
Code Generation for
Solving and Differentiating through

Convex Optimization Problems

Maximilian Schaller and Stephen Boyd

April 18, 2025

Abstract

We introduce custom code generation for parametrized convex optimization prob-
lems that supports evaluating the derivative of the solution with respect to the parame-
ters, i.e., differentiating through the optimization problem. We extend the open source
code generator CVXPYgen, which itself extends CVXPY, a Python-embedded domain-
specific language with a natural syntax for specifying convex optimization problems,
following their mathematical description. Our extension of CVXPYgen adds a custom
C implementation to differentiate the solution of a convex optimization problem with
respect to its parameters, together with a Python wrapper for prototyping and desk-
top (non-embedded) applications. We give three representative application examples:
Tuning hyper-parameters in machine learning; choosing the parameters in an approx-
imate dynamic programming (ADP) controller; and adjusting the parameters in an
optimization based financial trading engine via back-testing, i.e., simulation on his-
torical data. While differentiating through convex optimization problems is not new,
CVXPYgen is the first tool that generates custom C code for the task, and increases the
computation speed by about an order of magnitude in most applications, compared to
CVXPYlayers, a general-purpose tool for differentiating through convex optimization
problems.

1 Introduction

A convex optimization problem, parametrized by θ ∈ Θ ⊆ Rd, can be written as

minimize f0(x, θ)
subject to fi(x, θ) ≤ 0, i = 1, . . . ,m

A(θ)x = b(θ),
(1)

where x ∈ Rn is the optimization variable, f0 is the objective function to be minimized, which
is convex in x, and f1, . . . , fm are inequality constraint functions that are convex in x [BV04].



The parameter θ specifies data that can change, but is constant and given (or chosen) when
we solve an instance of the problem. We refer to the parametrized problem (1) as a problem
family ; when we specify a fixed value of θ ∈ Θ, we refer to it as a problem instance. We let
x⋆ denote an optimal point for problem (1), assuming it exists. To emphasize its dependence
on θ, we write it as x⋆(θ).

Convex optimization is used in many domains, including signal and image process-
ing [MB10, ZE10], machine learning [Mur12, BN06, ZH05, Tib96, Cor95, HK70, Cox58],
control systems [RMD+17, KC16, WOB15, KB14, WB09, BEGFB94, BB91, GPM89], quan-
titative finance [Pal25, BJK+24, BBD+17, Nar13, LFB07, GK00, Mar52], and operations
research [Hal19, BG92, Ber91, LAHH16, BT04].

1.1 Differentiating through convex optimization problems

In many applications we are interested in the sensitivity of the solution x⋆ with respect to
the parameter θ. We will assume there is a unique solution for parameters near θ, and that
the mapping from θ to x⋆ is differentiable with Jacobian ∂x⋆/∂θ ∈ Rn×d, evaluated at θ. We
then have

∆x⋆ ≈ ∂x⋆

∂θ
∆θ,

where ∆θ is the change in θ, and ∆x⋆ is the resulting change in x⋆.
We make a few comments on our assumptions. First, the solution x⋆ need not be unique,

and so does not define a function from θ to x⋆. Even when the solution is unique for each
parameter value, the mapping from θ to x⋆ need not be differentiable. Following universal
practice in machine learning, we simply ignore these issues. When x⋆ is not unique, or when
the mapping is not differentiable, we simply use some reasonable value for the (nonexistent)
derivative. It has been observed that simple gradient (or subgradient) based methods for
optimizing parameters are tolerant of these approximations.

Approximating the change in solution with a change in parameters can be useful by itself
in some applications. As an example, consider a machine learning problem where we fit
the parameters of a model to data by minimizing the sum of a convex loss function over
the given training data. Considering the training data as a parameter, and the solution as
the estimated model parameters, the Jacobian above gives us the sensitivity of each model
parameter with respect to the training data. In particular, these sensitivities are sometimes
used to compute a risk estimate for the learned model parameters [NCB23, NLC24]. As
another example, suppose we model some economic variables (e.g., consumption, demand
for products, trades) as maximizing a concave utility function that depends on parameters.
The Jacobian here directly gives us an approximation of the change in demand (say) when
the utility parameters change [Wai05].



1.2 Autodifferentiation framework

The solution map derivative is much more useful when it is part of an autodifferentiation
system such as JAX [BFH+18], PyTorch [PGC+17], or Tensorflow [ABC+16]. We consider
a scalar function that is described by its compution graph, which can include standard op-
erations and functions, as well the solution of one or more convex optimization problems.
We can compute the gradient of this function automatically, and this can be used for ap-
plications such as tuning or optimizing the performance of a system. We give a few simple
generic examples here.

In machine learning, we fit model parameters (also called weights or coefficents) using
convex optimization, but we may have other hyper-parameters (e.g., that scale regularization
terms) that we would like to tune to get good performance on an unseen, out-of-sample test
data set [Mur12]. The scalar function that we differentiate is the loss function computed
with test data, and we differentiate with respect to the hyper-parameters of the machine
learning model. A similar situation occurs in finance, where the actual trades to execute are
determined by solving a parameterized problem [BBD+17], which also contains a number
of hyper-parameters that set limits on the portfolio or trading, or scale objective terms,
and our goal is to obtain good performance on a simulation that uses historical data, i.e.,
a back-test. In this case, the scalar function that we optimize might be a metric like the
realized portfolio return or the Sharpe ratio [LW08], and we differentiate with respect to the
hyper-parameters of the portfolio construction model.

1.3 Related work

Differentiating through convex optimization problems. There are two main classes
of methods to differentiate the mapping from problem parameters to the solution. First,
autodifferentiation software like PyTorch [PGC+17] and Tensorflow [ABC+16], as commonly
used in backpropagation for machine learning, would differentiate through all instructions
of an iterative optimization algorithm. While these tools are commonly used in the deep
learning domain, they neglect the structure and optimality conditions of, particularly, convex
optimization problems.

Second, as less of a brute-force approach, one can directly differentiate through the
optimality conditions of a convex optimization problem, also referred to as argmin differen-
tiation [ABB+19, AK17]. CVXPYlayers [AAB+19] is based on prior work on differentiating
through a cone program, called diffcp [ABB+19], and provides interfaces to PyTorch and Ten-
sorflow. OptNet [AK17] addresses quadratic programs. Least squares auto-tuning [BB21] is
a specialized hyper-parameter tuning framework for least squares problems, i.e., a subclass
of quadratic programs, with parametrized problem data. It admits flexible tuning objectives
and tuning regularizers (called hyper-hyper-parameters), and computes their gradient with
respect to the parameters of the least squares problem. PyEPO [TK24] combines various
autodifferentiation and argmin differentiation tools into one software suite.



Tuning systems that involve convex optimization. Differentiating through a convex
problem is useful in a broad array of applications sometimes called predict-then-optimize.
In these applications we make some forecast or prediction (using convex optimization or
other machine learning models), and then take some action (using convex optimization),
and we are interested in the gradient of parameters appearing both in the predictor and the
action policy [TK24, EG22]. In some cases, the prediction and optimization steps are fused
into one black-box model that maps features to actions, called learning to optimize from
features [KDVC+24], which avoids differentiating through an optimization problem. This
approximation is not necessary when it is possible to differentiate through the optimization
problem in an easy and fast way, which motivates this work.

We also mention that when the dimension of θ is small enough, the parameters can be
optimized using zero-order or derivative-free methods, which do not require the gradient of
the overall metric with respect to the parameters [ABBS20, AAB+19]. Examples include
Optuna [ASY+19], HOLA [MBK+22], for tuning parameters with respect to some overall
metric, and Hyperband [LJD+18], which dynamically allocates resources for efficient hyper-
parameter search in machine learning. Even when a tuning problem can be reasonably
carried out using derivative-free methods, the ability to evaluate the gradient can give faster
convergence with fewer evaluations.

Domain-specific languages for convex optimization. Argmin differentiation tools like
CVXPYlayers admit convex optimization problems that are specified in a domain-specific
language (DSL). Such systems allow the user to specify the functions fi and A and b, in
a simple format that closely follows the mathematical description of the problem. Exam-
ples include YALMIP [L0̈4] and CVX [GB14] (in Matlab), CVXPY [DB16] (in Python),
which CVXPYlayers is based on, Convex.jl [UMZ+14] and JuMP [DHL17] (in Julia), and
CVXR [FNB20] (in R). We focus on CVXPY, which also supports the declaration of param-
eters, enabling it to specify problem families, not just problem instances.

DSLs parse the problem description and translate (canonicalize) it to an equivalent prob-
lem that is suitable for a solver that handles some generic class of problems, such as linear
programs (LPs), quadratic programs (QPs), second-order cone programs (SOCPs), semidef-
inite programs (SDPs), and others such as exponential cone programs [BV04]. Our work
focuses on LPs and QPs. After the canonicalized problem is solved, a solution of the original
problem is retrieved from a solution of the canonicalized problem.

It is useful to think of the whole process as a function that maps θ, the parameter that
specifies the problem instance, into x⋆, an optimal value of the variable. With a DSL,
this process consists of three steps. First the original problem description is canonicalized
to a problem in some standard (canonical) form; then the canonicalized problem is solved
using a solver; and finally, a solution of the original problem is retrieved from a solution
of the canonicalized problem. When differentiating through the problem, the sequence of
canonicalization, canonical solving, and retrieval is reversed. Reverse retrieval is followed by
canonical differentiating and reverse canonicalization.

Most DSLs are organized as parser-solvers, which carry out the canonicalization each time



(a) Parser-solver calculating solution x⋆ for problem instance with parameter θ.

ΔΔ

Custom

Gradient

(b) Source code generation for problem family, followed by compilation to custom solver and custom gradient
computation (new, signified with blue color). The compiled solver computes a solution x⋆ to the problem
instance with parameter θ. The compiled differentiator computes the gradient ∆θ given ∆x.

Figure 1: Comparison of convex optimization problem parsing and solving/differentiating ap-
proaches.

the problem is solved (with different parameter values). This simple setting is illustrated in
figure 1a.

Code generation for convex optimization. We are interested in applications where we
solve many instances of the problem, possibly in an embedded application with hard real-time
constraints, or a non-embedded application with limited compute. For such applications, a
code generator makes more sense.

A code generator takes as input a description of a problem family, and generates special-
ized source code for that specific family. That source code is then compiled, and we have
an efficient solver for the specific family. In this work, we add a program that efficiently
computes the gradient of the parameter-solution mapping. The overall workflow is illus-
trated in figure 1b. The compiled solver and differentiator have a number of advantages over
parser-solvers. First, by caching canonicalization and exploiting the problem structure, the
compiled solver and the compiled differentiator are faster. Second, the compiled solver and
in some applications also the compiled differentiator can be deployed in embedded systems,
fulfilling rules for safety-critical code [Hol06].



1.4 Contribution

In this paper, we extend the code generator CVXPYgen [SBD+22] to produce source code
for differentiating the parameter-solution mapping of convex optimization problems that
can be reduced to QPs. We allow for the use of any canonical solver that is supported by
CVXPYgen, including conic solvers. We combine existing theory on differentiating through
the optimality conditions of a QP [AK17] with low-rank updates to the factorization of
quasidefinite systems [DH99, DH05] to enable very fast repeated differentiation. Along with
the generated C code, we compile two Python interfaces, one for use with CVXPY and one
for use with CVXPYlayers. To the best of our knowledge, CVXPYgen is the first code
generator for convex optimization that supports differentiation.

We give three examples, tuning the hyper-parameters and feature engineering parameters
of a machine learning model, tuning the controller weights of an approximate dynamic pro-
gramming controller, and adjusting the parameters in a financial trading engine. CVXPYgen
accelerates these applications by around an order of magnitude.

1.5 Outline

The remainder of this paper is structured as follows. In §2 we describe, at a high level,
how CVXPYgen generates code to differentiate through convex optimization problems. In
§3 we describe the generic system tuning framework that runs the CVXPYgen solvers and
differentiators, and in §4, we illustrate how we use it for three realistic examples that compare
the performance of CVXPYgen to CVXPYlayers. We conclude the paper in §5.

2 Differentiating with CVXPYgen

CVXPYgen is an open-source code generator, based on the Python-embedded domain-
specific language CVXPY. While CVXPY treats all typical conic programs and CVXPYgen
generates code to solve LPs, QPs, and SOCPs, we focus on differentiating through problems
that can be reduced to a QP, i.e., LPs and QPs.

2.1 Disciplined parametrized programming

The CVXPY language uses disciplined convex programming (DCP) to allow for model-
ing instructions that are very close to the mathematical problem description and to verify
convexity in a systematic way [DB16]. Disciplined parametrized programming (DPP) is
an extension to the DCP rules for modeling convex optimization problems. While a DCP
problem is readily canonicalized, a DPP problem is readily canonicalized with affine map-
pings from the user-defined parameters to the canonical parameters. Similarly, the mapping
from a canonical solution back to a solution to the user-defined problem is affine for DPP
problems [AAB+19]. DPP imposes mild restrictions on how parameters enter the problem
expressions. In short, if all parameters enter the problem expressions in an affine way, the



problem is DPP. We model all example problems in §4 DPP and illustrate standard modi-
fications to make DCP problems DPP. Details on the DCP and DPP rules can be found at
https://www.cvxpy.org.

2.2 Differentiating through parametrized problems

Differentiating through a DPP problem consists of three steps: affine parameter canonical-
ization, canonical solving, and affine solution retrieval,

θ̃ = Cθ + c, x̃⋆ = S(θ̃), x⋆ = Rx̃⋆ + r,

where θ is the user-defined parameter, C and R are sparse matrices, and S(·) is the canoncial
solver. We mark the canonical parameter and solution with a tilde.

In this work, we want to propagate a gradient in terms of the current solution, called
∆x, to a gradient in the parameters ∆θ. This mapping is symmetric to the solution map-
ping [AAB+19], i.e.,

∆x̃ = RT∆x, ∆θ̃ = (DTS)(∆x̃; x̃⋆, θ̃), ∆θ = CT∆θ̃,

and we can simply re-use the descriptions of R and C that CVXPYgen has already extracted
for solving the problem. The following section explains how we (re)compute the canonical
derivative (DTS)(∆x̃; x̃⋆, θ̃) efficiently.

2.3 Differentiating through canonical solver

We focus on differentiating through LPs and QPs, i.e., problems that can be reduced to the
QP standard form

minimize (1/2)x̃TPx̃+ qT x̃
subject to l ≤ Ax̃ ≤ u,

as used by the OSQP solver [SBG+20]. The variable is x̃ ∈ Rñ and all other symbols are
parameters. The objective is parametrized with P ∈ Sñ

+, where Sñ
+ is the set of symmetric

positive semidefinite matrices, and q ∈ Rñ. The constraints are parametrized with A ∈
Rm×ñ, l ∈ Rm ∪ {−∞}, and u ∈ Rm ∪ {∞}. If an entry of l or u is −∞ or ∞, respectively,
it means there is no constraint. A pair of equal entries li = ui represents an equality
constraint.

We closely follow the approach that is used in OptNet [AK17]. We denote by AC the
row slice of A that contains all rows Ai for which the lower or upper constraint is active
at optimality, i.e., it holds that Aix̃ = li or Aix̃ = ui (or both, in the case of an equality
constraint). We omit the superscript ⋆ for brevity. We set bC to contain the entries of l or u
at the active constraints indices, i.e., ACx̃ = bC. Then, the solution is characterized by the
KKT system [

P AT
C

AC 0

] [
x̃
ỹC

]
=

[
−q
bC

]
, (2)

https://www.cvxpy.org


where ỹC is the slice of the dual variable corresponding to the active constraints. Note that
we use the sign of ỹ to determine constraint activity. (The first block row of system (2)
corresponds to stationarity of the Lagrangian, and the second block row corresponds to
primal feasibility.)

We take the differential of (2) and re-group the terms as[
P AT

C
AC 0

] [
dx̃
dỹC

]
=

[
−dPx̃− dAT

C ỹC − dq
−dACx̃+ dbC

]
.

We introduce [
dx
dy

]
=

[
P AT

C
AC 0

]−1 [
∆x̃
0

]
, (3)

where the righthand side is evaluated using algorithm 1. To avoid singularity of the linear
system, we regularize the matrix diagonal with a small ϵ > 0, solve the regularized system
and add N refine steps of iterative refinement [CH18, Hig97] to correct for the effect of ϵ on
the solution.

Algorithm 1 Regularized system solve

1: Initialize P , AC, ∆x̃

2: KC =

[
P AT

C
AC 0

]
, Kϵ

C = KC +

[
ϵI 0
0 −ϵI

]
, r =

[
∆x̃
0

]
3: z = (Kϵ

C)
−1r

4: for i = 1 to N refine do
5: δr = r −KCz
6: δz = (Kϵ

C)
−1δr

7: z ← z + δz
8: end for
9: (dx, dy) = z

The regularization strength ϵ = 10−6 and N refine = 3 iterations of iterative refinement
work well in most practical cases.

Ultimately, the gradients in the QP parameters are

∆P = −(1/2)(dxx̃T + x̃dTx ), ∆q = −dx, ∆AC = −(dyx̃T + ỹCd
T
x ), ∆bC = dy.

We copy the rows of ∆AC and ∆bC into the corresponding rows of ∆A and ∆b, respectively,
and set all other entries of ∆A and ∆b to zero.

Low-rank updates to factorization of linear system. For the quasidefinite matrix Kϵ
C

used in algorithm 1, there always exists an LDL-factorization [Van95],

LCDCL
T
C = Kϵ

C =

[
P + ϵI AT

C
AC −ϵI

]
.



If the entries of P or A change, we perform a full re-factorization. Otherwise, we use the
fact that the factors LC and DC change with the set of active constraints, denoted by C. For
the constraints that switch from inactive to active or vice-versa, we perform a sequence of
rank-1 updates to LC and DC.

We re-write the LDL-factorization asL11 0 0
l̄T12 1 0
L31 l̄32 L̄33

D11 0 0
0 d̄22 0
0 0 D̄33

LT
11 l̄12 LT

31

0 1 l̄T32
0 0 L̄T

33

 =

K11 k̄12 KT
31

k̄T
12 k̄22 k̄T

32

K31 k̄32 K33

 ,

where lowercase symbols marked with a bar denote row/column combinations that are added
or deleted. Uppercase symbols marked with a bar are sub-matrices that will be altered due
to the addition or deletion.

For a constraint that switches from inactive to active, we add the respective row/column
combination to Kϵ

C and run algorithm 2. If a constraint switches from active to inactive, we

Algorithm 2 Row/column addition (variant of algorithm 1 in [DH05])

1: Solve the lower triangular system L11D11l̄12 = k̄12 for l̄12
2: d̄22 = k̄22 − l̄T12D11l̄12
3: l̄32 = (k̄32 − L31D11l̄12)/d̄22
4: w = l̄32(−d̄22)1/2
5: Perform the rank-1 downdate L̄33D̄33L̄

T
33 = L33D33L

T
33 − wwT according to algorithm 5

in [DH99]

run algorithm 3 for row/column deletion. All steps of the row/column addition and deletion

Algorithm 3 Row/column deletion (variant of algorithm 2 in [DH05])

1: w = l̄32(−d̄22)1/2
2: l̄12 = 0
3: d̄22 = 1
4: l̄32 = 0
5: Perform the rank-1 update L̄33D̄33L̄

T
33 = L33D33L

T
33 + wwT according to algorithm 5

in [DH99]

algorithms operate on the sparse matrices Kϵ
C and LC stored in compressed sparse column

format. The diagonal matrix DC is stored as an array of diagonal entries. Note that (−d̄22)1/2
is always real because we run algorithms 2 and 3 only for row/column combinations that are
in the lower and right parts of Kϵ

C (where AC changes), for which the diagonal entries of DC
are all negative by quasidefiniteness of Kϵ

C.
It is important to note that all steps, including step 5 in both algorithms, are of at most

quadratic complexity, whereas a full re-factorization would be of cubic complexity. When
only a few constraints switch their activity, this procedure is considerably faster than full re-
factorizations. This is demonstrated in §4 for three practical cases. In the worst case where



all constraints switch to active or inactive between two consecutive solves, the complexity
returns to cubic.

Open source code and full documentation for CVXPYgen and its differentiation feature
is available at

https://pypi.org/project/cvxpygen.

3 System tuning framework

We present a generic tuning method for systems of the form

p = Γ(ω)

where p ∈ R is a performance objective, Γ evaluates the system, which includes many solves
of the convex optimization problem (1), possibly sequentially, and ω ∈ Ω ⊆ Rp is a design,
where Ω is the design space, i.e., the set of admissible designs. Then, we describe in detail
what Γ and ω are, for two important classes of system tuning.

3.1 A generic tuning method

We compute the gradient ∇Γ(ω) using the chain rule and our ability to differentiate through
DPP problems. We use ∇Γ(ω) in a simple projected gradient method [Ber97, CM87] to
optimize the design ω.

We use Euclidean projections onto the design space Ω, denoted by Π(·), and a simple line
search to guarantee that the algorithm is a descent method. If the performance is improved
with the current step size, we use it for the current iteration and increase it by a constant
factor β > 1 for the next iteration. Otherwise, we repeatedly shrink the step size by a
constant factor η > 1 until the performance is improved. The simple generic design method
we use is given in algorithm 4.

Algorithm 4 Projected gradient descent

1: Initialize ω0, α0, k = 0
2: repeat
3: ω̂ = Π(ωk − αk∇Γ(ωk)) ▷ tentative update
4: if Γ(ω̂) < Γ(ωk) then
5: ωk+1 = ω̂, αk+1 = βαk ▷ accept update and increase step size
6: else
7: αk ← αk/η, go to step 3 ▷ shrink step size and re-evaluate
8: end if
9: k ← k + 1
10: until ∥ωk − Π(ωk − αk∇Γ(ωk))∥2 ≤ ϵrel∥ωk∥2 + ϵabs

Note that algorithm 4 assumes that Γ(ω) is to be minimized. If Γ(ω) is to be maximized,
replace it with −Γ(ω).

https://pypi.org/project/cvxpygen


Initialization. We initialize ω0 to a value that is typical for the respective application and
α0 with the clipped Polyak step size

α0 = min

{
Γ(ω0)− p̂

∥∇Γ(ω0)∥22
, 1

}
,

where p̂ is an estimate for the optimal value of the performance objective. We clip the
step size at 1 to avoid too large initial steps due to local concavity. The algorithm is not
particularly dependent on the line search parameters β and η. Reasonable choices are, e.g.,
β = 1.2 and η = 1.5.

Stopping criterion. We stop the algorithm as soon as the termination criterion

∥ωk − Π(ωk − αk∇Γ(ωk))∥2 ≤ ϵrel∥ωk∥2 + ϵabs

with ϵrel, ϵabs > 0 is met. This is also referred to as the projected gradient being small. When
Γ is convex, this corresponds to the first-order optimality condition, i.e., the gradient∇Γ(ωk)
lying in (or close to) the normal cone to Ω at ωk [BV04]. Depending on the application, the
stopping tolerances ϵrel and ϵabs might range between 10−2 and 10−6.

3.2 Tuning hyper-parameters of machine learning models

We call the data points used for training a machine learning model (z1, y1), . . . , (zN , yN) ∈ D,
where each data point consists of features zi and output yi. For the design ω of the machine
learning model, we consider any hyper-parameters, including pre-processing parameters that
determine how the data (z1, y1), . . . , (zN , yN) is modified before fitting the model.

For any choice of ω, we find the model weights β ∈ Rn as

β⋆(ω) = argmin
β

1

N

N∑
i=1

ℓ(zi, yi, β, ω) + r(β, ω),

where ℓ : D × Rn × Ω → R is the training loss function and r : Rn × Ω → R is the
regularizer. While the entries of β are oftentimes referred to as model parameters in the
machine learning literature, we call them weights to make clear that they enter the above
optimization problem as variables (and not as parameters of the optimization problem).
Both ℓ and r are parametrized by the design ω. In the case of ℓ, the design ω might enter
in terms of pre-processing parameters like thresholds for processing outliers. In the case of
r, the design ω might enter as the scaling of the regularization term. In the remainder of
this work, we consider ℓ and r that are convex and quadratic, admitting the differentiation
method described in §2.

We choose ω to minimize the validation loss

p = Γ(ω) =
1

Nval

Nval∑
i=1

ℓval(zvali , yvali , β⋆(ω), ω),



where ℓval : D ×Rn × Ω→ R is the validation loss function, with validation data (zvali , yvali )
that is different from and ideally uncorrelated with the training data. Here, ℓval need not be
convex (or quadratic), since we use the projected gradient method described in §3.1. Note
that the design ω enters ℓval both directly (for example as pre-processing parameters) and
through the optimal model parameters β⋆(ω).

If ℓval is the squared error (between data and model output), then the alternative perfor-
mance objective

p̄ = Γ̄(ω) =

 1

Nval

Nval∑
i=1

ℓval(zvali , yvali , β⋆(ω), ω)

1/2

,

is more meaningful, as it resembles the root mean square error (RMSE).

Cross validation. For better generalization of the optimized ω to unseen data, we can
employ cross validation (CV) [Sha93, HTF09]. We split the set of data points into J par-
titions or folds (typically equally sized) and train the model J times. Every time, we take
J − 1 folds as training data and 1 fold as validation data. We compute the performance pj
as described above, where the subscript j denotes that the validation data (zvali , yvali ) is that
of the jth fold. Then, we average these over all folds as

pCV =
1

J

J∑
j=1

pj(ω).

This is usually referred to as the cross validation loss. Similarly, if ℓval is the squared error,
we compute the cross-validated RMSE p̄CV by averaging all p̄j.

3.3 Tuning the weights of convex optimization control policies

We consider a convex optimization control policy (COCP) that determines a control input
u ∈ U ⊆ Rm that is applied to a dynamical system with state x ∈ X ⊆ Rn, by solving the
convex optimization problem

u = ϕ(x;ω) = argmin
u∈U

ℓ(x, u, ω).

Here, ϕ : X × Ω → U is a family of control policies, parametrized by ω, and x is the
current measurement (or estimate) of the state of the dynamical system. The loss function
ℓ : X ×U ×Ω→ R is parametrized by the design ω, which might involve controller weights,
for example.

We choose ω to minimize the closed-loop loss

p = Γ(ω) = ℓcl(x0, ω),

where the loss function ℓcl : X × Ω → R involves a simulation or real experiment starting
from the initial state x0 and using the control policy u = ϕ(x;ω).



4 Numerical experiments

In this section we present three numerical examples, comparing the solve and differentiation
speed of CVXPYgen with CVXPYlayers, for system tuning with the framework presented in
§3.1. In all three cases we take OSQP as the canonical solver for CVXPYgen and Clarabel
as the canonical solver for CVXPYlayers (since it only supports conic solvers). The code
that was used for the experiments is available at

https://github.com/cvxgrp/cvxpygen.

4.1 Elastic net regression with winsorized features

We consider a linear regression model with elastic net regularization [ZH05], which is a sum
of ridge (sum squares) [HK70] and lasso (sum absolute) [Tib96] regularization, each of which
has a scaling parameter. In addition, we clip or winsorize each feature at some specified
level to mitigate the problem of feature outliers. The clipping levels for each feature are also
parameters.

We consider m data points with one observation and n features each. We start with a
set of observations yi ∈ R and raw features zi ∈ Rn, where zi,j is the jth feature for the ith
observation, subject to outliers. We obtain the winsorized features xi ∈ Rn by clipping the
n components at winsorization levels w ∈ Rn

++ (part of the design) as

xi,j(zi,j;w) = min{max{zi,j,−wj}, wj}, i = 1, . . . ,m, j = 1, . . . , n. (4)

The training loss function and regularizer as in §3.2 are

ℓ(zi, yi, β, ω) = (xi(zi;w)
Tβ − yi)

2, r(β, ω) = λ∥β∥22 + γ∥β∥1,

where λ ≥ 0 and γ ≥ 0 are the the ridge and lasso regularization factors, respectively. Since
the model performance depends mainly on the orders of magnitude of λ and γ, we write
them as λ = 10µ and γ = 10ν .

Together with the winsorization levels w, the design vector becomes ω = (w, µ, ν) ∈
Rn

++ ×R2. We allow to clip zi between 1 and 3 standard deviations and search the elastic
net weights across 7 orders of magnitude. We assume that the entries of zi are approximately
centered and scaled, i.e., have zero mean and standard deviation 1. The design space becomes

Ω = [1, 3]n × [−3, 3]2.

The validation loss function ℓval is identical to the training loss function ℓ and the per-
formance objective is the cross-validated RMSE p̄CV from §3.2.

Code generation. Figure 2 shows how to generate code for this problem. The problem is
modeled with CVXPY in lines 5–9. Code is generated with CVXPYgen in line 12, where we
use the gradient=True option to generate code for computing gradients through the prob-
lem. After importing the CVXPYlayers interface in line 16, it is passed to the Cvxpylayer

constructor in line 17 through the custom_method keyword. The performance objective is
computed in line 18 and differentiated in line 19.

https://github.com/cvxgrp/cvxpygen


1 import cvxpy as cp

2 from cvxpygen import cpg

3

4 # model problem

5 beta = cp.Variable(n, name=’beta’)

6 X = cp.Parameter ((m-m//J, n), name=’X’)

7 l = cp.Parameter(nonneg=True , name=’l’)

8 g = cp.Parameter(nonneg=True , name=’g’)

9 prob = cp.Problem(cp.Minimize(cp.sum_squares(X @ beta - y)

+ l * cp.sum_squares(beta) + g * cp.norm(beta , 1)), [])

10

11 # generate code

12 cpg.generate_code(prob , gradient=True)

13

14 # use CVXPYlayers interface

15 from cvxpylayers.torch import Cvxpylayer

16 from cpg_code.cpg_solver import forward , backward

17 layer = Cvxpylayer(prob , parameters =[X,l,g], variables =[beta],

custom_method =(forward , backward))

18 p = Gamma(w, mu, nu) # involves beta_solution = layer (...)

19 p.backward ()

20 print(w.grad , mu.grad , nu.grad)

Figure 2: Code generation and CVXPYlayers interface for elastic net example. The integers m, n,
and J, the constant y, the function Gamma, and the torch tensors w, mu, and nu are pre-defined.



0 1 2 3 4 5 6 7 8 9 10 11
Iteration

2.2

2.4

2.6

2.8

p

Figure 3: CV loss over tuning iterations.

Data generation. We take m = 100 data points, n = 20 features, and J = 10 CV
folds. For every fold, we reserve m/J = 10 data points for validation and use the other 90
data points for training. We generate the features z̄i without outliers by sampling from the
Gaussian N (0, 1). Then, we sample β̄ ∼ N (0, I) and set noisy labels yi = z̄Ti β̄ + ξi with
ξi ∼ N (0, 0.01). Afterwards, we simulate feature outliers due to, e.g., data capturing errors.
For every feature, we randomly select m/10 = 10 indices and increase the magnitude of the
respective entries of z̄i to a value∼ U [2, 4], i.e., between 2 and 4 standard deviations, and save
them in zi. We estimate the optimal cross-validated RMSE as p̂ = 0.1 corresponding to the
standard deviation of the noise ξ (if it was known). This is a very optimistic estimate, since it
implies that the data is outlier-free after winsorization. The tuning parameters are initialized
to ω0 = (w, µ, ν)0 = (3 · 1, 0, 0). We set the termination tolerances to ϵrel = ϵabs = 10−3.

Results. The projected gradient method terminates after 11 steps with a reduction of the
cross-validated RMSE from 2.85 to 2.12, as shown in figure 3. Figure 4 shows the tuned
winsorization thresholds w and we obtain λ ≈ 0.68 and γ ≈ 0.80.

Timing. Table 1 shows that the speed-up factor for the gradient computations is about 5.
The speed-up for the full tuning loop is reduced due to Python overhead.

Full tuning Solve and Gradient Gradient
CVXPYlayers 1.684 sec 1.570 sec 0.033 sec
CVXPYgen 0.696 sec 0.490 sec 0.007 sec

Table 1: Computation times with CVXPY and CVXPYgen for the elastic net example.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature

1.0

1.5

2.0

2.5

3.0

M
ag

n
it

u
d

e
th

re
sh

ol
d

Figure 4: Thresholds before (magenta) and after tuning (blue). The dashed black lines show the
range of possible winsorization thresholds.

4.2 Approximate dynamic programming controller

We investigate controller design with an ADP controller [WOB15, KB14] where the state
and input cost parameters are subject to tuning.

We are given the discrete-time dynamical system

xt+1 = Axt +But + wt, t = 0, 1, . . . , (5)

with state xt ∈ Rn, input u ∈ Rm limited as ∥u∥∞ ≤ 1, and state disturbance wt, where
wt are unknown, but assumed IID N (0,W ), with W known. The matrices A ∈ Rn×n and
B ∈ Rn×m are the given state transition and input matrices, respectively.

We seek a state feedback controller ut = ϕ(xt) that guides the state xt to zero while
respecting the constraint ∥u∥∞ ≤ 1. We judge a controller ϕ by the metric

J = lim
T→∞

1

T
E

T−1∑
t=0

(
xT
t Qxt + uT

t Rut

)
,

where Q ∈ Sn
+ and R ∈ Sm

++ are given. We assume that the matrix A contains no unstable
eigenvalues with magnitude beyond 1, such that J is guaranteed to exist. Corresponding to
§3.3, we will take our performance metric as

p = Γ(ω) = ℓcl(x0, ω) =
T−1∑
t=0

(
xT
t Qxt + uT

t Rut

)
,

where T is large and fixed, and wt are sampled from N (0,W ). Note that all x1, . . . , xT−1

and u0, . . . , uT−1 are fully determined by the initial state x0, the controller ϕ(x;ω), and the
system dynamics (5).

When the input constraint is absent, we can find the optimal controller (i.e., the one
that minimizes J) using dynamic programming, by minimizing a convex quadratic function,

(Axt +Bu)TP lqr(Axt +Bu) + uTRu,



where the matrix P lqr ∈ Sn
++ is the solution of the algebraic Riccati equation (ARE) for

discrete time systems. The minimizer is readily obtained analytically, with u a linear function
of the state xt. See, e.g., [KS72, PLS80, AM07].

We will use an approximate dynamic programming (ADP) controller

ϕ(xt;ω) = argmin
u∈U

ℓ(xt, u, ω) = argmin
∥u∥∞≤1

(Axt +Bu)T (P lqr + Z)(Axt +Bu) + uTRu.

The controller is designed by ω = Z with Ω = Sn
+. The state xt is another parameter and

the matrices A, B, P lqr, and R are constants.
The quadratic form in the objective makes the above formulation non-DPP. We render

the problem DPP as
ϕ(xt;ω) = argmin

∥u∥∞≤1

∥g +Hu∥22 + uTRu,

where the DPP parameter θ consists of g = LTAxt andH = LTB. Here, L = Chol(P lqr+Z),
where Chol(·) returns the lower Cholesky factor of its argument. In other words, LLT =
P lqr+Z and L is lower triangular. (When running our projected gradient descent algorithm,
we modify L instead of Z and recover Z = LLT − P lqr at the end of the tuning).

Data generation. We choose n = 6 states and m = 3 inputs. We consider an open-loop
system A = diag a with stable and unstable modes sampled from [0.99, 1.00]. The entries
of the input matrix B are sampled from [−0.01, 0.01]. We initialize the state at the origin
and simulate for T = 1000 steps with noise covariance W = 0.12I. The true state and input
cost matrices are Q = R = I, respectively, which we use to compute P lqr as the solution
to the ARE. We initialize ω0 = Z0 = 0 and estimate the optimal control performance p̂
by running the simulation with the input constraint of the controller removed. We use
ϵrel = ϵabs = 0.005.

Results. The projected gradient descent algorithm terminates after 16 gradient steps with
a reduction of the control objective from 8.23 to 6.32, as shown in figure 5.

Timing. The gradient computations are sped up compared to CVXPY by a factor of about
40. Including Python overhead, the whole tuning loop is still sped up by a factor of about
6, as shown in table 2.

Full tuning Solve and gradient Gradient
CVXPYlayers 107.2 sec 101.9 sec 15.7 sec
CVXPYgen 18.3 sec 10.5 sec 0.4 sec

Table 2: Computation times with CVXPY and CVXPYgen for the ADP controller tuning example.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Iteration

6.5

7.0

7.5

8.0

p

Figure 5: Control performance over tuning iterations.

4.3 Portfolio optimization

We consider a variant of the classical Markowitz portfolio optimization model [Mar52] with
holding cost for short positions, transaction cost, and a leverage limit [BJK+24, LFB07],
embedded in a multi-period trading system [BBD+17].

We want to find a fully invested portfolio of holdings in N assets. The holdings are
represented relative to the total portfolio value, in terms of weights w ∈ RN with 1Tw = 1.
The expected portfolio return is µTw, with esimated returns µ ∈ RN . The variance or risk of
the portfolio return is wTΣw, with estimated asset return covariance Σ ∈ SN

++. We assume
that µ and Σ are pre-computed, which we will detail later. We approximate the cost of
holding short positions as κhold1Tw−, where κ

hold describes the (equal) cost of holding a short
position in any asset. Subscript “−” denotes the negative part, i.e., w− = max{−w, 0}. We
approximate the transaction cost as κtc∥w − wpre∥1, where κtc describes the cost of trading
any asset and wpre is the pre-trade portfolio. We solve

maximize µTw − γriskwTΣw − γholdκhold1Tw− − γtcκtc∥∆w∥1
subject to 1Tw = 1, ∥w∥1 ≤ L, ∆w = w − wpre,

(6)

where w,∆w ∈ RN are the variables. We introduced the variable ∆w, also referred to as the
trade vector, to prevent products of parameters and render the problem DPP. Problem (6)
can also be seen as a convex optimization control policy as described in §3.3, where the
expected returns µ (updated once per trading period) and the previous portfolio wpre are
the state x and the trade ∆w is the input u. Our design consists of the leverage limit
L and the aversion factors γrisk, γhold, γtc > 0 for risk, holding cost, and short-selling cost,
respectively. Since the model performance depends primarily on the orders of magnitude of
these factors, we write them as

γrisk = 10ν
risk

, γhold = 10ν
hold

, γtc = 10ν
tc

,

and tune ω = (L, νrisk, νhold, νtc), restricted to the design space

Ω = [1, 2]× [−3, 3]3.



We keep the risk Σ and costs κhold and κtc constant.
We evaluate the performance of the model via a back-test over h trading periods. After

solving problem (6) at a given period, we trade to w⋆, pay short-selling cost κhold1Tw⋆
− and

transaction cost κtc∥w⋆ − wpre∥1, experience the returns rt, and re-invest the full portfolio
value. Hence, the total portfolio value evolves as

Vt+1 = Vt(1 + rTt w
⋆)− κhold1Tw⋆

− − κtc∥w⋆ − wpre∥1.

The pre-trade portfolio for the following trading period is re-balanced as

wpre = w⋆ ◦ (1 + rt) · Vt/Vt+1

and the portfolio realized return at period t is

Rt = (Vt+1 − Vt)/Vt.

We consider the average return and portfolio risk,

R̄ = (1/h)
h∑

t=1

Rt, σ =

(
(1/h)

h∑
t=1

R2
t

)1/2

,

respectively, and annualize them as

R̄ann = hannR̄, σann = (hann)1/2σ,

where hann is the number of trading periods per year. We take their ratio as performance
metric, the so-called Sharpe ratio (SR) [LW08],

p = SR = R̄ann/σann = (hann)1/2R̄/σ.

Data generation. We consider three adjacent intervals of trading periods. First, we use a
burn-in interval to compute the estimate for the expected returns at later time periods and
to compute the constant risk estimate. Second we take a tune interval to perform parameter
optimization. Third, we use a test interval to evaluate the final parameter choice out-of-
sample. We denote the lengths of the three intervals by hburnin, htune, and htest, respectively.

We compute the expected return µt for the holdings at time t as the back-looking moving
average of historical returns rt with window size hburnin. To compute the constant risk
estimate, we first compute the empirical covariance Σ̂ of returns over the burn-in interval.
Then, we fit the standard factor model

Σ = FF T +D

to Σ̂, where F ∈ RN×K is the factor loading matrix and the diagonal matrix D ∈ SN
++ stores

the variance of the idiosyncratic returns [EGBG09].



0 1 2 3 4 5 6 7
Iteration

0.700

0.725

0.750

0.775

0.800

p

Figure 6: Sharpe ratio over tuning iterations.

We consider N = 25 stock assets, chosen randomly from the S&P 500, where historical re-
turn data is available from 2016–2019. While this clearly imposes survivership bias [BGIR92],
the point of this experiment is not to find realistic portfolios but rather to assess the numerical
performance of CVXPYgen. We chooseK = 5 factors, hburnin = 260, htune = 520, htest = 260,
and we take the number of trading periods per year as hann = 260, i.e., we trade once a day.
In other words, we use data from the year 2016 as burn-in interval for estimating µt and to
estimate Σ. We tune the model with data from the years 2017 and 2018 and test it with
data from the year 2019. We fix κhold = κtc = 0.001. We estimate the optimal Sharpe ratio
to be roughly p̂ = 1. We initialize the design vector as ω0 = (L, νrisk, νhold, νtc)0 = (1, 0, 0, 0).
We set the termination tolerances to ϵrel = ϵabs = 0.03.

Results. The projected gradient descent algorithm terminates after 7 iterations and im-
proves the Sharpe ratio by a bit more than 0.1, from 0.69 to 0.80, where it is saturating, as
shown in figure 6.

The values of the tuning parameters are changed to γrisk ≈ 10, γhold ≈ 1, γtc ≈ 1.2, and
L ≈ 1. Figure 7 contains the portfolio value over the trading periods used for tuning and
out-of-sample, before and after tuning, respectively.

Table 3 contains the respective Sharpe ratios. While the tuning interval appears to be
a difficult time period with large drawdown in the middle and the end of the interval, the
Sharpe ratio is improved out-of-sample from an already high level.

In-sample Out-of-sample
Before tuning 0.69 2.21
After tuning 0.80 2.39

Table 3: Sharpe ratios.



0 100 200 300 400 500 600 700
Trading period

1.0

1.2

1.4

P
or

tf
ol

io
va

lu
e

Figure 7: Portfolio value evolution before (dashed line) and after tuning (solid line). Blue and
pink color represent the tuning and testing intervals, respectively.

Timing. Table 4 shows the solve and differentiation times. The gradient computations are
sped up by a factor of about 10. Including Python overhead, the overall tuning loop is sped
up by a factor of about 3.

Full tuning Solve and gradient Gradient
CVXPYlayers 61 sec 57 sec 23 sec
CVXPYgen 21 sec 17 sec 2 sec

Table 4: Computation times with CVXPY and CVXPYgen for the portfolio optimization example.

5 Conclusions

We have added new functionality to the code generator CVXPYgen for differentiating
through parametrized convex optimization problems. Users can model their problem in
CVXPY with instructions close to the math, and create an efficient implementation of
the gradient computation in C, by simply setting an additional keyword argument of the
CVXPYgen code generation method. Our numerical experiments show that the gradient
computations are sped up by around one order of magnitude for typical use cases.

References

[AAB+19] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable
convex optimization layers. In Advances in Neural Information Processing Systems
(NeurIPS), volume 32, 2019.

[ABB+19] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Differentiating through
a cone program. arXiv preprint arXiv:1904.09043, 2019.



[ABBS20] A. Agrawal, S. Barratt, S. Boyd, and B. Stellato. Learning convex optimization control
policies. In Learning for Dynamics and Control, pages 361–373. PMLR, 2020.

[ABC+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. TensorFlow: a system for large-scale machine learning.
In 12th USENIX symposium on operating systems design and implementation (OSDI
16), pages 265–283, 2016.

[AK17] B. Amos and Z. Kolter. OptNet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pages 136–145. PMLR,
2017.

[AM07] B. Anderson and J. Moore. Optimal control: linear quadratic methods. Courier Cor-
poration, 2007.

[ASY+19] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 2623–2631,
2019.

[BB91] S. Boyd and C. Barratt. Linear controller design: limits of performance. Citeseer,
1991.

[BB21] S. Barratt and S. Boyd. Least squares auto-tuning. Engineering Optimization,
53(5):789–810, 2021.

[BBD+17] S. Boyd, E. Busseti, S. Diamond, R. Kahn, K. Koh, P. Nystrup, and J. Speth. Multi-
period trading via convex optimization. Foundations and Trends in Optimization,
3(1):1–76, 2017.

[BEGFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in
system and control theory. SIAM, 1994.

[Ber91] D. Bertsekas. Linear network optimization: algorithms and codes. MIT press, 1991.

[Ber97] P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
48(3):334–334, 1997.

[BFH+18] J. Bradbury, R. Frostig, P. Hawkins, M. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

[BG92] D. Bertsekas and R. Gallager. Data networks. Athena Scientific, 1992.

[BGIR92] S. Brown, W. Goetzmann, R. Ibbotson, and S. Ross. Survivorship bias in performance
studies. The Review of Financial Studies, 5(4):553–580, 1992.

[BJK+24] S. Boyd, K. Johansson, R. Kahn, P. Schiele, and T. Schmelzer. Markowitz portfolio
construction at seventy. arXiv preprint arXiv:2401.05080, 2024.



[BN06] C. Bishop and N. Nasrabadi. Pattern recognition and machine learning. Springer,
2006.

[BT04] D. Bertsimas and A. Thiele. A robust optimization approach to supply chain manage-
ment. In Integer Programming and Combinatorial Optimization: 10th International
IPCO Conference, New York, NY, USA, June 7-11, 2004. Proceedings 10, pages 86–
100. Springer, 2004.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[CH18] E. Carson and N. Higham. Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM Journal on Scientific Computing, 40(2):A817–
A847, 2018.

[CM87] P. Calamai and J. Moré. Projected gradient methods for linearly constrained problems.
Mathematical programming, 39(1):93–116, 1987.

[Cor95] C. Cortes. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

[Cox58] D. Cox. The regression analysis of binary sequences. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 20(2):215–232, 1958.

[DB16] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[DH99] T. Davis and W. Hager. Modifying a sparse Cholesky factorization. SIAM Journal
on Matrix Analysis and Applications, 20(3):606–627, 1999.

[DH05] T. Davis and W. Hager. Row modifications of a sparse Cholesky factorization. SIAM
Journal on Matrix Analysis and Applications, 26(3):621–639, 2005.

[DHL17] I. Dunning, J. Huchette, and M. Lubin. JuMP: a modeling language for mathematical
optimization. SIAM Review, 59(2):295–320, 2017.

[EG22] A. Elmachtoub and P. Grigas. Smart “predict, then optimize”. Management Science,
68(1):9–26, 2022.

[EGBG09] E. Elton, M. Gruber, S. Brown, and W. Goetzmann. Modern portfolio theory and
investment analysis. John Wiley & Sons, 2009.

[FNB20] A. Fu, B. Narasimhan, and S. Boyd. CVXR: an R package for disciplined convex
optimization. Journal of Statistical Software, 94(14):1–34, 2020.

[GB14] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1, 2014.

[GK00] R. Grinold and R. Kahn. Active portfolio management. McGraw Hill New York, 2000.

[GPM89] C. Garcia, D. Prett, and M. Morari. Model predictive control: theory and practice –
a survey. Automatica, 25(3):335–348, 1989.



[Hal19] H. Halabian. Distributed resource allocation optimization in 5G virtualized networks.
IEEE Journal on Selected Areas in Communications, 37(3):627–642, 2019.

[Hig97] N. Higham. Iterative refinement for linear systems and LAPACK. IMA Journal of
Numerical Analysis, 17(4):495–509, 1997.

[HK70] A. Hoerl and R. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[Hol06] G. Holzmann. The power of 10: Rules for developing safety-critical code. Computer,
39(6):95–99, 2006.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data
mining, inference, and prediction. Springer, 2009.

[KB14] A. Keshavarz and S. Boyd. Quadratic approximate dynamic programming for input-
affine systems. International Journal of Robust and Nonlinear Control, 24(3):432–449,
2014.

[KC16] B. Kouvaritakis and M. Cannon. Model predictive control. Springer, 2016.

[KDVC+24] J. Kotary, V. Di Vito, J. Cristopher, P. Van Hentenryck, and F. Fioretto. Learning
joint models of prediction and optimization. arXiv preprint arXiv:2409.04898, 2024.

[KS72] H. Kwakernaak and R. Sivan. Linear optimal control systems. Wiley-InterScience
New York, 1972.

[L0̈4] J. Löfberg. YALMIP: a toolbox for modeling and optimization in Matlab. In IEEE
International Conference on Robotics and Automation (ICRA), pages 284–289. IEEE,
2004.

[LAHH16] W. Lefever, E. Aghezzaf, and K. Hadj-Hamou. A convex optimization approach for
solving the single-vehicle cyclic inventory routing problem. Computers & Operations
Research, 72:97–106, 2016.

[LFB07] M. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed trans-
action costs. Annals of Operations Research, 152:341–365, 2007.

[LJD+18] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

[LW08] O. Ledoit and M. Wolf. Robust performance hypothesis testing with the Sharpe ratio.
Journal of Empirical Finance, 15(5):850–859, 2008.

[Mar52] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[MB10] J. Mattingley and S. Boyd. Real-time convex optimization in signal processing. IEEE
Signal Processing Magazine, 27(3):50–61, 2010.



[MBK+22] G. Maher, S. Boyd, M. Kochenderfer, C. Matache, D. Reuter, A. Ulitsky, S. Yukhy-
muk, and L. Kopman. A light-weight multi-objective asynchronous hyper-parameter
optimizer. arXiv preprint arXiv:2202.07735, 2022.

[Mur12] K. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[Nar13] R. Narang. Inside the black box: a simple guide to quantitative and high-frequency
trading. John Wiley & Sons, 2013.

[NCB23] P. Nobel, E. Candès, and S. Boyd. Tractable evaluation of Stein’s unbiased risk
estimate with convex regularizers. IEEE Transactions on Signal Processing, 71:4330–
4341, 2023.

[NLC24] P. Nobel, D. LeJeune, and E. Candès. RandALO: Out-of-sample risk estimation in
no time flat. arXiv preprint arXiv:2409.09781, 2024.

[Pal25] D. Palomar. Portfolio Optimization. Cambridge University Press, 2025.

[PGC+17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS,
volume 31, 2017.

[PLS80] T. Pappas, A. Laub, and N. Sandell. On the numerical solution of the discrete-time
algebraic riccati equation. IEEE Transactions on Automatic Control, 25(4):631–641,
1980.

[RMD+17] J. Rawlings, D. Mayne, M. Diehl, et al. Model predictive control: theory, computation,
and design. Nob Hill Publishing Madison, WI, 2017.

[SBD+22] M. Schaller, G. Banjac, S. Diamond, A. Agrawal, B. Stellato, and S. Boyd. Embedded
code generation with CVXPY. IEEE Control Systems Letters, 6:2653–2658, 2022.

[SBG+20] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator
splitting solver for quadratic programs. Mathematical Programming Computation,
12(4):637–672, 2020.

[Sha93] J. Shao. Linear model selection by cross-validation. Journal of the American statistical
Association, 88(422):486–494, 1993.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

[TK24] B. Tang and E. Khalil. PyEPO: A PyTorch-based end-to-end predict-then-optimize
library for linear and integer programming. Mathematical Programming Computation,
16(3):1–39, 2024.

[UMZ+14] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd. Convex optimization
in Julia. In 2014 first workshop for high performance technical computing in dynamic
languages, pages 18–28. IEEE, 2014.



[Van95] R. Vanderbei. Symmetric quasidefinite matrices. SIAM Journal on Optimization,
5(1):100–113, 1995.

[Wai05] K. Wainwright. Fundamental methods of mathematical economics. McGraw-Hill, 2005.

[WB09] Y. Wang and S. Boyd. Fast model predictive control using online optimization. IEEE
Transactions on Control Systems Technology, 18(2):267–278, 2009.

[WOB15] Y. Wang, B. O’Donoghue, and S. Boyd. Approximate dynamic programming via
iterated Bellman inequalities. International Journal of Robust and Nonlinear Control,
25(10):1472–1496, 2015.

[ZE10] M. Zibulevsky and M. Elad. L1-L2 optimization in signal and image processing. IEEE
Signal Processing Magazine, 27(3):76–88, 2010.

[ZH05] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005.


	Introduction
	Differentiating through convex optimization problems
	Autodifferentiation framework
	Related work
	Contribution
	Outline

	Differentiating with CVXPYgen
	Disciplined parametrized programming
	Differentiating through parametrized problems
	Differentiating through canonical solver

	System tuning framework
	A generic tuning method
	Tuning hyper-parameters of machine learning models
	Tuning the weights of convex optimization control policies

	Numerical experiments
	Elastic net regression with winsorized features
	Approximate dynamic programming controller
	Portfolio optimization

	Conclusions

