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Abstract

Policy gradient methods are among the most effective methods for large-scale rein-
forcement learning, and their empirical success has prompted several works that develop
the foundation of their global convergence theory. However, prior works have either
required exact gradients or state-action visitation measure based mini-batch stochastic
gradients with a diverging batch size, which limit their applicability in practical scenarios.
In this paper, we consider classical policy gradient methods that compute an approximate
gradient with a single trajectory or a fixed size mini-batch of trajectories, along with the
widely-used REINFORCE gradient estimation procedure. By controlling the number
of “bad” episodes and resorting to the classical doubling trick, we establish an anytime
sub-linear high probability regret bound as well as almost sure global convergence of
the average regret with an asymptotically sub-linear rate. These provide the first set
of global convergence and sample efficiency results for the well-known REINFORCE
algorithm and contribute to a better understanding of its performance in practice.

1 Introduction
In this paper, we study the global convergence rates of the REINFORCE algorithm [Wil92]
for episodic reinforcement learning. REINFORCE is a vanilla policy gradient method that
computes a stochastic approximate gradient with a single trajectory or a fixed size mini-
batch of trajectories with particular choice of gradient estimator, where we use ‘vanilla’
here to disambiguate the method from more exotic variants such as natural policy gradient
methods. REINFORCE and its variants are among the most widely used policy gradient
methods in practice due to their good empirical performance and implementation simplicity
[MG14, GLSM15, RMM+17, KvHW18, KvHW20]. Related methods include the actor-critic
family [KT03, MBG+16] and deterministic and trust-region based variants [SLH+14, SWD+17,
SLA+15].
∗Institute for Computational & Mathematical Engineering, Stanford, USA. Email: junziz@stanford.edu
†Department of Electrical Engineering, Stanford, USA. Email: jkim22@stanford.edu
‡DeepMind, Google. Email: bodonoghue85@gmail.com
§Department of Electrical Engineering, Stanford, USA. Email: boyd@stanford.edu

1



The theoretical results for policy gradient methods have, up to recently, been restricted to
convergence to local stationary points [AKLM19]. Lately, a series of works have established
global convergence results. These recent developments cover a broad range of issues including
global optimality characterization [FGKM18, BR19], convergence rates [ZKZB19, MXSS20,
BR20, CCC+20], the use of function approximation [AKLM19, WCYW19, FYW20], and
efficient exploration [AHKS20]. Nevertheless, prior work only guarantees convergence up to
Θ(1/Mp) with a fixed mini-batch sizeM > 0 of trajectories collected when performing a single
update (where p > 0 is 1/2 in most cases), while global convergence is only achieved when
the batch size M goes to infinity. By contrast, practical implementations of policy gradient
methods typically use either a single or a fixed number of sample trajectories, which tends to
perform well. In addition, prior theoretical results (for general MDPs) have used state-action
visitation measure based gradient estimation (see e.g., [WCYW19, (3.10)]), which are not
sample efficient and are typically not used in practice.

The main purpose of this paper is to bridge this gap between theory and practice. We do
this in two major ways. First, we derive performance bounds for the case of a fixed mini-batch
size, rather than requiring diverging size. Second, we remove the need for the state-action
visitation measure based gradient, instead using the REINFORCE gradient estimator. It
is nontrivial to go from a diverging mini-batch size to a fixed one. In fact, by allowing for
an arbitrarily large batch size, existing works in the literature were able to make use of IID
samples to decouple the analysis into deterministic gradient descent/ascent and error control
of stochastic gradient estimations. In contrast, with a single trajectory or a fixed batch size,
such a decoupling is no longer feasible. In addition, the state-action visitation measure based
gradient estimations are unbiased and unbounded, while REINFORCE gradient estimations
are biased and bounded. Hence a key to the analysis is to deal with the bias while making
better use of the boundedness. Our analysis not only addresses these challenges, but also
leads to convergence results in almost sure and high probability senses, which are stronger
than the expected convergence results that dominate the literature (for vanilla policy gradient
methods). We also emphasize that the goal of this work is to provide a deeper understanding
of a widely used algorithm, REINFORCE, with little or no modifications, rather than tweaking
it to achieve near-optimal performance bounds. Lastly, our analysis is not the complete
picture and several open questions about the performance of policy gradient methods remain.
We discuss these issues in the conclusion.

1.1 Related work

Policy gradient methods are a large family of algorithms for reinforcement learning that
directly operate on the agent policy, rather than on the action-value function [Gly86, SB18].
Examples of policy gradient methods include REINFORCE [Wil92], A3C [MBG+16], DPG
[SLH+14], PPO [SWD+17], and TRPO [SLA+15], to name just a few. These methods
seek to directly maximize the cumulative reward as a function of the policies, they are
straightforward to implement and are amenable to function approximations. The asymptotic
convergence of (some) policy gradient methods to a stationary point has long been established
[SMSM00, KT03, MT01, BB01]. The rate of convergence is also known and has been improved
more recently, with the help of variance reduction [PBC+18], Hessian information [SRH+19]
and momentum techniques [XXLZ20, YLLZ20, PNP+20, HGPH20].
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In the past two years, a line of research on the global convergence theory for policy
gradient methods has emerged. By using a gradient domination property of the cumulative
reward, global convergence of policy gradient methods was first established for linear-quadratic
regulators [FGKM18]. For general Markov Decision Processes (MDPs), [ZKZB19] establishes
convergence to approximately locally optimal (i.e., second-order stationary) solutions for
(vanilla) policy gradient methods. The global optimality of stationary points for general MDPs
is shown in [BR19], and rates of convergence towards globally optimal solutions for (both
vanilla and natural) policy gradient methods with (neural network) function approximation
are derived in [AKLM19, WCYW19]. These convergence results are then improved by several
very recent works focusing on exact gradient settings. In particular, [MXSS20] focuses on
the more practically relevant soft-max parametrization and vanilla policy gradient methods
and improves the results of [AKLM19] by removing the requirement of the relative entropy
regularization and obtaining faster convergence rates; [BR20] obtains linear convergence for
a general class of policy gradient methods; [CCC+20] shows local quadratic convergence of
natural policy gradient methods; and [ZKB+20] extends the results to reinforcement learning
with general utilities. For more modern policy gradient methods, [NJG17] and [ZLW19]
establish the asymptotic global convergence of of TRPO, while [LCYW19] further derives the
global convergence rates for PPO and TRPO. These rates are then improved in [SEM19] for
TRPO with adaptive regularization terms. Very recently, [FYW20] extends these results to
obtain the global convergence rates of single-timescale actor-critic methods with PPO actor
updates, and [AHKS20] derives global convergence rates of a new policy gradient algorithm
combining natural policy gradient methods with a policy cover technique and show that the
algorithm entails better exploration behavior and hence removes the necessity for the access
to a fully supported initial distribution ρ, which is assumed in most other works on global
convergence of policy gradient methods (including our work). All the above works either
require exact and deterministic updates or mini-batch updates with a diverging mini-batch
size.

Lately, [JSW20] studies vanilla policy gradient methods using the REINFORCE gradient
estimators computed with a single trajectory in each episode and obtains high probability
sample complexity results, but the setting is restricted to linear-quadratic regulators and
their bounds have polynomial dependency on 1/δ (in contrast to our logarithmic dependency
on 1/δ), where δ is the probability that the bounds are violated. The authors of [AYBB+19]
study natural policy gradient methods with a general high probability estimation oracle for
state-action value functions (i.e., Q-functions) in the average reward settings, and establishes
high probability regret bounds for these algorithms. However, those regret bounds are
not anytime (i.e., requiring the total number of steps as the input) and contains a linear
term proportional to the Q-function estimation errors, which is in contrast to our anytime
and sub-linear regret bounds. Finally, we remark that there are also some recent results
on the global convergence rates of natural policy gradient methods in adversarial settings
(with full-information feedback) [CYJW19], model based natural policy gradient methods
[ESRM20] as well as extensions to non-stationary [FYWX20] and multi-agent game settings
[ZYB19, MRJS19, CLT19, FYCW19, GHXZ20], which are beyond the scope of this paper.
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1.2 Contribution

Our major contribution can be summarized as follows. We establish the first set of global
convergence results for the REINFORCE algorithm. In particular, we establish a high
probability and anytime regret bound as well as almost sure global convergence of the average
regret with an asymptotically sub-linear rate for REINFORCE. To our knowledge, these
(almost sure and high probability) results are stronger than existing global convergence
results for (vanilla) policy gradient methods in the literature. Moreover, our convergence
results remove the non-vanishing Θ(1/M) term (with M > 0 being the mini-batch size of
the trajectories) and hence show for the first time that policy gradient estimations with a
single or finite number of trajectories also enjoy global convergence properties. This also
leads to the first sub-linear and anytime regret bound for model-free policy gradient methods
in the stochastic MDP setting. Finally, the widely-used REINFORCE gradient estimation
procedure is studied, as opposed to the state-action visitation measure based estimators
typically studied in the literature but rarely used in practice.

1.3 Outline

In §2 we introduce the problem setting and some preliminaries on policy gradient methods
and performance criteria. In §3, we present the assumptions we need for our results and
verify that they hold for REINFORCE gradient estimations with appropriate choices of
hyper-parameters. Then in §4, convergence results in terms of regret bounds are established
and finally, we discuss extensions of our results in §5 followed by a brief discussion about
open problems and future work in §6.

2 Problem setting and preliminaries
Below we begin with our problem setting and some preliminaries on MDPs and policy
optimization. For brevity we restrict ourselves to the stationary infinite-horizon discounted
setting. We briefly discuss potential extensions beyond this setting in §6.

2.1 Problem setting

We consider a finite Markov decision process (MDP)M, which is characterized by a finite
state space S = {1, . . . , S}, a finite action space A = {1, . . . , A}, a transition probability
p (with p(s′|s, a) being the probability of transitioning to state s′ given the current state s
and action a), a reward function r (with r(s, a) being the instantaneous reward when taking
action a at state s), a discount factor γ ∈ [0, 1) and a initial state distribution ρ ∈ ∆(S).
Here ∆(X ) denotes the probability simplex over a finite set X . A (stationary, stochastic)
policy π is a mapping from S to ∆(A). We will use π(a|s), π(s, a) or πs,a alternatively to
denote the probability of taking action a at state s following policy π. The policy π can also
be viewed as an SA dimensional vector in

Π =
{
π ∈ RSA

∣∣∣ ∑A

a=1
πs,a = 1 (∀s ∈ S), πs,a ≥ 0 (∀s ∈ S, a ∈ A)

}
. (1)
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Notice that here we use the double indices s and a for notational convenience. We use
π(s, ·) ∈ RA to denote the sub-vector (π(s, 1), . . . , π(s, A)). We also assume that r(s, a) is
deterministic for any s ∈ S and a ∈ A for simplicity, although our results hold for any r with
an almost sure uniform bound. Here r can be similarly viewed as an SA-dimensional vector.
Without loss of generality, we assume that r(s, a) ∈ [0, 1] for all s ∈ S and a ∈ A, which is a
common assumption [JOA10, AKLM19, MXSS20, EDM03, JAZBJ18]. We also assume that
ρ is component-wise positive, as is assumed in [BR19].

Given a policy π ∈ Π, the expected cumulative reward of the MDP is defined as

F (π) = E
∑∞

t=0
γtr(st, at), (2)

where s0 ∼ ρ, at ∼ π(·|st), st+1 ∼ p(·|st, at), ∀t ≥ 0, and the goal is to find a policy π which
solves the following optimization problem:

maximizeπ∈Π F (π). (3)

Any policy π? ∈ argmaxπ∈Π F (π) is said to be optimal, and the corresponding optimal
objective value is denoted as F ? = F (π?). Note that in the literature, F (π) is also commonly
written as V π

ρ and referred to as the value function. Here we hide the dependency on ρ as it
is fixed throughout the paper.

2.2 Vanilla policy gradient method and REINFORCE algorithm

When the transition probability p and reward r are fully known, problem (3) reduces to
solving an MDP, in which case various classical algorithms are available, including value
iteration and policy iteration [Ber17]. In this paper, we consider the episodic reinforcement
learning setting in which the agent accesses p and r by interacting with the environment over
successive episodes, i.e., the agent access the environment in the form of a ρ-restart model
[SEM19], which is commonly adopted in the policy gradient literature [K+03]. In addition,
we focus on the REINFORCE algorithm, a representative policy gradient method.

Policy parametrization and surrogate objectives. Here we consider parametrizing
the policy with parameter θ ∈ Θ, i.e., πθ : Θ → Π, and take the following (regularized)
optimization problem as an approximation to (3):

maximizeθ∈Θ Lλ(θ) = F (πθ) + λR(θ), (4)

where λ ≥ 0 and R : Θ→ R is a differentiable regularization term that improves convergence,
to be specified later. Although our ultimate goal is still to solve the original problem (3) this
regularized optimization problem is a useful surrogate and our approach will be to tackle
problem (4) with progressively smaller λ regularization penalties, thereby converging to
solving the actual problem we care about.

Policy gradient method. In each episode n, the policy gradient method directly performs
an online stochastic gradient ascent update on a surrogate objective Lλn(θ), i.e.,

θn+1 = θn + αn∇̂θLλn(θn), (5)
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where αn is the step-size and λn is the regularization parameter. Here the stochastic gradient
∇̂θLλn(θn) is computed by sampling a single trajectory τn following policy πθn fromM with
the initial state distribution ρ. Here τn = (sn0 , a

n
0 , r

n
0 , s

n
1 , a

n
1 , r

n
1 , . . . , s

k
Hn , anHn , rnHn), where Hn

is a finite (and potentially random) stopping time of the trajectory (to be specified below),
sn0 ∼ ρ, ant ∼ πθn(·|snt ), snt+1 ∼ p(·|snt , ant ) and rnt = r(snt , a

n
t ) for all t = 0, . . . , Hn. We

summarize the generic policy gradient method (with single trajectory gradient estimates)
in Algorithm 1. An extension to mini-batch scenarios will be discussed in §5. As is always
(implicitly) assumed in the literature of episodic reinforcement learning (e.g., cf. [MT01]),
given the current policy, we assume that the sampled trajectory is conditionally independent
of all previous policies and trajectories.

Algorithm 1 Policy Gradient Method with Single Trajectory Estimates
1: Input: initial parameter θ0, step-sizes αn and regularization parameters λn (n ≥ 0).
2: for n = 0, 1, . . . do

3: Choose Hn, sample trajectory τn from M following policy πθn , and compute an
approximate gradient ∇̂θLλn(θn) of Lλn using trajectory τn.

4: Update θn+1 = θn + αn∇̂θLλn(θn).
5: end for

REINFORCE algorithm. There are several ways of choosing the stochastic gradient op-
erator ∇̂θ in the policy gradient method, and the well-known REINFORCE algorithm [Wil92]
corresponds to a specific family of estimators based on the policy gradient theorem [SMSM00]
(cf. §3). Other common alternatives include zeroth order/random search [FGKM18, MPB+18]
and actor-critic [KT03] approximations. One may also choose to parametrize the policy
as a mapping from the parameter space to a specific action, which would then result in
deterministic policy gradient approximations [SLH+14].

Although our main goal is to study the REINFORCE algorithm, our analysis indeed
holds for rather generic stochastic gradient estimates. In the next section, we introduce the
(mild) assumptions needed for our convergence analysis and the detailed gradient estimation
procedures in the REINFORCE algorithm, and then verify that the assumptions do hold for
these gradient estimations.

2.3 Phased learning and performance criteria

Phased learning. To facilitate the exposition below, we divide the optimization in Al-
gorithm 1 into successive phases l = 0, 1, . . . , each with length Tl > 0. We then fix
the regularization coefficient λl within each phase l ≥ 0. In addition, a post-processing
step is enforced at the end of each phase to produce the initialization of the next phase.
The resulting algorithm is described in Algorithm 2. Here the trajectory is denoted as
τ l,k = (sl,k0 , a

l,k
0 , r

l,k
0 , . . . , sl,k

Hl,k , a
l,k
Hk,l , r

l,k
Hl,k), and we will refer to θl,k as the (l, k)-th iterate

hereafter. The post-processing function is required to guarantee that the resulting policy πθ
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is lower bounded by a pre-specified tolerance εpp ∈ (0, 1/A] to ensure that the regularization
is bounded (cf. Algorithm 3 for a formal description and §3.1 for an example realization).

Note that here the k-th episode in phase l corresponds to the n-th episode in the original
indexing with n =

∑l−1
j=0 Tj + k. For notational compactness below, for T = {Tj}∞j=0, we

define BT : Z+×Z+ → Z+, where BT (l, k) =
∑l−1

j=0 Tj +k maps the double index (l, k) to the
corresponding original episode number, with domBT = {(l, k) ∈ Z+ × Z+ | 0 ≤ k ≤ Tl − 1}.
The mapping BT is a bijection and we denote its inverse by GT .

Algorithm 2 Phased Policy Gradient Method

1: Input: initial parameter θ̃0,0, step-sizes αl,k, regularization parameters λl, phase lengths
Tl (l, k ≥ 0) and post-processing tolerance εpp ∈ (0, 1/A].

2: Set θ0,0 = PostProcess(θ̃0,0, εpp).
3: for phase l = 0, 1, 2, . . . do

4: for episode k = 0, 1, . . . , Tl − 1 do

5: Choose H l,k, sample trajectory τ l,k fromM following policy πθl,k , and compute an
approximate gradient ∇̂θLλl(θ

l,k) of Lλl using trajectory τ l,k.
6: Update θl,k+1 = θl,k + αl,k∇̂θLλl(θ

l,k).
7: end for

8: Set θl+1,0 = PostProcess(θl,Tl , εpp).
9: end for

Algorithm 3 PostProcess(θ, εpp)

Input: εpp ∈ (0, 1/A], θ ∈ Θ.
Return θ′ (near θ) such that πθ′(s, a) ≥ εpp for each s, a ∈ S ×A.

Performance criteria. The criterion we adopt to evaluate the performance of Algorithm 2
is regret. For any N ≥ 0, the regret up to episode N is defined as the cumulative sub-optimality
of the policy over the N episodes. Formally, we define

regret(N) =
∑

{(l,k)|BT (l,k)≤N}
F ? − F̂ l,k(πθl,k). (6)

Here the summation is over all (l, k)-th iterates whose corresponding original episode numbers
are smaller or equal to N , and

F̂ l,k(πθl,k) = El,k

∑Hl,k

t=0
γtr(sl,kt , a

l,k
t ),

where s0 ∼ ρ, al,kt ∼ πθl,k(·|sl,kt ), sl,kt+1 ∼ p(·|sl,kt , a
l,k
t ), ∀t ≥ 0, and El,k denotes the conditional

expectation given the (l, k)-th iteration θl,k. Notice that the regret defined above takes into
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account the fact that the trajectories are stopped/truncated to have finite horizons H l,k,
which characterizes the actual loss caused by sampling the trajectories in line 5 of Algorithm
2. We remark that all our regret bounds remain correct up to lower order terms when we
replace F̂ l,k with F or an expectation-free version.

Similarly, we also define the single phase version of regret as follows. The regret up to
episode K ∈ {0, . . . , Tl − 1} in phase l is defined as

regretl(K) =
∑K

k=0
F ? − F̂ l,k(πθl,k). (7)

Notice that (6) and (7) are connected via

regret(N) =

lN−1∑
l=0

regretl(Tl − 1) + regretlN (kN), (8)

where (lN , kN) = GT (N).
We provide high probability regret bounds in §4. We remark that a regret bound of the

form regret(N)/(N+1) ≤ R (for some R > 0) immediately implies that minl,k:BT (l,k)≤N F
?−

F (πθl,k) ≤ R, where the latter is also a commonly adopted performance criteria in the literature
[AKLM19, WCYW19].

3 Assumptions and REINFORCE gradients

3.1 Assumptions

Here we list a few fundamental assumptions that we require for our analysis.

Assumption 1 (Setting). The regularization term is a log-barrier, i.e.,

R(θ) =
1

SA

∑
s∈S,a∈A

log(πθ(s, a)),

and the policy is parametrized to be a soft-max, i.e., πθ(s, a) = exp(θs,a)∑
a′∈A exp(θs,a′ )

, with Θ = RSA.

The first assumption concerns the form of the policy parameterization and the regular-
ization. Notice that the regularization term here can also be seen as a relative entropy/KL
regularization (with a uniform distribution policy reference) [AKLM19]. Such kind of reg-
ularization terms are also widely adopted in practice (although typically with variations)
[PMA10, SCA17].

With Assumption 1, the post-processing function in Algorithm 3 can be for example
realized by first calculating π̂ = εpp1+(1−Aεpp)πθ, and then return θ′ with θ′s,a = log π̂s,a+cs.
Here 1 is an all-one vector and cs ∈ R (s = 1, . . . , S) are arbitrary real numbers.

Assumption 2 (Technical). There exist constants C, C1, C2, M1, M2 > 0, such that for all
l, k ≥ 0, we have ‖∇̂θLλl(θ

l,k)‖2 ≤ C1 almost surely and that

∇θLλl(θ
l,k)TEl,k∇̂θLλl(θ

l,k) ≥ C2‖∇θLλl(θ
l,k)‖2

2 − δl,k, (9)

El,k‖∇̂θLλk(θ
l,k)‖2

2 ≤M1 +M2‖∇θLλl(θ
l,k)‖2

2, (10)

where
∑Tl−1

k=0 δ
2
l,k ≤ C, ∀ l ≥ 0. In addition, H l,k ≥ log1/γ(k + 1), ∀ l, k ≥ 0.
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The second assumption requires that the gradient estimates are almost surely bounded,
nearly unbiased and satisfy a bounded second-order moment growth condition. This is a slight
generalization of standard assumptions in the stochastic gradient descent literature [BCN18].
Additionally, we also require that the trajectory lengths H l,k are at least logarithmically
growing in k to control the loss of rewards due to truncation. For notational simplicity,
hereafter we omit to mention the trajectory sampling (i.e., s0 ∼ ρ, al,kt ∼ πθl,k(·|sl,kt ), sl,kt+1 ∼
p(·|sl,kt , a

l,k
t ), ∀t ≥ 0) when we write down El,k.

Notice that Assumption 2 immediately holds if ∇̂θLλl(θ
l,k) is unbiased and has a bounded

second-order moment. We have implicitly assumed that Lλ is differentiable, which we can do
due to the following lemma:

Proposition 1 ([AKLM19, Lemma E.4]). Under Assumption 1, Lλ is strongly smooth with
parameter βλ = 8

(1−γ)3
+ 2λ

S
, i.e., ‖∇θLλ(θ)−∇θLλ(θ′)‖2 ≤ βλ‖θ − θ′‖2 for any θ, θ′ ∈ RSA.

3.2 REINFORCE gradient estimations

Now we introduce REINFORCE gradient estimation with baselines, and specify the hyper-
parameters under which the technical Assumption 2 holds, when operating under the setting
Assumption 1.

REINFORCE gradient estimation with log-regularization takes the following form:

∇̂θLλl(θ
l,k) =

bβHl,kc∑
t=0

γt(Q̂l,k(sl,kt , a
l,k
t )− b(sl,kt ))∇θ log πθl,k(a

l,k
t |s

l,k
t )

+
λl

SA

∑
s∈S,a∈A

∇θ log πθl,k(a|s),
(11)

where β ∈ (0, 1), Q̂l,k(sl,kt , a
l,k
t ) =

∑Hl,k

t′=t γ
t′−trl,kt′ , and the second term above corresponds to

the gradient of the regularization R(θ). Notice that here the outer summation is only up to
bβH l,kc, which ensures that Q̂l,k(sl,kt , a

l,k
t ) is sufficiently accurate. Here b : S → R is called

the baseline, and is required to be independent of the trajectory τ l,k [AJK19, §4.1]. The
purpose of subtracting b from the approximate Q-values is to (potentially) reduce the variance
of the “plain” REINFORCE gradient estimation, which corresponds to the case when b = 0.

With this we have the following result, the proof of which can be found in the Appendix.

Lemma 2. Suppose that Assumption 1 holds, β ∈ (0, 1), and that for all l, k ≥ 0, λl ≤ λ̄,

H l,k ≥
2 log1/γ

(
8(k+1)
(1−γ)3

)
3 min{β, 1− β}

(= Θ(log(k + 1))). (12)

Assume in addition that |b(s)| ≤ B for any s ∈ S, where B > 0 is a constant. Then for the
gradient estimation (11), Assumption 2 holds with

C = 16

(
1

(1− γ)2
+ λ̄

)2

, C1 =
2(1 +B(1− γ))

(1− γ)2
+ 2λ̄,

C2 = 1, M1 =
32

(1− γ)4
+ V̄b, M2 = 2.
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and δl,k =
(

2
(1−γ)2

+ 2λ̄
)

(k + 1)−
2
3 , ∀ l, k ≥ 0. Here V̄b ∈

[
0, 4

(
1+B(1−γ)

(1−γ)2
+ λ̄
)2
]
is the

uniform upper bound on the variances of policy gradient estimations in the form of (11).

This result extends without modification to non-stationary baselines bl,kt , as long as each
bl,kt is independent of trajectory τ l,k and |bl,kt (s)| ≤ B for any t, l, k ≥ 0. Note that the explicit
upper bound on V̄b is pessimistic, and in practice V̄b is usually much smaller than V̄0 with
appropriate choices of baselines (e.g., the adaptive reinforcement baselines [Wil92, ZHNS11]),
although the latter has a smaller upper bound as stated in Lemma 2.

4 Main convergence results

4.1 Preliminary tools

We first present some preliminary tools required for our analysis.

Non-convexity and control of “bad” episodes. One of the key difficulties in applying
policy gradient methods to solve an MDP problem towards global optimality is that problem
(3) is in general non-convex [AKLM19]. Fortunately, we have the following result, which
connects the gradient of the surrogate objective Lλ with the global optimality gap of the
original optimization problem (3).

Proposition 3 ([AKLM19, Theorem 5.3]). Under Assumption 1, for any ε > 0, suppose

that we have ‖∇θLλ(θ)‖2 ≤ ε and that ε ≤ λ/(2SA). Then F ? − F (πθ) ≤ 2λ
1−γ

∥∥∥∥dπ?ρρ ∥∥∥∥
∞
.

Here for any policy π ∈ Π, dπρ = (1− γ)
∑∞

t=0 γ
tProbπ(st = s|s0 ∼ ρ) is the discounted

state visitation distribution, where Probπ(st = s|s0 ∼ ρ) is the probability of arriving at s
in step t starting from s0 ∼ ρ following policy π inM. In addition, the division in dπ?ρ /ρ is
component-wise.

Now motivated by Proposition 3, when analyzing the regret up to episode K in phase l,
we define the following set of “bad episodes”:

I+ = {k ∈ {0, . . . , K} | ‖∇θLλl(θ
l,k)‖2 ≥ λl/(2SA)}. (13)

Then one can show that for any ε > 0, if we choose λl = ε(1−γ)

2‖dπ?ρ /ρ‖∞
, we have that F ?−F (πθl,k) ≤

ε for any k ∈ {0, . . . , K}\I+, while F ? − F (πθl,k) ≤ 1/(1− γ) holds trivially for k ∈ I+ due
to the assumption that the rewards are between 0 and 1. We then establish a sub-linear (in
K) bound the size of I+, which serves as the key stepping stone for the overall sub-linear
regret bound. The details of these arguments can be found in the Appendix.

Doubling trick. The second tool is a classical doubling trick that is commonly adopted in
the design of online learning algorithms [BK18, BGH20], which can be used to stitch together
the regret over multiple learning phases in Algorithm 2.

Notice that Proposition 3 suggests that for any pre-specified tolerance ε, one can select λ
proportional to ε and then run (stochastic) gradient ascent to drive F ? − F (πθ) below the
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tolerance. To obtain the eventual convergence and regret bound in the long run we apply the
doubling trick, which specifies a growing phase length sequence with Tl+1 ≈ 2Tl in Algorithm
2 and a suitably decaying sequence of regularization parameters {λl}∞l=0.

From high probability to almost sure convergence. The last tool is an observation
that an arbitrary anytime sub-linear high probability regret bound with logarithmic de-
pendency on 1/δ immediately leads to almost sure convergence of the average regret with
a corresponding asymptotic rate. Although such an observation seems to be informally
well-known in the theoretical computer science community, we provide a compact formal
discussion below for self-contained-ness.

Lemma 4. Suppose that ∀ δ > 0, with probability at least 1− δ, ∀ N ≥ 0, we have

regret(N) ≤ d1(N + c)d2(log(N/δ))d3 + d4(logN)d5 (14)

for some constants c, d1, d3, d4, d5 ≥ 0 and d2 ∈ [0, 1). Then we also have

Prob
(
∃ N̄ ∈ Z+, such that ∀ N ≥ N̄ , AN holds

)
= 1,

where the events AN = {regret(N)/(N + 1) ≤ (∗)}, and

(∗) = d1N
−(1−d2)

(
1 +

c

N

)d2
(3 logN)d3 +

d4(logN)d5

N
.

To put it another way, we have

lim
N→∞

regret(N)/(N + 1) = 0 almost surely

with an asymptotic rate of (∗).

Proof. The proof is a direct application of the well-known Borel-Cantelli lemma [Kle13]. Let
δN = 1/N2 and define the events {ĀN}N≥0 as

ĀN = {regret(N) > d1(N + c)d2(log(N/δN))d3 + d4(logN)d5}.

Then Prob(ĀN) ≤ δN , and hence
∑∞

N=1 Prob(ĀN) ≤
∑∞

N=1 1/N2 < ∞. Hence by Borel-
Cantelli lemma, we have

Prob(ĀN occurs infinitely often) = 0.

Finally, by noticing that the complement of ĀN is a subset of AN , the proof is complete.

Notice that here we restrict the right-hand side of (14) to a rather specific form simply
because our bounds below are all of this form. However, similar results hold for much more
general forms of bounds, as can be seen from the simple proof above.

4.2 Regret analysis

In this section, we establish the regret bound of Algorithm 2, when used with the REINFORCE
gradient estimator from §3.2. We begin by bounding the regret of a single phase and then
use the doubling trick to combine these into the overall regret bound.
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Big-O notation. Before we proceed with our main results, we first clarify the precise
definitions of the Big-O notation used in our statements below. Let f, g : Z+ ×Rd → R+

be functions of the total number of episodes N and some problem and algorithm dependent
quantities (written jointly as a vector) U ∈ Rd. Then we write g(N ;U) = O(f(N ;U)) to
indicate that there exist constants W > 0 and N0 ∈ Z+ (independent of N and U), such that
g(N ;U) ≤ Wf(N ;U) for all N ≥ N0.

Single phase analysis. We begin by bounding the regret defined in (7) of each phase in
Algorithm 2. Note that a single phase in Algorithm 2 is exactly Algorithm 1 terminated in
episode Tl, with λn = λl for all n ≥ 0 and θ0 = θl,0. Also notice that for a given phase l ≥ 0,
in order for Theorem 5 below to hold, we actually only need the conditions in Assumption 2
to be satisfied for this specific l.

Theorem 5. Under Assumptions 1 and 2, for phase l ≥ 0 suppose that we choose αl,k =
Cl,α

1√
k+3 log2(k+3)

for some Cl,α ∈ (0, C2/(M2βλl)]. Then for any ε > 0, if we choose λl =
ε(1−γ)

2‖dπ?ρ /ρ‖∞
, then ∀ δ ∈ (0, 1), with probability at least 1− δ, for any K ∈ {0, . . . , Tl − 1}, we

have

regretl(K) ≤ U1

√
K + 1 log2(K + 3)

√
log(2/δ)

ε2
+ (K + 1)ε+

2γ

1− γ
log(K + 3). (15)

Here the constant U1 only depends on the underlying MDPM, phase initialization θl,0 and
the constants C, C1, C2, M1, Cl,α, λ

l.

The proof as well as a more formal statement of Theorem 5 with details of the constants
(cf. Theorem 10) are deferred to the Appendix. Here the constant βλ is the smoothness
constant from Proposition 1. We remark that when ε is fixed, the regret bound (15) can be
seen as a sub-linear (in K as K →∞) regret term plus an error term (K+1)ε+ 2γ

1−γ log(K+3).
Alternatively, one can interpret it as follows:

regretl(K)/(K + 1) ≤ U1

log2(K + 3)
√

log(2/δ)√
K + 1ε2

+
2γ

1− γ
log(K + 3)

K + 1
+ ε.

Namely, the average regret in episode l converges to the pre-specified tolerance ε at a sub-linear
rate (as K →∞).

Overall regret bound. Now we stitch together the single phase regret bounds established
above to obtain the overall regret bound of Algorithm 2, with the help of the doubling trick.
This leads to the following theorem.

Theorem 6 (Regret for REINFORCE). Under Assumption 1, suppose that for each l ≥ 0,
we choose αl,k = Cl,α

1√
k+3 log2(k+3)

, with Cl,α ∈ [1/(2βλ̄), 1/(2βλl)] and λ̄ = 1−γ
2‖dπ?ρ /ρ‖∞

, and

choose Tl = 2l, εl = T
−1/6
l = 2−l/6, λl = εl(1−γ)

2‖dπ?ρ /ρ‖∞
and εpp = 1/(2A). In addition, suppose

that (11) is adopted to evaluate ∇̂θLλl(θ
l,k), with β ∈ (0, 1), |b(s)| ≤ B for any s ∈ S (where

12



B > 0 is a constant), and that (12) holds for H l,k for all l, k ≥ 0. Then we have for any
δ ∈ (0, 1), with probability at least 1− δ, for any N ≥ 0, we have

regret(N) = O

 S2A2

(1− γ)3

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
2

∞

N
5
6 (log(N/δ))

5
2

 . (16)

In addition, we have

lim
N→∞

regret(N)/(N + 1) = 0 almost surely (17)

with an asymptotic rate of O
(

S2A2

(1−γ)3

∥∥dπ?ρ /ρ∥∥2

∞N
− 1

6 (logN)
5
2

)
.

Note that the almost sure convergence (17) is immediately implied by the high probability
bound (16) via Lemma 4. Here for clarity, we have restricted the statement to the case
when we use the REINFORCE gradient estimation from §3.2. A more general counterpart
result can be found in Appendix B.2, from which Theorem 6 is immediately implied. See
also Appendix C for a more formal statement of the regret bound (cf. Corollary 12) for
REINFORCE with detailed constants.

Notice that compared to the single phase regret bound in (15), the overall regret bound
in (16) now gets rid of the dependency on a pre-specified tolerance ε > 0. This should be
attributed to the adaptivity in the regularization parameter sequence. Also notice that here
we have followed the convention of the reinforcement learning literature to make all the
problem dependent quantities (e.g., γ, S, A, etc.) explicit in the big-O notation.

One crucial difference between our regret bound and those in the existing literature of
model-free policy gradient methods in the stochastic MDP settings (which are sometimes not
stated in the form of regret, but can be easily deduced from their proofs in those cases) is that
the previous results contain a non-vanishing Θ(1/Mp) term, with M being the mini-batch
size (of the trajectories) and p > 0 being some exponent (with a typical value of 1/2). As a
result, these regret bounds are linear in the total number of episodes N . By removing such
non-vanishing terms, we obtain the first sub-linear regret bound.

5 Extension to mini-batch updates
We now consider extending our previous results to mini-batch settings, by modifying Algorithm
2 as follows. Firstly, in each inner iteration, instead of sampling only one trajectory in line 5,
we sample M ≥ 1 independent trajectories τ l,k1 , . . . , τ l,kM fromM following policy πθl,k and
then compute an approximate gradient ∇̂(i)

θ Lλl(θ
l,k) (i = 1, . . . ,M) using each of these M

trajectories. We then modify the update in line 6 as

θl,k+1 = θl,k + αl,k
1

M

M∑
i=1

∇̂(i)
θ Lλl(θ

l,k).

See Algorithm 4 in Appendix D for a formal description of the modified algorithm.
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Then we have the following lemma, which transfers guarantees on ∇̂(i)
θ Lλl(θ

l,k) (i =

1, . . . ,M) to the averaged gradient estimation 1
M

∑M
i=1 ∇̂

(i)
θ Lλl(θ

l,k). The proof follows directly
from the fact that the variance of the sum of independent random variables is the sum of the
variances, and is thus omitted.

Lemma 7. Suppose that each ∇̂(i)
θ Lλl(θ

l,k) (i = 1, . . . ,M) is computed using (11) with
the corresponding trajectory, and that the same assumptions as in Lemma 2 hold. Then
Assumption 2 also holds for ∇̂θLλl(θ

l,k) = 1
M

∑M
i=1 ∇̂

(i)
θ Lλl(θ

l,k) with the same constants
C,C1, C2,M2, δl,k and V̄b as in Lemma 2, while M1 = 32

(1−γ)4
+ V̄b

M
.

Regret with mini-batches. Notice that since each inner iteration (in Algorithm 4) now
consists of M episodes, we need to slightly modify the definition of the regret up to episode
N (N ≥ 0) as follows:

regret(N ;M) =
∑
{(l,k)|BT (l,k)≤b N

M
c−1}M(F ? − F̂ l,k(πθl,k))

+

(
N −M

⌊
N

M

⌋)
(F ? − F̂ l,k(π

θ
lN,M ,kN,M )),

(18)

where (lN,M , kN,M) = GT (bN/Mc) and F̂ l,k(πθl,k) is the same as in (6). The above definition
accounts for the fact that each of the M episodes in an inner iteration/step (l, k) corresponds
to the same iterate θl,k and hence has the same contribution to the regret. The second
term on the right-hand side accounts for the contribution of the (remaining) N −MbN/Mc
episodes (among a total of M episodes) in inner iteration/step (lN,M , kN,M).

Then the following regret bound can be established.

Corollary 8 (Regret for mini-batch REINFORCE). Under Assumption 1, suppose that
for each l ≥ 0, we choose αl,k = Cl,α

1√
k+3 log2(k+3)

, with Cl,α ∈ [1/(2βλ̄), 1/(2βλl)] and

λ̄ = 1−γ
2‖dπ?ρ /ρ‖∞

, and choose Tl = 2l, εl = T
−1/6
l = 2−l/6, λl = εl(1−γ)

2‖dπ?ρ /ρ‖∞
and εpp = 1/(2A). In

addition, suppose that the assumptions in Lemma 7 hold (note that Assumption 1 and λl ≤ λ̄
already automatically hold by the other assumptions). Then we have for any δ ∈ (0, 1), with
probability at least 1− δ, jointly for all episodes N , we have (for the mini-batch Algorithm 4)

regret(N ;M) = O

 S2A2

(1− γ)3

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
2

∞

(M
1
6 +M− 5

6 )(N +M)
5
6 (log(N/δ))

5
2 +

M(logN)2

1− γ

 .

In addition, we also have

lim
N→∞

regret(N ;M)/(N + 1) = 0 almost surely

with an asymptotic rate of

O

 S2A2

(1− γ)3

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
2

∞

(M
1
6 +M− 5

6 )N−
1
6

(
1 +

M

N

) 5
6

(logN)
5
2 +

M(logN)2

(1− γ)N

 .
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Again, we note that the almost sure convergence above is directly implied by the high
probability bound via Lemma 4. The proof and a more formal statement of this corollary (cf.
Corollary 13) can be found in Appendix D. In particular, when M = 1, the bound above
reduces to (16). In addition, we can see that there might be a trade-off between the terms
M1/6 and M−5/6. The intuition behind this is a trade-off between lower variance with larger
batch sizes and more frequent updates with smaller batch sizes.

6 Conclusion and open problems
In this work, we establish the global convergence rates of practical policy gradient algorithms
with a fixed size mini-batch of trajectories combined with REINFORCE gradient estimation.

Although in §4 and §5, we only instantiate the bounds for the REINFORCE gradient
estimators, we note that our general results (in particular, Theorem 11 in Appendix B.2) can
be easily applied to other gradient estimators (e.g., actor-critic and state-action visitation
measure based estimators) as well, as long as one can verify the existence of the constants in
Assumption 2 in a similar way to Lemma 2. In addition, one can also easily derive sample
complexity results as by-products of our analysis. In fact, our proof of Theorem 5 immediately
implies a Õ(1/ε4) sample complexity bound (for Algorithm 1 with REINFORCE gradient
estimators and a constant regularization parameter) for any pre-specified tolerance ε > 0,
where we use Õ to indicate the big-O notation with logarithmic terms suppressed. We have
focused only on regret in this paper mainly for clarity purposes.

It is also not difficult to extend our results to finite horizon non-stationary settings, in
which the soft-max policy parametrization will have a dimension of SAH and different policy
gradient estimators can be adopted (without trajectory truncation), with H being the horizon
of each episode. The results are almost identical to those in this work apart from a smaller
constant Dl (due to the unbiased estimators, which implies that δl,k = 0) and replacing each
1/(1− γ) term with an H term. In this case, it’s also easy to rewrite the regret bound as a
function of the total number of time steps T ≤ HN , where N is the total number of episodes.
Other straightforward extensions include refined convergence to stationary points (in both
almost sure and high probability sense and with no requirement on large batch sizes), and
inexact convergence results when δl,k (cf. Assumption 2) is not square summable (e.g., when
H l,k is fixed or not growing sufficiently fast).

There are also several open problems that may be resolved by combining the techniques
introduced in this paper with existing results in the literature. Firstly, it would be desirable to
remove the “exploration” assumption that the initial distribution ρ is component-wise positive.
This may be achieved by combining our results with the policy cover technique in [AHKS20]
or the optimistic bonus tricks in [CYJW19, ESRM20]. Secondly, the bounds in our paper are
likely far from optimal (i.e., sharp). Hence it would be desirable to either refine our analysis
or apply our techniques to accelerated policy gradient methods (e.g., IS-MBPG [HGPH20])
to obtain better global convergence rates and/or last-iterate convergence. Thirdly, it would
be very interesting to see if global convergence results still hold for REINFORCE when
the relative entropy regularization term used in this paper is replaced with the practically
adopted entropy regularization term in the literature. The answer is affirmative when exact
gradient estimations are available [MXSS20, CCC+20], but it remains unknown how these
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results might be generalized to the stochastic settings in our paper. We conjecture that
entropy regularization leads to better global convergence rates and can help us remove the
necessity of the PostProcess steps in Algorithm 2 as they are uniformly bounded. Finally,
one may also consider relaxing the uniform bound assumption on the rewards r to instead
being sub-Gaussian, introducing function approximation, and extending our results to natural
policy gradient and actor-critic methods as well as more modern policy gradient methods like
DPG, PPO and TRPO.
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Appendix
In this appendix, we provide detailed proofs and formal statements of the results in the main
text. For notational simplicity, we sometimes abbreviate “almost sure” as “a.s.” or even omit
“a.s.” whenever it is clear from the context. Also notice that as is always implicitly assumed
in the literature of episodic reinforcement learning (e.g., cf. [MT01]), given the current policy,
the sampled trajectory is conditionally independent of all previous policies and trajectories.

A Proofs for REINFORCE gradient estimations

A.1 Proof of Lemma 2 (with b = 0)

Proof. We validate the three groups conditions in Assumption 2 in order. For the simplicity
of exposition, we first restrict to the case when b = 0, i.e., no baseline is incorporated.

Gradient estimation boundedness. Firstly, notice that since r(s, a) ∈ [0, 1], we have
Q̂l,k(sl,kt , a

l,k
t ) ≤ 1/(1− γ). And by the soft-max parametrization in Assumption 1, we have

∇θ log πθl,k(a|s) = 1s,a − Ea′∼π
θl,k

(·|s)1s,a′ ,

where the vector 1s,a ∈ RSA has all zero entries apart from the one corresponding to the
state-action pair (s, a). Hence ‖∇θ log πθl,k(a|s)‖2 ≤ 2 for any (s, a) ∈ S ×A, and we see that

∥∥∥∇̂θLλl(θ
l,k)
∥∥∥

2
≤ 1

1− γ

∞∑
t=0

γt‖∇θ log πθl,k(a
l,k
t |s

l,k
t )‖2 +

λ̄

SA

∑
s∈S,a∈A

‖∇θ log πθl,k(a|s)‖2

≤ 2/(1− γ)2 + 2λ̄, a.s.

(19)

Hence we can take C1 = 2/(1− γ)2 + 2λ̄.

Validation of nearly unbiasedness. Secondly, notice that

El,k∇̂θLλl(θ
l,k) =El,k

bβHl,kc∑
t=0

γtEl,k

(
Q̂l,k(sl,kt , a

l,k
t )
∣∣∣sl,kt , al,kt )∇θ log πθl,k(a

l,k
t |s

l,k
t )


+

λl

SA

∑
s∈S,a∈A

∇θ log πθl,k(a|s) = J1 + J2 + J3,

where

J1 =El,k

(
∞∑
t=0

γtEl,k

(∑∞

t′=t
γt

′−trl,kt′
∣∣∣sl,kt , al,kt )∇θ log πθl,k(a

l,k
t |s

l,k
t )

)

+
λl

SA

∑
s∈S,a∈A

∇θ log πθl,k(a|s),
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J2 = −El,k

 ∞∑
t=bβHl,kc+1

γtEl,k

(∑∞

t′=t
γt

′−trl,kt′
∣∣∣sl,kt , al,kt )∇θ log πθl,k(a

l,k
t |s

l,k
t )

 ,

J3 = −El,k

bβHl,kc∑
t=0

γtEl,k

(∑∞

t′=Hl,k+1
γt

′−trl,kt′
∣∣∣sl,kt , al,kt )∇θ log πθl,k(a

l,k
t |s

l,k
t )

 .

By [AJK19, Theorem 4.6], we have

J1 = El,k

(
∞∑
t=0

γtQπ
θl,k (sl,kt , a

l,k
t )∇θ log πθl,k(a

l,k
t |s

l,k
t )

)

+
λl

SA

∑
s∈S,a∈A

∇θ log πθk(a|s)

= ∇θLλl(θ
l,k).

(20)

Here for any π ∈ Π,

Qπ(s, a) = E
(∑∞

t=0
γtr(st, at)

∣∣∣s0 = s, a0 = a
)
,

with at ∼ π(st, ·), st+1 ∼ p(·|st, at), ∀t > 0.
And since r(s, a) ∈ [0, 1], we have

‖J2‖2 ≤
1

1− γ

∞∑
t=bβHl,kc+1

γt‖∇θ log πθl,k(a
l,k
t |s

l,k
t )‖2

≤ 2γβH
l,k

/(1− γ)2,

and similarly

‖J3‖2 ≤
bβHl,kc∑
t=0

γt
∞∑

t′=Hl,k+1

γt
′−t‖∇θ log πθk(a

l,k
t |s

l,k
t )‖2

≤
bβHl,kc∑
t=0

γt × 2γ(1−β)Hl,k

/(1− γ)

≤ 2γ(1−β)Hl,k

/(1− γ)2.

Hence for any η0 > 0, by taking

H l,k ≥ 1 + η0

(2 + η0) min{β, 1− β}
log1/γ

(
4(2+η0)/(1+η0)(k + 1)

(1− γ)(4+2η0)/(1+η0)

)
(= Θ(log(k + 1))),

we have H l,k ≥ log1/γ(k + 1), and that

∥∥∥El,k∇̂θLλl(θ
l,k)−∇θLλl(θ

l,k)
∥∥∥

2
≤ 4γmin{β,1−β}Hl,k

(1− γ)2
≤ (k + 1)

− 1+η0
2+η0 , (21)
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which implies that

∇θLλl(θ
l,k)TEl,k∇̂θLλl(θ

l,k)

= ‖∇θLλl(θ
l,k)‖2

2 +
(
El,k∇̂θLλl(θ

l,k)−∇θLλl(θ
l,k)
)T
∇θLλl(θ

l,k)

≥ ‖∇θLλl(θ
l,k)‖2

2 − ‖∇θLλl(θ
l,k)‖2(k + 1)

− 1+η0
2+η0

≥ ‖∇θLλl(θ
l,k)‖2

2 −
(

2

(1− γ)2
+ 2λ̄

)
(k + 1)

− 1+η0
2+η0 ,

where the last two steps used Cauchy inequality, (21) and the fact that by (20),

‖∇θLλl(θ
l,k)‖2

≤
∞∑
t=0

γtEl,k

(
Qπl,kθ (sl,kt , a

l,k
t )
∥∥∥∇θ log πθl,k(a

l,k
t |s

l,k
t )
∥∥∥

2

)
+

λ̄

SA

∑
s∈S,a∈A

‖∇θ log πθl,k(a|s)‖2

≤ 2/(1− γ)2 + 2λ̄.

Hence we can take C2 = 1 and δl,k =
(

2
(1−γ)2

+ 2λ̄
)

(k + 1)
− 1+η0

2+η0 . Thus we have

Tl−1∑
k=0

δ2
l,k =

(
2

(1− γ)2
+ 2λ̄

)2 ∞∑
k=0

(k + 1)
− 2+2η0

2+η0

≤ 8

(
1

(1− γ)2
+ λ̄

)2(
1 +

1

η0

)
,

and hence we can take C = 8
(

1
(1−γ)2

+ λ̄
)2 (

1 + 1
η0

)
. Notice that for notational simplicity,

we have taken η0 = 1 in the statement of the proposition.

Validation of bounded second-order moment growth. Finally, we bound the second-
order moment of the policy gradient. In the following, for a random vectorX = (X1, . . . , Xn) ∈
Rn, we define VarX =

∑n
i=1 varXi, and similarly Varl,kX =

∑n
i=1 varl,kXi, where varl,k

denotes the conditional variance given the (l, k)-th iteration θl,k. Now define the constant V̄
as the uniform upper bound on the variance of the policy gradient vector, i.e.,

V̄ = sup
H≥0, θ∈Θ, λ∈[0,λ̄]

Var

bβHc∑
t=0

γtQ̂(st, at)∇θ log πθ(at|st) +
λ

SA

∑
s∈S,a∈A

∇θ log πθ(a|s)

 ,

where τ = (s0, a0, r0, . . . , sH , aH , rH) is sampled fromM following policy πθ, and Q̂(st, at) =∑H
t′=t γ

t′−trt′ .
Then we have Varl,k ∇̂θLλl(θ

l,k) ≤ V̄ for any l, k ≥ 0 by definition. In addition, since for
any random vector X ∈ Rn,

varX ≤
n∑
i=1

EX2
i = E‖X‖2

2,
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we have by the same argument as (19) that

V̄ ≤ E

∥∥∥∥∥∥
bβHc∑
t=0

γtQ̂(st, at)∇θ log πθ(at|st) +
λ

SA

∑
s∈S,a∈A

∇θ log πθ(a|s)

∥∥∥∥∥∥
2

2

≤ 4(1 + λ̄(1− γ)2)2

(1− γ)4
.

Finally, since for any random vector X ∈ Rn,

El,k‖X‖2 = El,k

∑n

i=1
X2
i =

∑n

i=1
(El,kX

2
i + varl,kXi) = ‖El,kX‖2

2 + Varl,kX,

we have

El,k

∥∥∥∇̂θLλl(θ
l,k)
∥∥∥2

2
≤ ‖J1 + J2 + J3‖2

2 + V̄

≤ 2‖J1‖2
2 + 2(‖J2‖2 + ‖J3‖2)2 + V̄

≤ 2‖∇θLλl(θ
l,k)‖2

2 +
32γ2 min{β,1−β}Hk

(1− γ)4
+ V̄

≤ 2‖∇θLλl(θ
l,k)‖2

2 +
32

(1− γ)4
+ V̄ ,

and hence we can take M2 = 2 and M1 = 32/(1− γ)4 + V̄ . This completes our proof.

A.2 Proof of Lemma 2

Proof. The proof is nearly identical to the case when b = 0 above. Hence we only outline the
proof while highlighting the differences.

Firstly, similar to (19), we have∥∥∥∇̂θLλl(θ
l,k)
∥∥∥

2
≤
(

1

1− γ
+B

)
2

1− γ
+ 2λ̄ a.s.,

and hence we can take C1 = 2+2B(1−γ)
(1−γ)2

+ 2λ̄.
Secondly, by the proof of [AJK19, Lemma 4.10], we have

El,k

bβHl,kc∑
t=0

γtb(sl,kt )∇θ log πθl,k(a
l,k
t |s

l,k
t )

 = 0. (22)

Hence El,k∇̂θLλl(θ
l,k) is the same as in the proof when b = 0 above, and hence we can take

C2 = 1, C = 16

(
1

(1− γ)2
+ λ̄

)2

,

δl,k =

(
2

(1− γ)2
+ 2λ̄

)
(k + 1)−

2
3 , H l,k ≥

3 log1/γ

(
8(k+1)
(1−γ)3

)
2 min{β, 1− β}

.
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Finally, by definition, V̄b can be written explicitly as

V̄b = sup
H≥0, θ∈Θ, λ∈[0,λ̄]

Var

bβHc∑
t=0

γt(Q̂(st, at)− b(st))∇θ log πθ(at|st) +
λ

SA

∑
s∈S,a∈A

∇θ log πθ(a|s)

 ,

where τ = (s0, a0, r0, . . . , sH , aH , rH) is sampled fromM following policy πθ, and Q̂(st, at) =∑H
t′=t γ

t′−trt′ .

Hence similar to V̄ in then proof when b = 0 above, we have V̄b ≤ 4
(

1+B(1−γ)
(1−γ)2

+ λ̄
)2

,
M2 = 2 and M1 = 32/(1− γ)4 + V̄b.

B Proofs for convergence analysis
Firstly, we state a simple result from elementary analysis, which will be used repeatedly in
our proof below.

Lemma 9. Let xk = 1√
k+3 log2(k+3)

for k ≥ 0. Then we have

K2∑
k=K1

xk ≥
K2 −K1 + 1√

K2 + 3 log2(K2 + 3)
,

∞∑
k=0

x4
k ≤

∞∑
k=0

x2
k ≤ 1.

Proof. The first inequality immediately comes from the fact that xk is monotonically decreas-
ing in k. The second inequality can be derived by noticing that xk < 1 for any k ≥ 0, and
that

∞∑
k=0

x2
k ≤

∫ ∞
0

1

(x+ 2)(log2(x+ 2))2
dx = 1.

This completes the proof.

B.1 Proof of Theorem 5

Theorem 10 (Formal statement of Theorem 5). Under Assumptions 1 and 2, for phase
l ≥ 0 suppose that we choose αl,k = Cl,α

1√
k+3 log2(k+3)

for some Cl,α ∈ (0, C2/(M2βλl)]. Then

for any ε > 0, if we choose λl = ε(1−γ)

2‖dπ?ρ /ρ‖∞
, then for any δ ∈ (0, 1), with probability at least

1− δ, for any K ∈ {0, . . . , Tl − 1}, we have

regretl(K)

≤
4(Dl +

√
2Cl log(2/δ))

(1− γ)C2Elε2

√
K + 1 log2(K + 3) + ε(K + 1) +

γ + γ log(K + 1)

1− γ
.

(23)
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Here El =
Cl,α(1−γ)2

16S2A2‖dπ?ρ /ρ‖2∞
, and

Cl = 32C2
1C

2
l,α

(
1

(1− γ)2
+ λl

)2

+
β2
λl
C4

1C
4
l,α

2
,

Dl = CC2
l,α + βλlM1C

2
l,α + F ? − Lλl(θl,0).

Proof. The proof consists of two parts. In the first part, we establish an upper bound on the
weighted gradient norms sum of previous iterates in the current phase. The second part then
utilizes this bound to establish an upper bound on the phase regret.

Bounding the weighted gradient norms sum. By Proposition 1 and an equivalent
definition of strongly smoothness (cf. [RB16, Appendix]), we have

−Lλl(θl,k+1)− (−Lλl(θl,k)) ≤ −∇θLλl(θ
l,k)T (θl,k+1 − θl,k) +

βλl

2
‖θl,k+1 − θl,k‖2

2

= −αl,k∇θLλl(θ
l,k)T ∇̂θLλl(θ

l,k) +
βλl(α

l,k)2

2
‖∇̂θLλl(θ

l,k)‖2
2︸ ︷︷ ︸

Yl,k

.

Let Zl,k = Yl,k − El,k[Yl,k]. Then the above inequality implies that

Lλl(θ
l,k)− Lλl(θl,k+1)

≤− αl,kLλl(θl,k)TEl,k∇̂θLλl(θ
l,k) +

βλl(α
l,k)2

2
El,k‖∇̂θLλl(θ

l,k)‖2
2 + Zl,k

≤− αl,k
(
C2‖∇θLλl(θ

l,k)‖2
2 − δl,k

)
+
βλl(α

l,k)2

2

(
M1 +M2‖∇θLλl(θ

l,k)‖2
2

)
+ Zl,k

=− αl,k(C2 −M2βλlα
l,k/2)‖∇θLλl(θ

l,k)‖2
2 + αl,kδl,k +

βλlM1(αl,k)2

2
+ Zl,k

≤− C2α
l,k

2
‖∇θLλl(θ

l,k)‖2
2 + αl,kδl,k +

βλlM1(αl,k)2

2
+ Zl,k.

(24)

Now define Xl,K =
∑K−1

k=0 Zl,k (with Xl,0 = 0), then

E(Xl,K+1|Fl,K) =
K−1∑
k=0

Zl,k + E(Yl,K − El,KYl,K |Fl,K) = Xl,K . (25)

Here Fl,K is the filtration up to episode K in phase l, i.e., the σ-algebra generated by all
iterations {θ0,0, . . . , θ0,T0 , . . . , θl,0, . . . , θl,K} up to the (l,K)-th one. Notice that the second
equality makes use of the fact that given the current policy, the correspondingly sampled
trajectory is conditionally independent of all previous policies and trajectories.

In addition, for any K ≥ 1,

|Xl,K −Xl,K−1| = |Zl,K−1| ≤ αl,K−1‖∇θLλl(θ
l,K−1)‖2‖El,K−1∇̂θLλl(θ

l,K−1)− ∇̂θLλl(θ
l,K−1)‖2

+
βλl(α

l,K−1)2

2

∣∣∣El,K−1‖∇̂θLλl(θ
l,K−1)‖2

2 − ‖∇̂θLλl(θ
l,K−1)‖2

2

∣∣∣
≤ 2C1

(
2

(1− γ)2
+ 2λl

)
αl,K−1 +

βλl

2
C2

1(αl,K−1)2︸ ︷︷ ︸
cl,K

.
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Here we use the fact that

‖∇θLλl(θ
l,K−1)‖2 ≤ 2/(1− γ)2 + 2λl,

which follows from the same argument as (19). The above inequality on |Xl,K − Xl,K−1|
also implies that E|Xl,K | <∞, which, together with (25), implies that Xl,K is a martingale.
Notice that although Xl,K is only defined for K = 0, . . . , Tl, we can augment the sequence
by setting Xl,K = Xl,Tl and Fl,K = Fl,Tl for all K > Tl, and it’s obvious that (25) and
E|Xl,K | <∞ also hold for K ≥ Tl. And by saying that Xl,K is a martingale, we are indeed
referring to this (infinite length) augmented sequence of random variables.

Now by the definition of αl,k, it’s easy to see that
∑Tl

K=1 c
2
l,K ≤ Cl <∞, where

Cl = 32C2
1C

2
l,α

(
1

(1− γ)2
+ λl

)2

+
β2
λl
C4

1C
4
l,α

2
. (26)

Hence by Azuma-Hoeffding inequality, for any c > 0,

Prob(|Xl,Tl | ≥ c) ≤ 2e−c
2/(2Cl). (27)

Then by summing up the inequalities (24) from k = 0 to K, we obtain that

C2

2

K∑
k=0

αl,k‖∇θLλl(θ
l,k)‖2

2 ≤
C2

2

Tl−1∑
k=0

αl,k‖∇θLλl(θ
l,k)‖2

2

≤
∞∑
k=0

αl,kδl,k +
βλlM1

∑∞
k=0(αl,k)2

2
+

Tl−1∑
k=0

Zl,k + sup
θ∈Θ

Lλl(θ)− Lλl(θl,0)

≤
∞∑
k=0

(αl,k)2

∞∑
k=0

δ2
l,k +

βλlM1

2

∞∑
k=0

(αl,k)2 +Xl,Tl + F ? − Lλl(θl,0)

≤ CC2
l,α + βλlM1C

2
l,α + F ? − Lλl(θl,0)︸ ︷︷ ︸
Dl

+Xl,Tl ,

(28)

where we use the fact that the regularization term R(θ) ≤ 0 for all θ ∈ Θ.
Hence we have

K∑
k=0

αl,k‖∇θLλl(θ
l,k)‖2

2 ≤
2(Dl +Xl,Tl)

C2

. (29)

Bounding the phase regret. We now establish the regret bound in phase l using (29).
Fix l ≥ 0 and K ∈ {0, . . . , Tl − 1}. Let

I+ = {k ∈ {0, . . . , K} | ‖∇θLλl(θ
l,k)‖2 ≥ λl/(2SA)}.
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For simplicity, assume for now that |I+| > 0. Then since αl,k is decreasing in k, we have

2(Dl +Xl,Tl)/C2 ≥
(λl)2

4S2A2

K∑
k=K−|I+|+1

αl,k

= ε2
Cl,α(1− γ)2

16S2A2
∥∥dπ?ρ /ρ∥∥2

∞︸ ︷︷ ︸
El

K∑
k=K−|I+|+1

1√
k + 3 log2(k + 3)

(By Lemma 9) ≥ Elε
2 |I+|√

K + 3 log2(K + 3)
.

Hence we have (by the simple fact that
√
K + 3 ≤ 2

√
K + 1 for any K ≥ 0)

|I+| ≤ 4(Dl +Xl,Tl)

C2Elε2

√
K + 1 log2(K + 3) (30)

Now by Proposition 3 and the choice of λl, we have that for any k /∈ I+,

F ? − F (πθl,k) ≤ ε.

Since for any π ∈ Π, F (π) ∈ [0, 1/(1− γ)], we have F ? − F (π) ≤ 1/(1− γ). Hence by (30),
we have ∑

k≤K
F ? − F (πθl,k)

=
∑
k∈I+

F ? − F (πθl,k) +
∑
k/∈I+

F ? − F (πθl,k)

≤ |I+|/(1− γ) +
(
K + 1− |I+|

)
ε

≤ 4(Dl +Xl,Tl)

(1− γ)C2Elε2

√
K + 1 log2(K + 3) + (K + 1)ε.

This immediately implies that

regretl(K) =
∑

k≤K
F ? − F (πθl,k) +

∑
k≤K

F (πθl,k)− F̂ l,k(πθl,k)

≤
∑

k≤K
F ? − F (πθl,k) +

∑
k≤K

El,k

∑∞

t=Hl,k+1
γtr(sl,kt , a

l,k
t )

≤
∑

k≤K
F ? − F (πθl,k) +

∑
k≤K

γ/(k + 1)

1− γ

≤ 4(Dl +Xl,Tl)

(1− γ)C2Elε2

√
K + 1 log2(K + 3) + (K + 1)ε+

γ + γ log(K + 1)

1− γ
.

(31)

Now if |I+| = 0, then we immediately have that

regretl(K) ≤ (K + 1)ε+
γ + γ log(K + 1)

1− γ
,
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and hence (31) always holds.
Finally, by (27), we have that with probability at least 1− δ, for all K ∈ {0, . . . , Tl − 1},

regretl(K) ≤
4(Dl +

√
2Cl log(2/δ))

(1− γ)C2Elε2

√
K + 1 log2(K + 3) + ε(K + 1) +

γ + γ log(K + 1)

1− γ
.

This completes our proof.

B.2 Overall regret bound for general policy gradient estimators

In this section, we state and prove the overall regret bound for general policy gradient
estimators, which generalizes Theorem 6 for REINFORCE gradient estimators.

Theorem 11 (General regret bound). Under Assumptions 1 and 2, suppose that for each
l ≥ 0, we choose αl,k = Cl,α

1√
k+3 log2(k+3)

for some Cl,α ∈ [Cα, C2/(M2βλl)], with Cα ∈
(0, C2/(M2βλ̄)] and λ̄ = 1−γ

2‖dπ?ρ /ρ‖∞
. In addition, suppose that we specify T0 ≥ 1, choose

Tl = 2lT0, εl = T
−1/6
l and λl = εl(1−γ)

2‖dπ?ρ /ρ‖∞
for each l ≥ 0. Then we have for any δ ∈ (0, 1),

with probability at least 1− δ, for any N ≥ 0, we have

regret(N) ≤ R̄1(N) + R̄2(N) = O(N5/6(log(N/δ))5/2), (32)

where

R̄1(N) =

(
4(D̄ +

√
2C̄((log2(N + 1) + 2) log 2 + log(1/δ)))

(1− γ)C2E
+ 1

)
× (N + T0)

5
6 (log2(2N + 2T0 + 1))2,

R̄2(N) =
(log2(N + 1) + 1)(γ + γ log(N + T0))

1− γ
.

(33)

Here the constants E = Cα(1−γ)2

16S2A2‖dπ?ρ /ρ‖2∞
,

D̄ = CC̄2
α + βλ̄M1C̄

2
α +

1

1− γ
+ log(1/εpp),

C̄ = 32C2
1 C̄

2
α

(
1

(1− γ)2
+ λ̄

)2

+
β2
λ̄
C4

1 C̄
4
α

2
,

with C̄α = C2(1−γ)3

8M2
.

In addition, we also have

lim
N→∞

regret(N)/(N + 1) = 0 almost surely

with an asymptotic rate of O(N−1/6(logN)5/2).
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Remark 1. Notice that the constant E is a uniform lower bound of El (l ≥ 0), while the
constants D̄ and C̄ are uniform upper bounds of Dl and Cl (l ≥ 0), respectively. Here the
constants El, Dl, Cl are those defined in Theorem 10.

Remark 2. In the big-O notation above, we have (temporarily) hidden the problem dependent
quantities, which will be made explicit when we specialize the results to the REINFORCE
gradient estimation below.

Proof. We first prove the high probability result. By (23) and the choices of εl and λl, we
have that for any phase l ≥ 0, with probability at least 1− δ/2l+1, for all K ∈ {0, . . . , Tl− 1},

regretl(K) ≤

(
4(D̄ +

√
2C̄((l + 2) log 2 + log(1/δ)))

(1− γ)C2E
+ 1

)
T

5/6
l log2(Tl + 2) +

γ + γ log Tl
1− γ

.

where E = Cα(1−γ)2

16S2A2‖dπ?ρ /ρ‖2∞
,

D̄ = CC̄2
α + βλ̄M1C̄

2
α +

1

1− γ
+ log(1/εpp),

C̄ = 32C2
1 C̄

2
α

(
1

(1− γ)2
+ λ̄

)2

+
β2
λ̄
C4

1 C̄
4
α

2
,

with C̄α = C2(1−γ)3

8M2
and λ̄ = 1−γ

2‖dπ?ρ /ρ‖∞
. Here we used the fact that εl ≤ 1, which then implies

that λl ≤ λ̄ and
8

(1− γ)3
≤ βλl ≤ βλ̄ =

8

(1− γ)3
+

2λ̄

S
.

We also used the fact that F ? − F (π) ≤ 1/(1− γ) for any π ∈ Π and that by the definition
of PostProcess, Rλl(πθl,0) ≥ log εpp.

Now recall that for any N ≥ 0, we have

regret(N) =

lN−1∑
l=0

regretl(Tl − 1) + regretlN (kN)

≤
lN∑
l=0

regretl(Tl − 1),

where (lN , kN ) = GT (N). In addition, by the choices of Tl, we have that for any 0 ≤ k ≤ Tl−1,

BT (l, k) =
l−1∑
j=0

Tj + k

= (2l − 1)T0 + k

≥ (2l − 1)T0.

Hence for any N ≥ 0, we have lN ≤ log2

(
N
T0

+ 1
)
≤ log2(N + 1).
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Thus we have that with probability at least 1−
∑lN

l=0 δ/2
l+1 ≥ 1− δ, for any N ≥ 0,

regret(N) ≤ (lN + 1)(R̂1(N) + R̂2(N)),

where

R̂1(N) =

(
4(D̄ +

√
2C̄((lN + 2) log 2 + log(1/δ)))

(1− γ)C2E
+ 1

)
(N + T0)

5
6 log2(N + T0 + 2),

R̂2(N) =
γ + γ log(N + T0)

1− γ
.

Finally, noticing that lN + 1 ≤ log2(N + 1) + 1 ≤ log2(2N + 2T0 + 1), we have

(lN + 1)R̂1(N) ≤

(
4(D̄ +

√
2C̄((log2(N + 1) + 2) log 2 + log(1/δ)))

(1− γ)C2E
+ 1

)
× (N + T0)

5
6 (log2(2N + 2T0 + 1))2,

(lN + 1)R̂2(N) ≤ (log2(N + 1) + 1)(γ + γ log(N + T0))

1− γ
,

which immediately imply (32) and (33). Notice that here we used the fact that log2(N+1)+1 ≤
log2(2N + 2T0 + 1) (since T0 ≥ 1), and that Tl ≤ N + 1 ≤ N + T0 for all l = 0, . . . , lN − 1
and TlN = 2lNT0 ≤ N + T0.

Finally, by invoking Lemma 4, we immediately obtain the almost sure convergence result.
This completes our proof.

C Formal statement of REINFORCE regret bound
Here we provide a slightly more formal restatement of Theorem 6, with details about the
constants in the big-O notation in the main text. Recall that our goal there is specialize
(and slightly simplify) the regret bound in Theorem 11 to the case when the REINFORCE
gradient estimation in §3.2 is adopted to evaluate ∇̂θLλl(θ

l,k). In particular, we have the
following corollary. The proof is done by simply combining Lemma 2 (with λl ≤ λ̄ by their
definitions in Theorem 6 or Corollary 12 below) and Theorem 11, together with the specific
choices of the hyper-parameters as well as the constants in Lemma 2 plugged in and some
elementary algebraic simplifications, and is hence omitted.

Corollary 12 (Formal statement of Theorem 6). Under Assumption 1, suppose that for each
l ≥ 0, we choose αl,k = Cl,α

1√
k+3 log2(k+3)

, with Cl,α ∈ [Cα, 1/(2βλl)], Cα ∈ (0, 1/(2βλ̄)] and

λ̄ = 1−γ
2‖dπ?ρ /ρ‖∞

, and choose Tl = 2l, εl = T
−1/6
l = 2−l/6, λl = εl(1−γ)

2‖dπ?ρ /ρ‖∞
and εpp = 1/(2A). In

addition, suppose that (11) is adopted to evaluate ∇̂θLλl(θ
l,k), with β ∈ (0, 1), |b(s)| ≤ B for

any s ∈ S (where B > 0 is a constant), and that (12) holds for H l,k for all l, k ≥ 0. Then
we have for any δ ∈ (0, 1), with probability at least 1− δ, for any N ≥ 0, we have

regret(N) ≤ R̃1(N) + R̃2(N),
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where

R̃1(N) =

4(D̃ +
√

2C̃((log2(N + 1) + 2) log 2 + log(1/δ)))

(1− γ)E
+ 1

 (N + 1)
5
6 (log2(2N + 3))2,

R̃2(N) =
γ(log2(N + 1) + 1)2

1− γ
.

Here the constants are E = Cα(1−γ)2

16S2A2‖dπ?ρ /ρ‖2∞
, and

D̃ = (1− γ)6

(
1

(1− γ)2
+ λ̄

)2

+
1

256
(1− γ)6βλ̄

(
32

(1− γ)4
+ V̄b

)
+

1

1− γ
+ log(2A),

C̃ =
β2
λ̄
(1− γ)12

(
(1+B(1−γ))

(1−γ)2
+ λ̄
)4

8192
+

1

2
(1− γ)6

(
(1 +B(1− γ))

(1− γ)2
+ λ̄

)4

.

Here V̄b is the variance bound defined in Lemma 2.
Suppose in addition that we specify Cα = 1/(2βλ̄), then we can simplify the regret bound

into the following simple form:

regret(N) = O

 S2A2

(1− γ)3

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
2

∞

N
5
6 (log(N/δ))

5
2

 .

In addition, we also have

lim
N→∞

regret(N)/(N + 1) = 0 almost surely

with an asymptotic rate of O
(

S2A2

(1−γ)3

∥∥dπ?ρ /ρ∥∥2

∞N
− 1

6 (logN)
5
2

)
.

Remark 3. Notice that here (and below), with the specific choices of algorithm hyper-
parameters and gradient estimators we are finally able to make all the problem dependent
quantities (e.g., γ, S, A, etc.) explicit in the big-O notation, which is consistent with the
convention of the reinforcement learning literature. Here the only hidden quantities are some
absolute constants.

D Mini-batch phased policy gradient method
Here we formalize the mini-batch version of Algorithm 2 described at the beginning of §5 as
Algorithm 4, and provide a formal statement as well as a proof for Corollary 8.

Corollary 13 (Formal statement of Corollary 8). Under Assumption 1, suppose that for each
l ≥ 0, we choose αl,k = Cl,α

1√
k+3 log2(k+3)

, with Cl,α ∈ [Cα, 1/(2βλl)], Cα ∈ (0, 1/(2βλ̄)] and

λ̄ = 1−γ
2‖dπ?ρ /ρ‖∞

, and choose Tl = 2l, εl = T
−1/6
l = 2−l/6, λl = εl(1−γ)

2‖dπ?ρ /ρ‖∞
and εpp = 1/(2A). In
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addition, suppose that the assumptions in Lemma 7 hold (note that Assumption 1 and λl ≤ λ̄
already automatically hold by the other assumptions). Then we have for any δ ∈ (0, 1), with
probability at least 1− δ, for any N ≥M ≥ 1, we have that (for the mini-batch Algorithm 4)

regret(N −M ;M) ≤ R̃1(N ;M) + R̃2(N ;M),

where

R̃1(N ;M) =

4(D̃M +
√

2C̃((log2(N/M) + 2) log 2 + log(1/δ)))

(1− γ)E
+ 1


×M

1
6N

5
6 (log2(2(N/M) + 1))2,

R̃2(N ;M) =
γM(log2(N/M) + 1)2

1− γ
.

Here the constants E and C̃ are the same as in Corollary 12, while

D̃M = (1− γ)6

(
1

(1− γ)2
+ λ̄

)2

+
1

256
(1− γ)6βλ̄

(
32

(1− γ)4
+
V̄b
M

)
+

1

1− γ
+ log(2A).

Here V̄b is the variance bound defined in Lemma 2.
Suppose in addition that we specify Cα = 1/(2βλ̄). Then we can simplify the regret bound

into the following simple form:

regret(N ;M) = O

 S2A2

(1− γ)3

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
2

∞

(M
1
6 +M− 5

6 )(N +M)
5
6 (log(N/δ))

5
2 +

M(logN)2

1− γ

 .

In addition, we also have

lim
N→∞

regret(N ;M)/(N + 1) = 0 almost surely

with an asymptotic rate of

O

 S2A2

(1− γ)3

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
2

∞

(M
1
6 +M− 5

6 )N−
1
6

(
1 +

M

N

) 5
6

(logN)
5
2 +

M(logN)2

(1− γ)N

 .

Proof of Corollary 8. By the definition of regret(N ;M), we immediately see that

regret(N ;M) ≤Mregret(bN/Mc), (34)

where regret(J) (J ≥ 0) is the original regret (6) in the mini-batch setting, which is defined
only for the total number of inner iterations/steps (instead of episodes, so not magnified with
a factor of M). More precisely, we have that for any J ≥ 0,

regret(J) =
∑

{(l,k)|BT (l,k)≤J}
F ? − F (πθl,k).
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Now by Lemma 7 and Theorem 11, and following the same simplification as is done in
Corollary 12, we have that for any J ≥ 0,

regret(J)

≤

4(D̃M +
√

2C̃((log2(J + 1) + 2) log 2 + log(1/δ)))

(1− γ)E
+ 1

 (J + 1)
5
6 (log2(2J + 3))2

+
γ(log2(J + 1) + 1)2

1− γ
,

where the constants are as stated in the Corollary claims.
The proof is then complete by plugging the bound of regret(J) above into (34) and

invoking Lemma 4.

Algorithm 4 Mini-Batch Phased Policy Gradient Method

1: Input: initial parameter θ̃0,0, step-sizes αl,k, regularization parameters λl, phase lengths
Tl (l, k ≥ 0), post-processing tolerance εpp and batch size M > 0.

2: Set θ0,0 = PostProcess(θ̃0,0, εpp).
3: for phase l = 0, 1, 2, . . . do

4: for step k = 0, 1, . . . , Tl − 1 do

5: Choose H l,k, sample IID trajectories {τ l,ki }Mi=1 (each with horizon H l,k) from M
following policy πθl,k , and compute an approximate gradient ∇̂(i)

θ Lλl(θ
l,k) of Lλl for

each trajectory τ l,ki (i = 1, . . . ,M).
6: Update θl,k+1 = θl,k + αl,k 1

M

∑M
i=1 ∇̂

(i)
θ Lλl(θ

l,k).
7: end for

8: Set θl+1,0 = PostProcess(θl,Tl , εpp).
9: end for
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