Convex Optimization

Stephen Boyd

Thanks to Giray Ogut and Kasper Johansson

Master's Forum, CUHK-SZ, November 26 2024

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

Optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & g_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

▶ $x \in \mathbf{R}^n$ is (vector) variable to be chosen (*n* scalar variables $x_1, ..., x_n$)

- f_0 is the **objective function**, to be minimized
- f_1, \ldots, f_m are the inequality constraint functions
- g_1, \ldots, g_p are the equality constraint functions
- variations: maximize objective, multiple objectives, ...

Finding good (or best) actions

- x represents some action, e.g.,
 - trades in a portfolio
 - airplane control surface deflections
 - schedule or assignment
 - resource allocation
- constraints limit actions or impose conditions on outcome
- the smaller the objective $f_0(x)$, the better
 - total cost (or negative profit)
 - deviation from desired or target outcome
 - risk
 - fuel use

Finding good models

- x represents the parameters in a model
- constraints impose requirements on model parameters (e.g., nonnegativity)
- objective $f_0(x)$ is sum of two terms:
 - a prediction error (or loss) on some observed data
 - a (regularization) term that penalizes model complexity

Worst-case analysis

- variables are actions or parameters out of our control (and possibly under the control of an adversary)
- constraints limit the possible values of the parameters
- minimizing $-f_0(x)$ finds worst possible parameter values
- if the worst possible value of $f_0(x)$ is tolerable, you're OK
- it's good to know what the worst possible scenario can be

Optimization-based models

model an entity as taking actions that solve an optimization problem

- an individual makes choices that maximize expected utility
- an organism acts to maximize its reproductive success
- reaction rates in a cell maximize growth
- currents in a circuit minimize total power
- (except the last) these are very crude models
- ▶ and yet, they often work very well

Basic use model for mathematical optimization

- \blacktriangleright instead of saying how to choose (action, model) x
- you articulate what you want (by stating the problem)
- then let an algorithm decide on (action, model) x

say what you want, not how to get it

Can you solve it?

generally, no

but you can try to solve it approximately, and it often doesn't matter

the exception: convex optimization

- includes linear programming (LP), quadratic programming (QP), many others
- we can solve these problems reliably and efficiently
- comes up in many applications across many fields

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

Convex optimization

convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

▶ variable $x \in \mathbf{R}^n$

- equality constraints are linear
- f_0, \ldots, f_m are **convex**: for $\theta \in [0, 1]$,

 $f_i(heta x + (1- heta)y) \leq heta f_i(x) + (1- heta)f_i(y)$

i.e., f_i have nonnegative (upward) curvature

When is an optimization problem hard to solve?

classical view:

- linear (zero curvature) is easy
- nonlinear (nonzero curvature) is hard

the classical view is wrong

the correct view:

- convex (nonnegative curvature) is easy
- nonconvex (negative curvature) is hard

Solving convex optimization problems

many different algorithms (that run on many platforms)

- interior-point methods for up to 10000s of variables
- first-order methods for larger problems
- do not require initial point, babysitting, or tuning
- can develop and deploy quickly using modeling languages such as CVXPY
- solvers are reliable, so can be embedded
- code generation yields real-time solvers that execute in milliseconds

Application areas

- machine learning, statistics
- finance
- supply chain, revenue management, advertising
- control
- signal and image processing, vision
- networking
- circuit design
- combinatorial optimization
- quantum mechanics
- flux-based analysis
- many others . . .

Modeling languages for convex optimization

- domain specific languages (DSLs) for convex optimization
 - describe problem in high level human readable language, close to the math
 - can automatically verify problem as convex
 - can automatically transform problem to standard form, then solve
- enables rapid prototyping
- ▶ it's now much easier to develop an optimization-based application
- ideal for teaching and research (can do a lot with short scripts)
- > gets close to the basic idea: say what you want, not how to get it

Implementations

- CVXPY (Python) [Diamond and Boyd, 2014]
- Convex.jl (Julia) [Udell et al., 2014]
- CVXR (R) [Fu, Narasimhan, and Boyd, 2017]
- CVX (Matlab) [Grant and Boyd, 2006]
- ► YALMIP (Matlab) [Lofberg, 2004]

CVXPY example: Non-negative least squares

math:

```
\begin{array}{ll} \mbox{minimize} & \|Ax - b\|_2^2\\ \mbox{subject to} & x \geq 0 \end{array} 
 \blacktriangleright \ A, \ b \ \mbox{given}
```

- variable is x
- $x \ge 0$ means elementwise

CVXPY code:

```
import cvxpy as cp
A, b = ...
x = cp.Variable(n)
obj = cp.norm2(A @ x - b)**2
constr = [x >= 0]
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
```


- open source all the way to the solvers
- syntax very similar to NumPy
- used in many research projects, courses, companies
- tens of thousands of users, including many (if not most) hedge funds
- over 27,000,000 downloads on PyPI

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

Mean-variance (Markowitz) optimization

maximize
$$\mu^T w - \gamma w^T \Sigma w$$

subject to $\mathbf{1}^T w = 1$

▶ variable $w \in \mathbf{R}^n$ of portfolio weights

▶ $\mu \in \mathbf{R}^n$ and $\Sigma \in \mathbf{S}_{++}^n$ are (estimates of) asset return mean and covariance

▶ $\gamma > 0$ is risk aversion parameter

basic form goes back to [Markowitz, 1952]

can be sensitive to estimation error

```
w = cp.Variable(n)
objective = mu.T @ w - gamma * cp.quad_form(w, Sigma)
constraints = [cp.sum(w) == 1]
prob = cp.Problem(cp.Maximize(objective), constraints)
prob.solve()
```

Adding practical constraints and objective terms

account for trading cost κ^T|w - w^{pre}|;
 w^{pre} is previous holdings, κ > 0 is vector of one half bid-ask spreads

add transaction cost, limit weights and leverage

$$\begin{array}{ll} \text{maximize} & \mu^{T} w - \gamma^{\text{risk}} w^{T} \Sigma w - \gamma^{\text{trade}} \kappa^{T} | w - w^{\text{pre}} | \\ \text{subject to} & \mathbf{1}^{T} w = 1, \quad w^{\min} \leq w \leq w^{\max}, \quad \|w\|_{1} \leq \mathcal{L}^{\max} \end{array}$$

- can be implemented in a few lines in CVXPY
- this version is quite practical
- ▶ see [Boyd et al., 2024] for details, further improvements, reference implementation

Practical Markowitz in CVXPY

```
1 risk = cp.quad_form(w, Sigma)
2 t_cost = kappa.T @ cp.abs(w - w_pre)
3
4 objective = mu.T @ w - gamma_risk * risk - gamma_trade * t_cost
5 constraints = [w.sum() == 1, w >= w_min, w <= w_max, cp.norm1(w) <= L_max]
6
7 prob = cp.Problem(cp.Maximize(objective), constraints)
8 prob.solve()</pre>
```

Practical Markowitz: Example

> S&P 100, simulated but realistic μ , iterated EWMA covariance forecast

• $\gamma = 250$, $\gamma^{\text{risk}} = 35$, $\gamma^{\text{trade}} = 5$ (chosen to attain comparable risks)

Metric	Basic	Practical
Return	-9.8%	38.1%
Risk	11.6%	11.9%
Sharpe	-0.8	3.2
Drawdown	99.4%	11.2%

Sparse inverse covariance estimation

- ▶ model random vector $x \in \mathbf{R}^n$ as $x \sim \mathcal{N}(0, \Sigma)$
- ▶ log-likelihood on data $x^1, ..., x^N$ is

$$I(heta) = rac{N}{2} \left(\log \det heta - \operatorname{Tr} heta S
ight) + c, \qquad S = rac{1}{N} \sum_{i=1}^{N} x^i (x^i)^T$$

c is a constant and $\theta = \Sigma^{-1}$ is the precision matrix

▶ sparse inverse covariance estimation problem [Friedman et al., 2007]

maximize
$$I(\theta) - \lambda \sum_{i < j} |\theta_{ij}|$$

with variable θ ; $\lambda > 0$ is a (sparsity) regularization parameter

- a convex problem; yields matrix with sparse precision matrix θ
- ▶ $\theta_{ij} = 0$ means entries x_i, x_j are conditionally independent given the others

Sparse inverse covariance estimation: CVXPY

```
1 N, n = X.shape
2 Theta = cp.Variable((n, n), symmetric=True)
3
_{4} S = X.T Q X / N
5 log_likelihood = N / 2 * (cp.log_det(Theta) - cp.trace(Theta @ S))
6
  mask = np.triu(np.ones((n, n)), k=1).astype(bool)
8 objective = log_likelihood - lam * cp.norm1(Theta[mask])
9
 prob = cp.Problem(cp.Maximize(objective))
10
11 prob.solve()
```

Sparse inverse covariance estimation: Example

daily returns of US, Europe, Asia, and Africa stock indices from 2009 to 2024
 yearly sparsity pattern of inverse covariance; white boxes denote zero entries

Position control via tensions

• masses m_1, m_2, m_3 connected by springs and dampers

- ▶ position, velocity $p_t, v_t \in \mathbf{R}^3$
- ▶ tensions $u_t \in \mathbf{R}^2$, $0 \le u_t \le U^{\max}$
- ▶ initial state $p_1 = 0$, $v_1 = 0$; terminal state $p_T = p^{\text{des}}$, $v_T = 0$

 \triangleright p^{des} is the target equilibrium position, with tensions u^{des}

• minimize $\sum_{t=1}^{T} \left(\|p_t - p^{\text{des}}\|_2^2 + \|v_t\|_2^2 \right) + \lambda \sum_{t=1}^{T-1} \|u_t - u^{\text{des}}\|_2^2, \lambda > 0$

Position control via tensions: Dynamics

dynamics (discretized with sample time h > 0)

$$\frac{p_{t+1} - p_t}{h} = v_t, \qquad M \frac{v_{t+1} - v_t}{h} = \left(-AKA^T p_t - ADA^T v_t + Bu_t\right)$$

 $M = \operatorname{diag}(m_1, m_2, m_3), \ K = \operatorname{diag}(k_1, k_2, k_3, k_4), \ D = \operatorname{diag}(d_1, d_2, d_3, d_4),$

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$$

Position control via tensions: CVXPY

 $\begin{array}{ll} \text{minimize} & \sum_{t=1}^{T} \left(\| p_t - p^{\text{des}} \|_2^2 + \| v_t \|_2^2 \right) + \lambda \sum_{t=1}^{T-1} \| u_t - u^{\text{des}} \|_2^2 \\ \text{subject to} & p_1 = 0, \quad v_1 = 0, \quad p_T = p^{\text{des}}, \quad v_T = 0, \quad 0 \le u \le U^{\text{max}}, \\ & p_{t+1} = p_t + hv_t, \quad t = 1, \dots, T-1 \\ & v_{t+1} = v_t + hM^{-1} \left(-AKA^T p_t - ADA^T v_t + Bu_t \right), \quad t = 1, \dots, T-1 \end{array}$

```
1 import cvxpy as cp
2 A, M_inv, D, K, B, u_max, p_des, u_des, T, lam = ...
3 p, v, u = cp.Variable((T, 3)), cp.Variable((T, 3)), cp.Variable((T-1, 2))
4 obj = cp.sum_squares(p - p_des) + cp.sum_squares(v) + lam * cp.sum_squares(u-u_des)
5 cons = [p[0] == 0, v[0] == 0, p[-1] == p_des[-1], v[-1] == 0, 0 <= u, u <= u_max]
6 cons += [p[t+1] == p[t] + h * v[t] for t in range(T-1)]
7 cons += [v[t+1] == v[t] + h * M_inv @ (-(A @ K @ A.T) @ p[t] -
8 (A @ D @ A.T) @ v[t] + B @ u[t]) for t in range(T-1)]
9 prob = cp.Problem(cp.Minimize(obj), cons)
10 prob.solve()
```

Optimal control via tensions: Example

▶ reaches target position $p^{\text{des}} = (0.67, 1.00, -0.33)$ at t = 3.5

Control via constant tensions

$$lacksim$$
 use tensions $u_t=u^{\mathsf{des}}$, wait for $p_t o p^{\mathsf{des}}$

Residential energy management

- given data (in 15 minute intervals):
 - load $I_t \ge 0$
 - utility price $p_t \ge 0$
 - solar capacity $S_t \ge 0$
- variables:
 - utility power $u_t \ge 0$
 - solar power s_t , $0 \leq s_t \leq S_t$
 - battery power b_t , $|b_t| \leq B$
 - battery charge q_t , $0 \leq q_t \leq Q$
- objective and constraints:
 - minimize utility cost $\sum_{t=1}^{T} p_t u_t$
 - plus battery wear $\lambda \sum_{t=1}^{T} |b_t|$, $\lambda > 0$
 - power balance $u_t + s_t + b_t = l_t$
 - battery dynamics $q_{t+1} = q_t 0.25 b_t$

Residential energy management: Data

Residential energy management: CVXPY

$$\begin{array}{ll} \text{minimize} & \sum_{t=1}^{T} \left(p_{t} u_{t} + \lambda | b_{t} | \right) \\ \text{subject to} & 0 \leq q_{t} \leq Q, \quad 0 \leq u_{t}, \quad |b_{t}| \leq B, \quad 0 \leq s_{t} \leq S_{t} \\ & u_{t} + s_{t} + b_{t} = l_{t}, \quad t = 1, \dots, T \\ & q_{1} = q_{T+1}, \quad q_{t+1} = q_{t} - 0.25b_{t}, \quad t = 1, \dots, T \end{array}$$

```
import cvxpy as cp
2 p, l, B, Q, S, T, lam = ...
3 q, b, u, s = cp.Variable(T+1), cp.Variable(T), cp.Variable(T), cp.Variable(T)
4 obj = p.T @ u + lam * cp.norm(b, 1)
5 cons = [0 <= q, q <= Q, 0 <= u, cp.abs(b) <= B, 0 <= s, s <= S]
6 cons += [u + s + b == l, q[1:] == q[:-1] - 0.25 * b, q[0] == q[-1]]
7 prob = cp.Problem(cp.Minimize(obj), cons)
8 prob.solve()</pre>
```

Residential energy management: Results

• battery capacity Q = 5 kWh, max charge/discharge B = 1.67 kW

Residential energy management: Storage/cost trade-off

- ▶ optimal cost vs. battery capacity Q
- max charge/discharge B = Q/3

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

Showing a function is convex

methods for establishing convexity of a function f

1. verify definition inequality: for all x, y, $\theta \in [0, 1]$,

$$f(heta x + (1- heta)y) \leq heta f(x) + (1- heta)f(y)$$

- 2. for twice differentiable functions, show $\nabla^2 f(x) \ge 0$ (*i.e.*, is PSD)
- 3. construct *f* from simple convex functions, using operations that preserve convexity (*e.g.*, sum, maximum, positive scaling, ...)

method 3 is by far the most useful in practice

Composition rule

• composition of
$$g: \mathbf{R}^n \to \mathbf{R}^k$$
 and $h: \mathbf{R}^k \to \mathbf{R}$ is

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if h is convex and for each i one of the following holds

- $-g_i$ convex, h nondecreasing in its *i*th argument
- $-g_i$ concave, h nonincreasing in its *i*th argument
- $-g_i$ affine
- there is a similar rule for concave h
- composition rule subsumes others, e.g.,
 - αf is convex if f is, and $\alpha \geq 0$
 - sum of convex (concave) functions is convex (concave)
 - max (min) of convex (concave) functions is convex (concave)

Example

the function

$$f(x,y) = \frac{(x-y)^2}{1-\max(x,y)}, \qquad x < 1, \quad y < 1$$

is convex

constructive analysis:

- (leaves) x, y, and 1 are affine
- max(x, y) is convex; x y is affine
- ▶ $1 \max(x, y)$ is concave
- function u^2/v is convex, monotone decreasing in v for v > 0
- *f* is composition of u^2/v with u = x y, $v = 1 \max(x, y)$, hence convex

Example (from dcp.stanford.edu)

Disciplined convex programming

in **disciplined convex programming** (DCP) users construct convex and concave functions as expressions using constructive convex analysis

- expressions formed from
 - variables,
 - constants,
 - and atomic functions from a library
- > atomic functions have known convexity, monotonicity, and sign properties
- all subexpressions match general composition rule
- a valid DCP function is convex-by-construction

CVXPY example

$$\frac{(x-y)^2}{1-\max(x,y)}, \qquad x < 1, \quad y < 1$$

```
import cvxpy as cp
x = cp.Variable()
y = cp.Variable()
expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x, y))
sexpr.curvature # Convex
expr.sign # Positive
r expr.is_dcp() # True
```

(atom quad_over_lin(u,v) includes domain constraint v>0)

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

Real-time embedded optimization

- in many applications, need to solve the same problem repeatedly with different data, often with a real-time constraint
 - control: update actions as sensor signals, goals change
 - finance: rebalance portfolio as prices, predictions change
- requires extreme solver reliability, hard real-time execution
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading

 (using new techniques) can be used for applications with solve times measured in milliseconds or microseconds

Code generators

CVXGEN [Mattingley and Boyd, 2010]

- generates custom QP solver in C
- used in many applications, including all of SpaceX first stage landings

CVXPYgen [Schaller et al., 2022]

- open-source code generator based on CVXPY
- easy prototype to implementation path
- generates C
- supports multiple solvers, non-QP problems

CVXGEN in action

https://blogs.nasa.gov/spacex/2019/06/25/side-boosters-have-landed/

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

convex optimization problems

- are optimization problems of a special form
- arise in many applications
- can be solved effectively
- are easy to specify using DSLs such as CVXPY
- can be used in embedded systems with hard real-time constraints

Resources

many researchers have worked on the topics covered

- Convex Optimization (book)
- ▶ EE364a (lecture slides, videos, code, homework, ...)
- software:
 - CVXPY
 - Convex.jl
 - CVXR
 - CVX
- code and data for examples in this talk

all available online