Differentiating Through a Cone Program

A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi

To appear in Journal of Applied and Numerical Optimization, special issue on recent developments in deterministic and stochastic numerical optimization, dedicated to Professor Boris Polyak.

We consider the problem of efficiently computing the derivative of the solution map of a convex cone program, when it exists. We do this by implicitly differentiating the residual map for its homogeneous self-dual embedding, and solving the linear systems of equations required using an iterative method. This allows us to efficiently compute the derivative operator, and its adjoint, evaluated at a vector. These correspond to computing an approximate new solution, given a perturbation to the cone program coefficients (i.e., perturbation analysis), and to computing the gradient of a function of the solution with respect to the coefficients. Our method scales to large problems, with numbers of coefficients in the millions. We present an open-source Python implementation of our method that solves a cone program and returns the derivative and its adjoint as abstract linear maps; our implementation can be easily integrated into software systems for automatic differentiation.