain corresponds to multiplication by the variable in the other
- multiplication by an exponential in one domain corresponds to a shift (or delay) in the other
we'll see these patterns (and others) throughout the course

