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Goals

robust methods for

» arbitrary-scale optimization

— machine learning/statistics with huge data-sets
— dynamic optimization on large-scale network

» decentralized optimization

— devices/processors/agents coordinate to solve large problem, by passing
relatively small messages
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Dual problem

» convex equality constrained optimization problem

minimize  f(x)
subject to Ax =1b

v

Lagrangian: L(z,y) = f(z) +y* (Az — b)

v

dual function: g(y) = inf, L(x,y)

v

dual problem:  maximize g(y)

> recover z* = argmin, L(z, y*)

Dual decomposition
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Dual ascent

gradient method for dual problem: y*+1 = 4% + a¥Vg(y*)

» Vg(y*) = A% — b, where & = argmin, L(z,y")

» dual ascent method is

$k+1

k+1
y +

v

Dual decomposition

argmin,, L(x,y*) // x-minimization

y* + aF(Az** —b)  // dual update

works, with lots of strong assumptions



Dual decomposition

» suppose [ is separable:

f@) = filer) +-- + fn(en), 2= (21,...,2n)

Ty

» then L is separable in z: L(z,y) = Li(z1,y) + -+ + Ln(zN,y) — ¥
Li(zi,y) = fi(z:) +y" Aiz;
» x-minimization in dual ascent splits into N separate minimizations

k+1 . _ : k
x; = argmin L;(z;,y")

T4

which can be carried out in parallel

Dual decomposition



Dual decomposition

» dual decomposition (Everett, Dantzig, Wolfe, Benders 1960-65)
mf+1 = argmin,, Li(x;,y*), i=1,...,N
g = g af (DL, AT - )

» scatter yk’; update z; in parallel; gather Aimiﬁl

» solve a large problem

— by iteratively solving subproblems (in parallel)
— dual variable update provides coordination

» works, with lots of assumptions; often slow

Dual decomposition
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Method of multipliers

» a method to robustify dual ascent
» use augmented Lagrangian (Hestenes, Powell 1969), p > 0
Ly(z,y) = f(z) +y" (Az = b) + (p/2) ] Ax — b]|3
» method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)
"= argmin L,(z, y¥)

yFT = P 4 p(Adt T — )

(note specific dual update step length p)

Method of multipliers



Method of multipliers dual update step

v

optimality conditions (for differentiable f):

Az* —b=0, Via*)+ ATy =0

(primal and dual feasibility)

> since ¢!

0

v

v

Method of multipliers

minimizes L,(z, y*)

VoL, (2F 1 y)
Vo (") + AT (y* + p(Az™ T — b))
sz(xkﬂ) + ATyk+1

dual update y**! = y*¥ + p(2F+1 — b) makes (¥, y**+1) dual feasible

primal feasibility achieved in limit: Az**1 —b— 0
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Method of multipliers

(compared to dual decomposition)

» good news: converges under much more relaxed conditions
(f can be nondifferentiable, take on value o0, ...)

» bad news: quadratic penalty destroys splitting of the xz-update, so can’t
do decomposition

Method of multipliers 11
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Alternating direction method of multipliers

» a method
— with good robustness of method of multipliers
— which can support decomposition

» “robust dual decomposition” or “decomposable method of multipliers”

» proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

Alternating direction method of multipliers

13



Alternating direction method of multipliers

» ADMM problem form (with f, g convex)

minimize  f(x) + g(z)
subject to Ax+ Bz =c

— two sets of variables, with separable objective

> Lp(z,2,y) = f(x) + 9(2) +y" (Az + Bz — c) + (p/2)|| Az + Bz — cf3

» ADMM:
zFl = argming L,(z, 2%, y¥) // x-minimization
L= argmin, L,(2%1, 2, yb) // z-minimization
Yl = gk 4 p(AxFt + B2 — ) // dual update

Alternating direction method of multipliers

14



Alternating direction method of multipliers

» if we minimized over x and z jointly, reduces to method of multipliers
» instead, we do one pass of a Gauss-Seidel method

> we get splitting since we minimize over = with z fixed, and vice versa

Alternating direction method of multipliers
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ADMM and optimality conditions

» optimality conditions (for differentiable case):
— primal feasibility: Az + Bz—c=0
— dual feasibility: Vf(z) + ATy =0, Vg(z)+BTy=0

k+1 k+1

> since z minimizes L,(z**1, 2, y*) we have

0 — Vg(zk_H) +BTyk +pBT(A$k+1 +sz+1 _C)
_ vg(zk+1)+BTyk+1

» so with ADMM dual variable update, (z#+1, 2F+1 y*+1) satisfies second
dual feasibility condition

» primal and first dual feasibility are achieved as k — oo

Alternating direction method of multipliers 16



ADMM with scaled dual variables

» combine linear and quadratic terms in augmented Lagrangian

Ly(z,2,y) = f(x)+9(2) +y" (Az + Bz —¢) + (p/2)|| Az + Bz — ¢[f;
= f(x) +9(2) + (p/2)|| Az + Bz — ¢ + ulf5 + const.

with u* = (1/p)y*

» ADMM (scaled dual form):

¥ .= argmin (f(a:)+(p/2)||Ax+sz —c—|—uk||§)

U= argmin (g(z) + (p/2)[|Az* T + Bz — e+ u"[[3)
z

uF Tt = WP (AP 4 BR — ¢

Alternating direction method of multipliers 17



Convergence

» assume (very little!)

— f, g convex, closed, proper
— Lo has a saddle point

» then ADMM converges:

— iterates approach feasibility: Az + Bz¥ —¢c— 0
— objective approaches optimal value: f(z*) + g(z*) — p*

Alternating direction method of multipliers
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Related algorithms

» operator splitting methods
(Douglas, Peaceman, Rachford, Lions, Mercier, ...1950s, 1979)

» proximal point algorithm (Rockafellar 1976)

» Dykstra's alternating projections algorithm (1983)

» Spingarn’s method of partial inverses (1985)

» Rockafellar-Wets progressive hedging (1991)

» proximal methods (Rockafellar, many others, 1976—present)
» Bregman iterative methods (2008—present)

» most of these are special cases of the proximal point algorithm

Alternating direction method of multipliers
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Common patterns

Common patterns
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Common patterns

» x-update step requires minimizing f(x) + (p/2)||Ax — v||3
(with v = BzF — ¢ 4 u*, which is constant during z-update)

» similar for z-update
» several special cases come up often

» can simplify update by exploit structure in these cases

Common patterns

21



Decomposition

» suppose f is block-separable,

f(:c):fl(xl)—i—---—i-f]v(x]v), = (x1,...,TN)

» A is conformably block separable: AT A is block diagonal

» then z-update splits into N parallel updates of z;

Common patterns 22



Proximal operator

» consider z-update when A =1
ot = argmin (f(z) + (p/2)]lx — v[3) = prox; ,(v)
xr
» some special cases:

[ = Ic (indicator fct. of set C') o™
f=Al"11 (41 norm) z; == S),,(v;) (soft thresholding)

(Sa(v) = (v—a)y — (v —a)y)

:= Il (v) (projection onto C)

Common patterns 23



Quadratic objective

> f(2) = (1/2)a" Pa+ ¢ x4

> ot = (P + pATA) " (pATv — q)

» use matrix inversion lemma when computationally advantageous
(P4 pATA) L =P~ — pPYAT(I 4+ pAP1AT)"1AP!

» (direct method) cache factorization of P + pAT A (or I + pAP~1AT)

» (iterative method) warm start, early stopping, reducing tolerances

Common patterns
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Smooth objective

» f smooth

» can use standard methods for smooth minimization
— gradient, Newton, or quasi-Newton
— preconditionned CG, limited-memory BFGS (scale to very large problems)

» can exploit
— warm start

— early stopping, with tolerances decreasing as ADMM proceeds

Common patterns 25



Examples

Examples
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Constrained convex optimization

» consider ADMM for generic problem

minimize  f(z)
subjectto z€C

» ADMM form: take g to be indicator of C

minimize  f(z) 4+ g(2)
subjectto z—2z=0

» algorithm:
M= argmin (f(2) + (p/2)l|lz — 2" + u"|3)
x
A= (2T 4 )
I S s

Examples
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» lasso problem:

Lasso

minimize (1/2)|| Az — b||2 + \||x||1

minimize  (1/2)| Az — b||3 + ||z|)1
subjectto z—2z=0

» ADMM form:

» ADMM:
LR+
SRl
yk+1

Examples

(ATA+pI)~H (A b+ pz* —yF)
S)\/p(ka-’_l + yk/p)
yk —|—p($k+1 _ Zk+1)

28



Lasso example

» example with dense Ae R1500><500()
(1500 measurements; 5000 regressors)

» computation times

factorization (same as ridge regression)  1.3s

subsequent ADMM iterations 0.03s
lasso solve (about 50 ADMM iterations) 2.9s
full regularization path (30 \'s) 4.4s

» not bad for a very short Matlab script

Examples 29



Sparse inverse covariance selection

» S: empirical covariance of samples from A/(0,Y), with X! sparse
(i.e., Gaussian Markov random field)

> estimate X! via ¢; regularized maximum likelihood
minimize Tr(SX) —logdet X + A|| X1

» methods: COVSEL (Banerjee et al 2008), graphical lasso (FHT 2008)

Examples

30



Sparse inverse covariance selection via ADMM

» ADMM form:

minimize  Tr(SX) — logdet X 4+ \||Z]1
subjectto X —Z =0

» ADMM
X*1 = argmin (Tr(SX) —logdet X + (p/2)|| X — Z¥ + U¥||})
X
Zk+1 _ S)\/p(Xk+1 4 Uk)
Uk+l = Uk + (Xk+l o Zk+1)

Examples 31



v

v

v

Analytical solution for X-update

compute eigendecomposition p(Z* — U*) — S = QAQT

form diagonal matrix X with

let XK1 .= QXQT

cost of X-update is an eigendecomposition

Examples
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Sparse inverse covariance selection example

» %71 is 1000 x 1000 with 10* nonzeros
— graphical lasso (Fortran): 20 seconds — 3 minutes
— ADMM (Matlab): 3 — 10 minutes
— (depends on choice of \)

» very rough experiment, but with no special tuning, ADMM is in ballpark
of recent specialized methods

» (for comparison, COVSEL takes 25+ min when Y1 is a 400 x 400
tridiagonal matrix)

Examples 33



Consensus and exchange

Consensus and exchange
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Consensus optimization

» want to solve problem with N objective terms

minimize vazl fi(z)

— e.g., fi is the loss function for ith block of training data

» ADMM form:
minimize Zivzl filz:)
subjectto z; —2 =0

— x; are local variables

z is the global variable

— x; — z = 0 are consistency or consensus constraints
— can add regularization using a g(z) term

Consensus and exchange
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Consensus optimization via ADMM

> Ly(w,2,y) = Sy (filma) +yF (@ — 2) + (p/2)|zi — 2II3)

» ADMM:

aitt = argmin (fi(z:) + yf " (2 — 2%) + (p/2)|l@i — 2¥)13)
x;
1 N
S = 5D @ ()
=1
yitt =l p(af Tt = A

» with regularization, averaging in z update is followed by prox, ,

Consensus and exchange



Consensus optimization via ADMM

> using Zfil y¥ =0, algorithm simplifies to

M= argmin (fi(ws) + yi (@i — Z°) + (p/2)|2; — fkug)
X
gt = yf (et 2

where T8 = (1/N) Zf\il ok

K2

» in each iteration
— gather z¥ and average to get T"
— scatter the average Z* to processors
— update y¥ locally (in each processor, in parallel)
— update z; locally

Consensus and exchange
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Statistical interpretation

v

fi is negative log-likelihood for parameter = given ith data block

v

2T is MAP estimate under prior N'(Z* + (1/p)yF, pI)

» prior mean is previous iteration’s consensus shifted by ‘price’ of processor
1 disagreeing with previous consensus

» processors only need to support a Gaussian MAP method

— type or number of data in each block not relevant
— consensus protocol yields global maximum-likelihood estimate

Consensus and exchange 38



Consensus classification

» data (examples) (a;,b;), i =1,...,N, a; € R", b; € {-1,+1}
» linear classifier sign(a®w + v), with weight w, offset v
» margin for ith example is b;(al w + v); want margin to be positive

» loss for ith example is I(b;(aTw + v))
— lis loss function (hinge, logistic, probit, exponential, ...)

> choose w, v to minimize & SN 1(b;(aTw +v)) + r(w)
— r(w) is regularization term ({2, 41, ...)

» split data and use ADMM consensus to solve

Consensus and exchange
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Consensus SVM example

» hinge loss I(u) = (1 — u)4 with ¢s regularization
» baby problem with n =2, N = 400 to illustrate

» examples split into 20 groups, in worst possible way:
each group contains only positive or negative examples

Consensus and exchange 40



Iteration 1

41
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Iteration 5
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Iteration 40
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Distributed lasso example

» example with dense A € R*0%000%8900 (y5,ghly 30 GB of data)

— distributed solver written in C using MPI and GSL
— no optimization or tuned libraries (like ATLAS, MKL)
— split into 80 subsystems across 10 (8-core) machines on Amazon EC2

» computation times

loading data 30s
factorization 5m
subsequent ADMM iterations 0.5-2s

lasso solve (about 15 ADMM iterations)  5-6m

Consensus and exchange
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Exchange problem

minimize Zf\il Ji(w;)
subject to Zf\; x; =0

another canonical problem, like consensus
in fact, it's the dual of consensus
can interpret as N agents exchanging n goods to minimize a total cost

(x;); > 0 means agent i receives (z;); of good j from exchange

vV vV.v VY

(x;); < 0 means agent i contributes |(x;);| of good j to exchange

constraint ., «; = 0 is equilibrium or market clearing constraint

v

» optimal dual variable y* is a set of valid prices for the goods

» suggests real or virtual cash payment (y*)7x; by agent i

Consensus and exchange 45



Exchange ADMM

» solve as a generic constrained convex problem with constraint set

C={zeR™ |z +a3+ - +2y=0}
» scaled form:

aftt = argmin (fi(z) + (p/2)lzi — 2F + 7 +u"|3)

B Al

» unscaled form:

aitt = argmin (fi(z:) + " @ + (p/2)||zi — (2F — 77)|3)
Xy
P

Consensus and exchange
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v

v

v

v

Interpretation as tatonnement process

tdtonnement process: iteratively update prices to clear market

work towards equilibrium by increasing/decreasing prices of goods based
on excess demand/supply

dual decomposition is the simplest tdtonnement algorithm

ADMM adds proximal regularization

— incorporate agents’ prior commitment to help clear market
— convergence far more robust convergence than dual decomposition

Consensus and exchange 47



Distributed dynamic energy management

N devices exchange power in time periodst =1,...,T

z; € RT is power flow profile for device i

fi(x;) is cost of profile z; (and encodes constraints)

21+ - -+ 2y = 0 is energy balance (in each time period)
dynamic energy management problem is exchange problem

exchange ADMM gives distributed method for dynamic energy
management

» each device optimizes its own profile, with quadratic regularization for
coordination

» residual (energy imbalance) is driven to zero

Consensus and exchange
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Generators

O NWEIOHIN00O O

» 3 example generators
» left: generator costs/limits; right: ramp constraints

» can add cost for power changes

Consensus and exchange 49



Fixed loads

15;

10t

» 2 example fixed loads
» cost is +oo for not supplying load; zero otherwise

Consensus and exchange

50



Shiftable load

-

0 5 10 . 15 20

» total energy consumed over an interval must exceed given minimum level
» limits on energy consumed in each period
» cost is +oo for violating constraints; zero otherwise

Consensus and exchange 51



Battery energy storage system

> energy store with maximum capacity, charge/discharge limits
» black: battery charge, red: charge/discharge profile

» cost is +oo for violating constraints; zero otherwise
Consensus and exchange 52



Electric vehicle charging system

80t
70t
60+
50t
40t
30t
20¢
10+

» black: desired charge profile; blue: charge profile

» shortfall cost for not meeting desired charge

Consensus and exchange 53



HVAC

» thermal load (e.g., room, refrigerator) with temperature limits
» magenta: ambient temperature; blue: load temperature

» red: cooling energy profile
» cost is +oo for violating constraints; zero otherwise

Consensus and exchange
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External tie

— [\
OOt Ut Ot

o

» buy/sell energy from/to external grid at price p®*(t) 4+ ~(¢)
» solid: p®™t(t); dashed: p™*t(¢) £ ~(t)

Consensus and exchange 55



Smart grid example

10 devices (already described above)

» 3 generators

» 2 fixed loads

» 1 shiftable load

» 1 EV charging systems
» 1 battery

» 1 HVAC system

» 1 external tie

Consensus and exchange
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Convergence

iteration: k£ =1

10f -
P 02
0 5 10 15 20 g
4 0
2
—0.1

0 5 10 15 20

e =
=

5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*

Consensus and exchange 57



Convergence

iteration: £k =3

10F

| \/MW

5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration
» right: residual vector z*
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Convergence

iteration: £k =5

5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*

Consensus and exchange 57



Convergence

iteration: £k = 10

| A

0 5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*
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Convergence

iteration: k = 15

0 5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*

Consensus and exchange 57



Convergence

iteration: k = 20

0 5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*

Consensus and exchange 57



Convergence

iteration: k = 25

T

0 5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*

Consensus and exchange 57



Convergence

iteration: k£ = 30

. B

0 5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*

Consensus and exchange 57



Convergence

iteration: k = 35

5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*

Consensus and exchange
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Convergence

iteration: k = 40

5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*
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Convergence

iteration: k = 45

5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*
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Convergence

iteration: k£ = 50

5 10 . 15 20

» left: solid: optimal generator profile, dashed: profile at kth iteration

» right: residual vector z*

Consensus and exchange 57



Conclusions

Conclusions
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Summary and conclusions

ADMM
» is the same as, or closely related to, many methods with other names

» has been around since the 1970s

» gives simple single-processor algorithms that can be competitive with
state-of-the-art

» can be used to coordinate many processors, each solving a substantial
problem, to solve a very large problem

Conclusions
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