11_1s: A Matlab Solver for
Large-Scale ¢1-Regularized Least Squares Problems

Kwangmoo Koh Seungjean Kim Stephen Boyd
denebl@stanford.edu sjkim@stanford.edu boyd@stanford.edu

May 15, 2008

11 1s solves {;-regularized least squares problems (LSPs) using the truncated Newton
interior-point method described in [KKL*07].

1 The problems
11 1s solves an optimization problem of the form
minimize ||Az — y||> + Az |1, (1)

where the variable is x € R™ and the problem data are A € R™*™ and y € R™. Here,
A > 0 is the regularization parameter. We refer to the problem (1) as an ¢ -reqularized least
squares problem.

11 1s can also solve ¢;-regularized LSPs with nonnegativity constraints:

minimize ||Azx —y|? + A2, @

subject to x; >0, +1=1,...,n.

2 Calling sequences

The package 11 1s has two solver files, 11 1s.m and 11_1s nonneg.m: 11 _1s.m solves prob-
lem (1) and 11_1s nonneg.m solves problem (2). Both solvers supports two calling styles.
The simple calling style works when A is given as a matrix. The more complex calling style
handles the case when A and its transpose are given as operators.

The simple calling sequence of 11_1s is

>> [x,status] = 11_1s(A,y,lambda,rel_tol,quiet);
The more complex calling sequence of 11 1s is

>> [x,status] = 11_1s(A,At,m,n,y,lambda,rel_tol,quiet);

1

In both cases, the last two arguments are optional. Input arguments represent the prob-
lem data of (1). Output arguments are the optimal point (up to the given tolerance) and its
status.

11 _1s nonneg.m has the same calling styles as 11_1s.m.

2.1 Input arguments

e A: data matrix with n columns and m rows. For the simple calling sequence, A is a
matrix in dense or sparse format. For the complex calling sequence, A is a Matlab
object with which we can evaluate A*z with a vector z in R™ by overloading the
multiplication operator.

e At: transpose of A. For the complex calling sequence, At is a Matlab object with which
we can evaluate At*w with a vector w in R by overloading the multiplication operator.

e m: number of observations.

e n: number of unknowns.

e y: vector of length m.

e lambda: regularization parameter.

e rel_tol: target relative tolerance, defined as duality gap divided by the dual objective
value, which is an upper bound on the relative suboptimality.

e quiet: boolean. Suppresses print messages during execution if true. The default value
is false.

For the simple calling sequence, m and n are obtained internally from the size of A.

2.2 Output arguments

e x: n-vector. If status is *Solved’, x is a solution (up to the given relative tolerance);
otherwise it is the last iterate of the truncated Newton interior-point method. (If
status is ’Failed’, x is the last value before the failure.)

e status: string; possible values are ‘Solved’ and ‘Failed’.

3 Hints and caveats

Here are some hints on using 11_1s.

e If your problem is large and sparse, be sure that A (and At, if you use the complex
calling style) are in sparse format.

e [f A and At are dense but there are fast algorithms for the matrix-vector products
Axz and At*w, be sure that A and At are Matlab operators and the fast algorithms
are supported by overloading the multiplication operator *, using the object-oriented
programming of Matlab. For example, when A is a matrix formed by sampling m rows
of the discrete cosine transform (DCT) matrix F' € R™ ", A*z can be computed by
using the fast DCT algorithm, and At*w can be by using the fast inverse transform
algorithm.

Now, a caveat. The truncated Newton interior-point method can work poorly (i.e., be
slow) when the regularization parameter is too small (which corresponds to the case when
the solution z is not very sparse), and the mutual coherence of the data matrix A,

|AT Al
p=max — 0
i#i || Al (A

where A; is the ith column of A, is high (i.e., near 1). We recommend keeping A/ Apax greater
than 10~ or so.

4 Utility functions

The utility function find_lambdamax_11_1s.m computes Ayay of /1-regularized LSP (1). For
any larger value of A\, the optimal solution obtained from /;-regularized least squares is zero.
The function find_lambdamax_11_ls_nonneg.m computes ., of ¢1-regularized LSP with
nonnegativity constraints (2).

5 Examples

5.1 A small example for the simple calling sequence

We give a simple example to illustrate the usage of the simple calling sequence, with the
problem data

1 0 0 05 1
A=|0 1 02 03|, y=]02
001 1 02 1

The Matlab code for finding a point which is guaranteed to be no more 1%-suboptimal is
shown below.

>> 7, Matlab script for solving the simple problem given above.
> A = [1 0 0 0.5;...\

0 1 0.2 0.3;...\

0 0.1 1 0.2];
>>x0 =[1010]; % original signal

>>y = A*xx0; % measurements with no noise
>> lambda = 0.01; % regularization parameter
>> rel_tol = 0.01; % relative target duality gap

[x,status]=11_1s(A,y,lambda,rel_tol);

After executing the code, you can see the result by typing x in Matlab.

>> X

X:
0.9930
0.0004
0.9941
0.0040

5.2 An example for the complex calling sequence

We give a simple example to illustrate the usage of the complex calling sequence that involves
the object-oriented programming feature of Matlab. We consider a sparse signal recovery
problem with a signal z € R!'%?* which consists of 10 spikes with amplitude +1, shown at
the top plot of figure 1. Suppose we observe

y=Ar +ve R

where v is drawn according to the Gaussian distribution A/(0,0.01%7) on R'?®. Here, Az gives
the discrete cosine transform of x at m = 128 frequencies, chosen from uniform distribution
over the indices 1,...,1024.

The Matlab code for finding a point which is guaranteed to be no more than 1%-
suboptimal is shown below.

>> 7, Matlab script for solving the sparse signal recovery problem

>> 7, using the object-oriented programming feature of Matlab.

>> 7, The three m files in ./@partialDCT/ implement the partial DCT class
>> 7, with the multiplication and transpose operators overloaded.

>>

>> rand(’state’,0) ;randn(’state’,0); %hinitialize (for reproducibility)
>>

>>n = 1024; % signal dimension

>> m = 128; % number of measurements

>>

>> J = randperm(n); J = J(1:m); % m randomly chosen indices

>>

>> 7, generate the m*n partial DCT matrix whose m rows are

>> % the rows of the n*n DCT matrix at the indices specified by J
>> 7, see files at @partialDCT/

>> A = partialDCT(n,m,J); % A

>> At = A % transpose of A
>>

>> Y, spiky signal generation

> T = 10; % number of spikes

>> x0 = zeros(n,1);

>> q = randperm(n);

>> x0(q(1:T)) = sign(randn(T,1));

>>

>> 7, noisy observations

>> sigma = 0.01; % noise standard deviation
>> y = A*x0 + sigma*randn(m,1);

>>

>> lambda = 0.01; % regularization parameter
>> rel_tol = 0.01; % relative target duality gap

>>
>> Jrun the ll-regularized least squares solver
>> [x,status]=11_1s(A,At,m,n,y,lambda,rel_tol);

After executing the code, you can see the result by typing x in Matlab.

>> figure(1)
>> subplot(2,1,1); bar(x0); ylim([-1.1 1.1]); title(’original signal x0’);
>> subplot(2,1,2); bar(x); ylim([-1.1 1.1]); title(’reconstructed signal x’);

Figure 1 shows the result.

References

[KKL*07] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. A method for large-
scale li-regularized least squares. IEEFE Journal on Selected Topics in Signal
Processing, 1(4):606-617, 2007.

original signal x0

1F T |
05r 4
0
-0.51 q
1k)))) ! i
0 200 400 600 800 1000 1200
reconstructed signal x
1 T |
051 4
0
-0.5[4
-1t L L L L L |
0 200 400 600 800 1000 1200

Figure 1: Reconstruction results. Original spike signal (Top). Reconstructed signal
via ¢1-regularized least squares (Bottom).

