
l1 ls: A Matlab Solver for

Large-Scale ℓ1-Regularized Least Squares Problems

Kwangmoo Koh
deneb1@stanford.edu

Seungjean Kim
sjkim@stanford.edu

Stephen Boyd
boyd@stanford.edu

May 15, 2008

l1 ls solves ℓ1-regularized least squares problems (LSPs) using the truncated Newton
interior-point method described in [KKL+07].

1 The problems

l1 ls solves an optimization problem of the form

minimize ‖Ax − y‖2 + λ‖x‖1, (1)

where the variable is x ∈ Rn and the problem data are A ∈ Rm×n and y ∈ Rm. Here,
λ ≥ 0 is the regularization parameter. We refer to the problem (1) as an ℓ1-regularized least

squares problem.
l1 ls can also solve ℓ1-regularized LSPs with nonnegativity constraints:

minimize ‖Ax − y‖2 + λ
∑n

i=1 xi

subject to xi ≥ 0, i = 1, . . . , n.
(2)

2 Calling sequences

The package l1 ls has two solver files, l1 ls.m and l1 ls nonneg.m: l1 ls.m solves prob-
lem (1) and l1 ls nonneg.m solves problem (2). Both solvers supports two calling styles.
The simple calling style works when A is given as a matrix. The more complex calling style
handles the case when A and its transpose are given as operators.

The simple calling sequence of l1 ls is

>> [x,status] = l1_ls(A,y,lambda,rel_tol,quiet);

The more complex calling sequence of l1 ls is

>> [x,status] = l1_ls(A,At,m,n,y,lambda,rel_tol,quiet);

1



In both cases, the last two arguments are optional. Input arguments represent the prob-
lem data of (1). Output arguments are the optimal point (up to the given tolerance) and its
status.

l1 ls nonneg.m has the same calling styles as l1 ls.m.

2.1 Input arguments

• A: data matrix with n columns and m rows. For the simple calling sequence, A is a
matrix in dense or sparse format. For the complex calling sequence, A is a Matlab
object with which we can evaluate A*z with a vector z in Rn by overloading the
multiplication operator.

• At: transpose of A. For the complex calling sequence, At is a Matlab object with which
we can evaluate At*w with a vector w in Rm by overloading the multiplication operator.

• m: number of observations.

• n: number of unknowns.

• y: vector of length m.

• lambda: regularization parameter.

• rel_tol: target relative tolerance, defined as duality gap divided by the dual objective
value, which is an upper bound on the relative suboptimality.

• quiet: boolean. Suppresses print messages during execution if true. The default value
is false.

For the simple calling sequence, m and n are obtained internally from the size of A.

2.2 Output arguments

• x: n-vector. If status is ’Solved’, x is a solution (up to the given relative tolerance);
otherwise it is the last iterate of the truncated Newton interior-point method. (If
status is ’Failed’, x is the last value before the failure.)

• status: string; possible values are ‘Solved’ and ‘Failed’.

3 Hints and caveats

Here are some hints on using l1_ls.

• If your problem is large and sparse, be sure that A (and At, if you use the complex
calling style) are in sparse format.

2



• If A and At are dense but there are fast algorithms for the matrix-vector products
A*z and At*w, be sure that A and At are Matlab operators and the fast algorithms
are supported by overloading the multiplication operator *, using the object-oriented
programming of Matlab. For example, when A is a matrix formed by sampling m rows
of the discrete cosine transform (DCT) matrix F ∈ Rn×n, A*z can be computed by
using the fast DCT algorithm, and At*w can be by using the fast inverse transform
algorithm.

Now, a caveat. The truncated Newton interior-point method can work poorly (i.e., be
slow) when the regularization parameter is too small (which corresponds to the case when
the solution x is not very sparse), and the mutual coherence of the data matrix A,

µ = max
i6=j

|AT
i Aj|

‖Ai‖ ‖Aj‖

where Ai is the ith column of A, is high (i.e., near 1). We recommend keeping λ/λmax greater
than 10−4 or so.

4 Utility functions

The utility function find_lambdamax_l1_ls.m computes λmax of ℓ1-regularized LSP (1). For
any larger value of λ, the optimal solution obtained from ℓ1-regularized least squares is zero.
The function find_lambdamax_l1_ls_nonneg.m computes λmax of ℓ1-regularized LSP with
nonnegativity constraints (2).

5 Examples

5.1 A small example for the simple calling sequence

We give a simple example to illustrate the usage of the simple calling sequence, with the
problem data

A =







1 0 0 0.5
0 1 0.2 0.3
0 0.1 1 0.2





 , y =







1
0.2
1





 .

The Matlab code for finding a point which is guaranteed to be no more 1%-suboptimal is
shown below.

>> % Matlab script for solving the simple problem given above.

>> A = [1 0 0 0.5;...\

0 1 0.2 0.3;...\

0 0.1 1 0.2];

>> x0 = [1 0 1 0]’; % original signal

3



>> y = A*x0; % measurements with no noise

>> lambda = 0.01; % regularization parameter

>> rel_tol = 0.01; % relative target duality gap

[x,status]=l1_ls(A,y,lambda,rel_tol);

After executing the code, you can see the result by typing x in Matlab.

>> x

x =

0.9930

0.0004

0.9941

0.0040

5.2 An example for the complex calling sequence

We give a simple example to illustrate the usage of the complex calling sequence that involves
the object-oriented programming feature of Matlab. We consider a sparse signal recovery
problem with a signal x ∈ R1024 which consists of 10 spikes with amplitude ±1, shown at
the top plot of figure 1. Suppose we observe

y = Ax + v ∈ R128

where v is drawn according to the Gaussian distribution N (0, 0.012I) on R128. Here, Ax gives
the discrete cosine transform of x at m = 128 frequencies, chosen from uniform distribution
over the indices 1, . . . , 1024.

The Matlab code for finding a point which is guaranteed to be no more than 1%-
suboptimal is shown below.

>> % Matlab script for solving the sparse signal recovery problem

>> % using the object-oriented programming feature of Matlab.

>> % The three m files in ./@partialDCT/ implement the partial DCT class

>> % with the multiplication and transpose operators overloaded.

>>

>> rand(’state’,0);randn(’state’,0); %initialize (for reproducibility)

>>

>> n = 1024; % signal dimension

>> m = 128; % number of measurements

>>

>> J = randperm(n); J = J(1:m); % m randomly chosen indices

>>

4



>> % generate the m*n partial DCT matrix whose m rows are

>> % the rows of the n*n DCT matrix at the indices specified by J

>> % see files at @partialDCT/

>> A = partialDCT(n,m,J); % A

>> At = A’; % transpose of A

>>

>> % spiky signal generation

>> T = 10; % number of spikes

>> x0 = zeros(n,1);

>> q = randperm(n);

>> x0(q(1:T)) = sign(randn(T,1));

>>

>> % noisy observations

>> sigma = 0.01; % noise standard deviation

>> y = A*x0 + sigma*randn(m,1);

>>

>> lambda = 0.01; % regularization parameter

>> rel_tol = 0.01; % relative target duality gap

>>

>> %run the l1-regularized least squares solver

>> [x,status]=l1_ls(A,At,m,n,y,lambda,rel_tol);

After executing the code, you can see the result by typing x in Matlab.

>> figure(1)

>> subplot(2,1,1); bar(x0); ylim([-1.1 1.1]); title(’original signal x0’);

>> subplot(2,1,2); bar(x); ylim([-1.1 1.1]); title(’reconstructed signal x’);

Figure 1 shows the result.

References

[KKL+07] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. A method for large-
scale l1-regularized least squares. IEEE Journal on Selected Topics in Signal

Processing, 1(4):606–617, 2007.

5



0 200 400 600 800 1000 1200

−1

−0.5

0

0.5

1

original signal x0

0 200 400 600 800 1000 1200

−1

−0.5

0

0.5

1

reconstructed signal x

Figure 1: Reconstruction results. Original spike signal (Top). Reconstructed signal
via ℓ1-regularized least squares (Bottom).

6


