
Automatic Generation of
Explicit Quadratic Programming Solvers

Maximilian Schaller Daniel Arnström Alberto Bemporad
Stephen Boyd

June 12, 2025

Abstract

We consider a family of convex quadratic programs in which the coefficients of the
linear objective term and the righthand side of the constraints are affine functions of a
parameter. It is well known that the solution of such a parametrized quadratic program
is a piecewise affine function of the parameter. The number of (polyhedral) regions
in the solution map can grow exponentially in problem size, but when the number of
regions is moderate, a so-called explicit solver is practical. Such a solver computes the
coefficients of the affine functions and the linear inequalities defining the polyhedral
regions offline; to solve a problem instance online it simply evaluates this explicit
solution map. Potential advantages of an explicit solver over a more general purpose
iterative solver can include transparency, interpretability, reliability, and speed. In
this paper we describe how code generation can be used to automatically generate an
explicit solver from a high level description of a parametrized quadratic program. Our
method has been implemented in the open-source software CVXPYgen, which is part
of CVXPY, a domain specific language for general convex optimization.

1

Contents

1 Introduction 3
1.1 Parametric convex optimization . 3
1.2 Related work . 3
1.3 Contribution . 5
1.4 Outline . 5

2 Explicit solution of parametric QPs 5
2.1 Parametric QP . 5
2.2 Optimality conditions . 6
2.3 Explicit parametric QP solver . 7

3 Code generation 9
3.1 Domain-specific languages for optimization 9
3.2 Code generation for explicitly solving QPs 9

4 Hello world 11
4.1 Modeling and code generation . 11
4.2 C interface . 11
4.3 CVXPY interface . 12

5 Applications 15
5.1 Monotone regression . 15
5.2 Power management . 15
5.3 Model predictive control . 17
5.4 Portfolio optimization . 17

6 Conclusions 19

2

1 Introduction

1.1 Parametric convex optimization

A parametric convex optimization problem can be written as

minimize f0(x, θ)
subject to fi(x, θ) ≤ 0, i = 1, . . . ,m,

hi(x, θ) = 0, i = 1, . . . , q,
(1)

where x ∈ Rn is the variable and θ ∈ Θ ⊆ Rp is the parameter, i.e., data that is given
and known whenever (1) is solved. The objective function f0 and the inequality constraint
functions fi, i = 1, . . . ,m, are convex in x and the equality constraint functions hi, i =
1, . . . , q, are affine in x, for any given value of θ ∈ Θ [BV04]. We refer to a solution of (1) as
x⋆(θ) to emphasize its dependence on the parameter θ. Here we neglect that x⋆ might not
be unique or might not exist, and refer to the mapping from θ to x as the solution map of
the parametrized problem.

Convex optimization is used in various domains, including control systems [BBM17,
RMD+17, KC16, KB14, WB09, BM07, BB91, GPM89], signal and image processing [CP16,
CP11, MB10, ZE10], and quantitative finance [Pal25, BJK+24, BBD+17, Nar13, GK00,
Mar52], just to name a few that are particularly relevant for this work.

Explicit solvers for multiparametric programming. Traditionally, x⋆(θ) is evaluated
using an iterative numerical method that takes a given parameter value and computes an
(almost) optimal point x⋆(θ) [GC24, SBG+20, OCPB16, DCB13]. We focus here on a very
special case when x⋆(θ) can be expressed in closed form, as an explicit function that maps a
given value of θ directly to a solution x⋆(θ). Such explicit solvers are practical for only some
problems, and generally only smaller instances, but when they are practical they can offer a
number of advantages over generic iterative solvers. Developing such solvers for parametric
programs is now known as multiparametric programming.

1.2 Related work

Multiparametric programming. Investigations of the theoretical properties of paramet-
ric convex optimization problems date back to the 60s [MR64] and were largely extended
in the 80s [Fia83]. After early work on explicitly solving parametric linear programs (LPs)
in the context of economics [GN72] in the 70s, researchers started investigating the explicit
solution of different convex optimization problems in the early 2000s. Some of the first pa-
pers developed explicit solutions to model predictive control problems based on quadratic
programs (QPs) [BMDP02] and LPs [BBM+02], and general algorithms were developed
for explicitly solving QPs [BMDP02, TJB03a, PS10, GBN11] and LPs [BBM03]. These
are often cited as multiparametric linear or quadratic programming, respectively, where
the latter is often abbreviated as MPQP. Further, people have worked on verifying the

3

complexity of such methods [CB17], on approximate or suboptimal multiparametric pro-
gramming [BF03, JG03, BF06], on multiparametric programming for linear complementary
problems [JM06], and on synthesizing specialized hardware for multiparametric program-
ming [JJST06, BOPS11, ROL+23].

Software implementations include the Hybrid Toolbox [Bem04], the Multi-Parametric
Toolbox [HKJM13], the Model Predictive Control Toolbox [Bem15], and the POP Tool-
box [ODP+16] in Matlab, the MPQP solver in the proprietary FORCES PRO software [DJ14],
and the PDAQP solver [AA24] in Julia and Python, which we use in this work.

Potential advantages of an explicit solver over a more general purpose iterative solver can
include transparency, interpretability, reliability, and speed. Since the solver is essentially a
lookup table, with an explicit affine function associated with each region, there is no question
of convergence. Indeed, we can explicitly determine the maximum number of floating-point
operations (FLOPS) required to compute x⋆(θ) given θ [CB17, ABA24]. An explicit solver
involves no division, so floating-point overflow or divide-by-zero exceptions cannot occur.
For the same reason, it is possible to store the coefficients in a lower precision format such as
16-bit floating-point (FP16) to reduce storage, and possibly to carry out the computations
in lower precision as well, to increase speed or use low-cost electronic boards (at the cost of
a modest decrease in accuracy).

The disadvantages of using an explicit solver all relate to its worst-case exponential scaling
with problem size. This limits its practical use to relatively small problems, which however
do arise in many application areas. Even when it is practical to use an explicit solver, the
solver data size can be large, since we must store the coefficients of the explicit solution map.

Code generation for convex optimization. While typical convex optimization solvers
are designed for general-purpose computers [DB16, GC24], we are mostly interested in em-
bedded applications with hard real-time constraints, and also non-embedded applications
where extreme speeds are required.

A code generator heavily exploits the structure of the functions in (1) and generates
custom C code for solving the problem fast and reliably for changing values of θ, while
fulfilling rules for safety-critical code [Hol06]. Examples of code generators for iterative
solvers are CVXGEN [MB12] (for general QPs), CVXPYgen [SBD+22], which interfaces
with the OSQP code generator [BSM+17] and QOCOGEN [CA25] (for QPs and second-
order cone programs, respectively), and acados [VFK+21] and the proprietary FORCES
PRO [DJ14], both specifically designed for QP-based and nonlinear control problems. These
code generators are used for many applications. CVXGEN, for example, is used to guide
and control all of the SpaceX first stage landings [Bla16].

Domain-specific languages for optimization. Code generators typically accept prob-
lem specifications given in a domain specific language (DSL) for convex optimization [L0̈4,
GB14]. A DSL allows the user to describe the problem in a natural high level human readable
way, eliminating the effort (and risk of error) in transforming the problem to the standard
form required by a solver. For example there can be multiple variables or parameters, with

4

names that make sense in the application; the code generator takes care of mapping these to
our generic x ∈ Rn and θ ∈ Θ. Well-known DSLs include YALMIP [L0̈4] and CVX [GB14]
in Matlab, CVXPY [DB16] in Python, Convex.jl [UMZ+14] and JuMP [DHL17] in Julia,
and CVXR [FNB20] in R. We focus on CVXPY.

1.3 Contribution

In this paper, we adapt the code generator CVXPYgen with the multiparametric explicit
QP solver PDAQP to generate explicit solvers for convex optimization problems, described
in CVXPY, that can be reduced to QPs. Along with C and C++ code for the generated
solver, we generate a Python interface for rapid prototyping and non-embedded applications.

We give four representative application examples, involving linear regression, power man-
agement in residential buildings, model predictive control, and financial portfolio optimiza-
tion. Our code generator accelerates the solve time for these examples by up to three orders
of magnitude compared to directly using CVXPY and its default QP solver, with solve times
down to hundreds of nanoseconds (on a standard laptop).

1.4 Outline

In §2 we give a quick derivation of the explicit solution map for a parametric QP. In §3 we
explain how we generate source code for an explicit solver that is described in the modeling
language CVXPY, and how to interface with the generated code. We illustrate the explicit
solver code generation process in §4. In §5 we assess the numerical performance of the explicit
solvers for several practical examples. We report the time it takes to generate and compile
the generated code, the size of the resulting binary files, and the solve times.

2 Explicit solution of parametric QPs

2.1 Parametric QP

We consider the QP
minimize (1/2)xTPx+ qTx
subject to Ax ≤ b,

(2)

where x ∈ Rn is the variable, and the data are P ∈ Sn
++ (the set of symmetric positive

definite n× n matrices), q ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The inequality in the constraints
is elementwise.

Our focus is on the case when the data P and A are given, and q and b are affine functions
of a parameter θ ∈ Rp,

q = u+ Uθ, b = v + V θ, (3)

where u ∈ Rn, U ∈ Rn×p, v ∈ Rm, and V ∈ Rm×p are given. We refer to the QP (2)
parametrized by θ in (3) as a parametrized QP. Since the objective is strictly convex, there

5

is at most one solution of the QP (2) for each value of θ. We refer to the mapping from θ to
the optimal x (when it exists) as the solution map of the parametrized QP (2).

Other QP forms. There are several other standard forms for a parametrized QP, both for
analysis and as an interface to solvers [BMDP02, TJB03a, AA24], but it is easy to translate
between them by introducing additional variables and constraints [BV04].

Constraints on the parameters. In many applications we are also given a set Θ ⊆ Rp

of possible parameter values. For simplicity we ignore this, but occasionally mention how
this set of known possible values of θ can be handled. When we do address the parameter
set, we assume it is a polyhedron.

2.2 Optimality conditions

Active constraints. We denote the ith row of A as aTi , so the inequality constraints in
(2) can be expressed as aTi x ≤ bi, i = 1, . . . ,m. We say that the ith inequality constraint is
tight or active if aTi x = bi. We let A = {i | aTi x = bi} ⊆ {1, . . . ,m} denote the set of active
constraints [CB17, GMW19] (which depends on x, A, and b).

Let λ ∈ Rm
+ denote a dual variable associated with the linear inequality constraints in

(2). The optimality conditions for problem (2) are

Ax ≤ b,
λ ≥ 0,
Px+ q + ATλ = 0,
λi(a

T
i x− bi) = 0, i = 1, . . . ,m.

The first is primal feasibility; the second is nonnegativity of dual variables; the third is
dual feasibility (stationarity of the Lagrangian); and the last one is complementary slackness
[BV04, §5.5.3].

Let Ã, b̃, and λ̃ denote the row slices of A, b, and λ, respectively, corresponding to
the active constraints, i.e., i ∈ A. Let Â, b̂, and λ̂ denote the row slices of A, b, and
λ, respectively, corresponding to the inactive constraints, i.e., i ̸∈ A. By complementary
slackness, we must have λi = 0 for i ̸∈ A, so λ̂ = 0. With λ̂ = 0, which we now assume,
complementary slackness holds. Since λ̂ = 0, ATλ can be expressed as ÃT λ̃, and dual
feasibility can be expressed as

Px+ q + ÃT λ̃ = 0.

Since A is the active set corresponding to x, we have

Ãx = b̃.

These two sets of linear equations can be summarized as the Karush-Kuhn-Tucker (KKT)
system [

P ÃT

Ã 0

] [
x

λ̃

]
=

[
−q

b̃

]
. (4)

6

We assume that linear independence constraint qualification (LICQ) [Ber99, NW06, BV04]
holds, i.e., that the rows of Ã are linearly independent. Then, it is well known that (4) can
be uniquely solved for (x, λ̃) [BV04, §10.1.1], [BV18, §12.3] and we re-write (4) as[

x

λ̃

]
=

[
P ÃT

Ã 0

]−1 [−q

b̃

]
. (5)

This shows that knowledge of the active set A determines the primal and dual solutions of
the QP (2). We note that (x, λ̃) are the solution of the problem of minimizing the objective
of the QP subject to the linear equality constraints Ãx = b̃.

From (5) we see that the solution is a linear function of the data q and b, provided
the active set does not change. This implies that the solution is an affine function of the
parameter θ, provided the active set does not change.

When (x, λ̃) have the values (5) (with λ̂ = 0), they satisfy complementary slackness
and dual feasibility. The remaining two optimality conditions, primal feasibility and dual
nonnegativity, can be expressed as[

Â 0
0 −I

] [
P ÃT

Ã 0

]−1 [−q

b̃

]
≤

[
b̂
0

]
, (6)

since Ax ≤ b holds (as equality) for rows with i ∈ A and λ̂ = 0. The inequality (6) is a set
of linear inequalities in the data b and q, and therefore defines a polyhedron. When (b, q)
is in this polyhedron, called the critical region associated with the active set A, (x, λ) given
by the linear function (5) are primal and dual optimal for the QP (2).

Since compositions of affine functions are affine, it follows that the primal and dual
solutions of the QP (2) are (locally) affine functions of θ. Since the inverse image of a
polyhedron under an affine mapping is a polyhedron, the values of θ over which this affine
function gives the solution is also a polyhedron. Thus the solution map is a piecewise affine
function of θ, with the polyhedral regions determined by the active set. By the uniqueness
of the solution, it is not difficult to prove that such a map is also continuous across region
boundaries [BMDP02]. This continuity property guarantees a certain degree of robustness
to numerical errors when evaluating the map.

2.3 Explicit parametric QP solver

The optimality conditions discussed above suggest a naive explicit solver, which can be
practical when m is small. We search over all 2m potential active sets. For each one we
compute x and λ via (5), and then check whether (6) holds. If this happens, we have found
the solution; if not, the problem is infeasible.

Now we consider the parameter dependence. For each of the 2m potential active sets, we
can express (5) as

(x, λ̃) = Fθ + g, λ̂ = 0,

7

where

F =

[
P ÃT

Ã 0

]−1 [−U

Ṽ

]
, g =

[
P ÃT

Ã 0

]−1 [−u
ṽ

]
,

where Ṽ and ṽ are the (row) slices of V and v, respectively, corresponding to A. We then
express (6) in terms of θ as

Hθ ≤ j,

where

H =

[
Â 0
0 −I

]
F −

[
V̂
0

]
, j = −

[
Â 0
0 −I

]
g +

[
v̂
0

]
.

For some choices of potential active sets, the inequalities Hθ ≤ j (together with θ ∈ Θ)
are infeasible. We drop these, and consider only the remaining K sets of potential active
sets, and label them as k = 1, . . . , K. We can compute the coefficients of the piecewise affine
solution map, denoted Fk and gk, and their associated region, defined by Hk and jk, before
knowing the specific value of θ. Thus we have the explicit solution map

(x, λ) = Fkθ + gk when Hkθ ≤ jk, k = 1, . . . , K. (7)

Different existing MPQP solvers differ in how they avoid enumerating all 2m active sets
[AA24, §II-c]. When θ ⊆ Θ satisfies none of the inequalities above, the QP is infeasible. The
collection of coefficient matrices and vectors Fk, gk, Hk, jk, k = 1, . . . , K gives an explicit
representation of the solution map of the parametrized QP (2). Since we can compute these
matrices and vectors (and determine the value of K) before we have specified θ, we refer
to computing these coefficients as the offline solve. Evaluating (7) for a given value of θ is
called the online solve. Note that it involves no division.

The number of coefficients in the explicit solver is around K(n + m)p, up to a factor
of K larger than the number of coefficients in the original problem, n2 + nm + (n + m)p
(neglecting sparsity). Even though K can grow exponentially with m, it is often practical
for small problems [BMDP02, TJB03a, CB17].

Implementation. When we explicitly solve a parametrized QP in practice, some of our
initial assumptions can be relaxed. We can handle positive semidefinite P (instead of just
positive definite); we directly handle equality constraints; and we do not require LICQ.
(When P is not positive definite, the solver provides a solution, rather than the solution,
since the solution need not be unique in this case.)

In the offline phase, implementations do not search all 2m possible active sets, but instead
find nonempty regions one by one. This allows us to handle problems where 2m is very large,
but K, the number of (nonempty) regions, is still moderate.

In the online solve, explicit solvers store the regions in a way that facilitates faster search
than a simple linear search over k = 1, . . . , K, typically involving a pre-computed tree. Other
methods are used to either reduce the storage or increase the speed of the online evaluations.

8

We use the specific solver PDAQP [AA24], which has several such accelerations im-
plemented. The offline solve is made more efficient by systematic searching over neigh-
boring regions. The online solve benefits from a binary search tree for the search over
regions [TJB03b]. Complete details can be found in

https://github.com/darnstrom/pdaqp.

3 Code generation

3.1 Domain-specific languages for optimization

When solving a problem instance, DSLs perform a sequence of three steps. First, the DSL
transforms the user-defined problem into a form accepted by a standard or canonical solver.
For example, a constraint like

0 ≤ x ≤ 1

for x ∈ R is translated to

Ax ≤ b, A =

[
1

−1

]
, b =

[
1
0

]
,

as it appears in a canonical form like (2). In a second step, a canonical solver (like PDAQP)
is called to solve the canonical problem. Ultimately, a solution for the user-defined problem
is retrieved from the solution returned by the canonical solver.

Typically, these three steps are performed every time a problem instance is solved. We
call such systems parser-solvers. When dealing with a parametric QP, whose structure does
not change between solves, repeated parsing, i.e., discovering how to reduce the problem to
canonical form, is unnecessary and usually inefficient.

3.2 Code generation for explicitly solving QPs

Consider an application where we solve many instances of a specific parametric QP, possi-
bly in an embedded system with hard real-time constraints. For such applications, a code
generator makes more sense.

As illustrated in figure 1, a code generator for explicitly solving QPs takes as input the
parametric QP, and generates source code that is tailored for (explicitly) solving instances of
that parametric QP. The source code is then compiled into an efficient custom solver, which
has a number of benefits compared to parser-solvers. First, by exploiting the parametric
structure and caching canonicalization, the compiled solver becomes faster. Second, the
compiled solver can be deployed in embedded systems, satisfying rules for safety-critical
code [Hol06].

We extend the open-source code generator CVXPYgen [SBD+22] to generate code for
explicitly solving QPs. The QP is modeled with CVXPY before CVXPYgen generates
library-, allocation-, and division-free code for translating between the user-defined problem

9

https://github.com/darnstrom/pdaqp

Figure 1: Code generation for explicitly solving a parametric QP.

and a canonical form (that of PDAQP in this case) for explicitly solving QPs. Open source
code and full documentation for CVXPYgen and its explicit solve feature is available at

https://github.com/cvxgrp/cvxpygen.

Disciplined parametrized programming. We require the QP to be modeled in CVXPY
using disciplined parametrized programming (DPP) [AAB+19]. The DPP rules mildly
restrict how parameters may enter the objective and constraints. Generally speaking, if
parameters enter all expressions in an affine way, then the problem is DPP-compliant. Details
on the DPP rules can be found at https://www.cvxpy.org.

Canonicalization. When a problem is modeled according to DPP, parameter canonical-
ization and solution retrieval are affine mappings,

θ = Cθuser + c, xuser = Rx+ r,

where θuser and xuser are the user-defined parameter and variable, respectively. The matrices
C and R are typically very sparse. The retrieval matrix R is usually wide, i.e., there are more
canonical variables than user-defined variables, since the canonicalization step introduces
auxiliary variables [AVDB18]. CVXPYgen generates code for the respective sparse matrix-
vector multiplications. In fact, the solution retrieval Rx+ r often reduces to simple pointing
to memory in C.

Parameter constraints. The user may specify constraints on parameters. Suppose that
the values of the user-defined parameter θuser lie in the set Θuser. Then, similarly to how
the parameter θuser itself is canonicalized, the parameter constraints are translated to the
canonical set of possible parameters Θ.

Limitations. In PDAQP the number of inequality constraints m is limited to 1024 so the
regions can be efficiently represented as a bit string. If K, or the size of the data in the
explicit solver, exceed a given limit, the offline phase is terminated with a warning.

10

https://github.com/cvxgrp/cvxpygen
https://www.cvxpy.org

1 import cvxpy as cp

2 from cvxpygen import cpg

3

4 d, p, X, l, u = ...

5 beta = cp.Variable(d, name=’beta’)

6 v = cp.Variable(name=’v’)

7 y = cp.Parameter(p, name=’y’)

8

9 obj = cp.Minimize(cp.sum_squares(X @ beta + v - y))

10 constr = [beta >= 0, l <= y, y <= u]

11 prob = cp.Problem(obj , constr)

12

13 cpg.generate_code(prob , solver=’explicit ’)

Figure 2: Generating an explicit solver with CVXPYgen.

4 Hello world

Here we present a simple example to illustrate how explicit solver code generation works.
Consider the parametric QP

minimize ∥Xβ + v1− y∥22
subject to β ≥ 0,

(8)

where β ∈ Rd and v ∈ R are the variables, θuser = y ∈ Rp is the parameter with Θuser = {y |
l ≤ y ≤ u}, and 1 denotes the vector with all entries one. The bounds l ∈ Rp and u ∈ Rp

and the matrix X ∈ Rp×d are given data.

4.1 Modeling and code generation

The problem can be formulated in CVXPY as shown in figure 2, up to line 11. Note that in
line 10, we specify Θuser with standard CVXPY constraints. We generate the explicit solver
in line 13.

4.2 C interface

Figure 3 shows how the generated explicit solver can be used in C. In line 7, the first entry
of the parameter y is updated to the value 1.2. The function cpg_update_y ensures that
the parameter values are within their pre-specified limits (otherwise, it maps the given value
back onto Θ). In line 8, the problem is solved explicitly with the cpg_solve function. In
lines 9 and 10, respectively, the first entry of the optimal coefficients β and the optimal
v is read and printed. In line 11, the resulting objective value is calculated and printed.
Note that the calculation of the objective value is kept in a separate function from the solve
function, for maximal efficiency.

11

1 #include <stdio.h>

2 #include "cpg_workspace.h"

3 #include "cpg_solve.h"

4

5 int main(int argc , char *argv []){

6

7 cpg_update_y (0, 1.2);

8 cpg_solve ();

9 printf("%f\n", CPG_Result.prim ->beta [0]);

10 printf("%f\n", CPG_Result.prim ->v);

11 printf("%f\n", cpg_obj ());

12

13 return 0;

14

15 }

Figure 3: Using the explicit solver.

Figure 4 shows the C structs that store the result. In the example above, we access the
primal solution beta and v via the prim field of the result struct CPG_Result. The dual
variables in CPG_Dual_t are named according to the index in the list of CVXPY constraints.

4.3 CVXPY interface

We consider a small instance of the parametric QP (8) with d = 2, p = 3, the entries of
X generated IID from N (0, 1), l = 0, and u = 1. We assign the entries of y randomly
between 0 and 1 and solve the problem three times: with CVXPY using the iterative OSQP
solver [SBG+20], with CVXPYgen using OSQP, and with CVXPYgen using the explicit
PDAQP solver.

Figure 5 shows the comparison, demonstrating how the explicit solver can be used via
its auto-generated CVXPY interface. Starting in line 15, we show that the primal and dual
solutions and the objective values are all close, respectively.

12

1 typedef struct {

2 cpg_float *beta; // primal variable beta

3 cpg_float v; // primal variable v

4 } CPG_Prim_t;

5

6 typedef struct {

7 cpg_float *d0; // dual variable d0

8 } CPG_Dual_t;

9

10 typedef struct {

11 CPG_Prim_t *prim; // primal solution

12 CPG_Dual_t *dual; // dual solution

13 } CPG_Result_t;

Figure 4: Data structure of explicit solver result.

13

1 from code_osqp.cpg_solver import cpg_solve

2 prob.register_solve(’gen_OSQP ’, cpg_solve)

3

4 from code_explicit.cpg_solver import cpg_solve

5 prob.register_solve(’gen_explicit ’, cpg_solve)

6

7 def print_result ():

8 print(f’v: {v.value}’)

9 print(f’beta: {beta.value}’)

10 print(f’dual: {constr [0]. dual_value}’)

11 print(f’obj: {obj.value}’)

12

13 y.value = [0.6, 0.8, 0.2]

14

15 prob.solve(solver=’OSQP’)

16 print_result ()

17

18 # v: 0.916741

19 # beta: [0.000000 0.288547]

20 # dual: [0.750370 0.000000]

21 # obj: 0.059628

22

23 prob.solve(method=’gen_OSQP ’)

24 print_result ()

25

26 # v: 0.916741

27 # beta: [0.000000 0.288547]

28 # dual: [0.750370 0.000000]

29 # obj: 0.059628

30

31 prob.solve(method=’gen_explicit ’)

32 print_result ()

33

34 # v: 0.916740

35 # beta: [0.000000 0.288546]

36 # dual: [0.750370 0.000000]

37 # obj: 0.059628

Figure 5: Using the explicit solver in CVXPY.

14

Solve (Python) Solve (C) Gen. + compile Gen. Binary size
CVXPY 0.6089 ms – – – –
CVXPYgen OSQP 0.1764 ms 0.1257 ms 5.7 s 0.1 s 80 KB
CVXPYgen explicit 0.0127 ms 0.0004 ms 13.7 s 9.5 s 15 KB

Table 1: Timing and binary sizes for monotone regression problem.

5 Applications

In this section we report timing and code size details for some typical application examples.
In each case we compare CVXPYgen using the explicit PDAQP solver to CVXPYgen using
the iterative OSQP solver and standard CVXPY using OSQP. When using CVXPYgen with
the OSQP solver, we use OSQP’s code generation feature, which caches the factorization
of the KKT system, for accelerated solving [BSM+17]. When using OSQP in CVXPY or
CVXPYgen, we set both the relative and absolute tolerances to 10−4 (the default in CVXPY).
We run the experiments on an Apple M1 Pro, compiling with Clang at optimization level 3.
For iterative and explicit code generation, we report solve times in C, and the overall time
when solving from Python via the auto-generated CVXPY interface. We also give the time
it takes to generate and compile the code.

5.1 Monotone regression

We consider the monotone regression problem

minimize ∥Ax− b∥22
subject to x1 ≤ x2 ≤ · · · ≤ xd,

where x ∈ Rd is the variable and θuser = b ∈ Rq is the parameter, with Θuser = [−1, 1]q. The
matrix A ∈ Rq×d is given. (This is called monotone regression since the components xi are
constrained to be monotonically nondecreasing.)

Problem instances. We consider d = 5 and q = 10. The entries of A are generated IID
from N (0, 1), and we generate 100 problem instances where b is sampled uniformly from
Θuser.

Results. We obtain n = 15 variables, m = d−1 = 4 inequality constraints, and p = q = 10
parameters. (In this case, the canonicalization step introduced n−d = 10 auxiliary variables.)
We find K = 16 regions (which equals 2m, the maximum possible number of active sets).
Table 1 shows the average solve times and binary sizes.

5.2 Power management

Problem. A nonnegative electric power load L is served by a PV (photovoltaic solar panel)
system, a storage battery, and a grid connection [BNC+17, NOBL25]. We denote the solar

15

Solve (Python) Solve (C) Gen. + compile Gen. Binary size
CVXPY 0.6564 ms – – – –
CVXPYgen OSQP 0.1261 ms 0.0541 ms 5.1 s 0.1 s 75 KB
CVXPYgen explicit 0.0207 ms 0.0001 ms 12.6 s 8.7 s 10 KB

Table 2: Timing and binary sizes for the power management problem.

power as s, the battery power as b, and the grid power as g. These three power sources
supply the load, so we have

L = s+ b+ g.

The PV power satisfies 0 ≤ s ≤ S, where S ≥ 0 is the available PV power. The battery
power satisfies −C ≤ b ≤ D, where D > 0 is the maximum possible discharge power and
C > 0 is the maximum possible charge power. The grid power satisfies g ≥ 0, i.e., we cannot
sell power back to the grid. The (positive) price of the grid power is P , so the grid cost
is Pgh, where h is the duration of one time period, over which we hold the power values
constant.

The battery state of charge at the beginning of the time period is denoted q, and satisfies
0 ≤ q ≤ Q, where Q is the battery capacity. At the beginning of the next time period the
battery charge is q+ = q − hb. We must have 0 ≤ q+ ≤ Q.

We take the cost function

Pgh+ α(q+ − qtar)2 + βb2,

where α and β are given and positive, and qtar is a given target battery charge value.
To choose the powers we solve the QP

minimize Pgh+ α(q+ − qtar)2 + βb2

subject to L = s+ b+ g,
0 ≤ s ≤ S, −C ≤ b ≤ D, g ≥ 0,
q+ = q − hb, 0 ≤ q+ ≤ Q,

where s, b, g, and q+ are the variables, and θuser = (L, S, P, q) are parameters. The remaining
constants, C, D, h, Q, qtar, α, and β, are known. We take

Θuser = [0, 1]× [0, 0.5]× [1, 2]× [0, Q].

Problem instances. We set C = D = 1, h = 0.05, Q = 1, qtar = 0.5, and α = β = 0.1.
We generate 100 problem instances where (L, S, P, q) is sampled uniformly from Θuser.

Results. After canonicalization, there are n = 5 variables (including one auxiliary vari-
able), m = 7 inequality constraints, and p = 4 parameters. We find K = 5 regions. Table 2
shows the average solve times and binary sizes.

16

Solve (Python) Solve (C) Gen. + compile Gen. Binary size
CVXPY 1.102 ms – – – –
CVXPYgen OSQP 0.875 ms 0.790 ms 5.2 s 0.1 s 110 KB
CVXPYgen explicit 0.025 ms 0.001 ms 13.7 s 9.1 s 93 KB

Table 3: Timing and binary sizes for the model predictive control problem.

5.3 Model predictive control

We consider the linear dynamical system [BB91]

zt+1 = Azt +But, t = 0, 1, . . . , H − 1,

where zt ∈ Rnz is the state and ut ∈ Rnu is the input, which must satisfy ∥ut∥∞ ≤ 1. The
matrices A ∈ Rnz×nz and B ∈ Rnz×nu are given. We solve the model predictive control
problem [GPM89, KC16]

minimize zTHPzH +
∑H−1

t=0

(
zTt Qzt + uT

t Rut

)
subject to zt+1 = Azt +But, t = 0, . . . , H − 1,

∥ut∥∞ ≤ 1, t = 0, . . . , H − 1,
z0 = zinit,

where z0, . . . , zH and u0, . . . , uH−1 are the variables and θuser = zinit is the parameter. We
take Θuser = [−1, 1]nz . The objective matrices P ∈ Snz

++, Q ∈ Snz
++, and R ∈ Snu

++ (along with
A and B) are given.

Problem instances. We consider nz = 6 states, nu = 1 input, and a horizon length of
H = 5. We construct A by sampling its diagonal entries from N (0, 1) and its off-diagonal
entries IID from N (0, 0.01), before scaling the whole matrix such that A has spectral radius
1. The entries of the input matrix B are sampled IID from N (0, 0.001). We set the controller
weights to Q = I and R = 0.1I, and compute P as the solution to the algebraic Riccati
equation associated with the infinite-horizon problem [KS72]. We generate 100 problem
instances where the entries of zinit are generated uniformly from Θuser.

Results. After canonicalization, we have n = 77 variables (of which 36 are auxiliary vari-
ables), m = 10 inequality constraints, and p = nz = 6 parameters. We find K = 63 regions.
Table 3 shows the average solve times and binary sizes.

5.4 Portfolio optimization

We construct a financial portfolio consisting of holdings in N assets [GK00, Nar13, Pal25].
We represent the holdings relative to the total (positive) portfolio value, in terms of non-
negative weights w ∈ RN

+ , where 1Tw = 1, with wi being the fraction of the (positive) total
portfolio value invested in asset i. With estimated mean annualized asset returns µ ∈ RN

17

Ticker symbol Company
AAPL Apple
AMZN Amazon
BRK.A Berkshire Hathaway
FB (now META) Facebook (now Meta)
GOOGL Alphabet
MSFT Microsoft
XOM ExxonMobil

Table 4: Stocks used in the portfolio optimization problem.

Solve (Python) Solve (C) Gen. + compile Gen. Binary size
CVXPY 0.5441 ms – – – –
CVXPYgen OSQP 0.0502 ms 0.0070 ms 5.1 s 0.1 s 76 KB
CVXPYgen explicit 0.0113 ms 0.0005 ms 20.8 s 16.5 s 234 KB

Table 5: Timing and binary sizes for the portfolio optimization problem.

[GK00], the estimated mean annualized portfolio return is µTw. The variance or risk of the
portfolio return is wTΣw, where Σ ∈ SN

++ is an estimate for the covariance matrix of the
annualized asset returns. Our objective is to maximize the risk-adjusted expected annualized
return

µTw − γwTΣw,

where γ > 0 is the risk-aversion factor. To find the portfolio we solve the Markowitz
problem [Mar52, BJK+24]

maximize µTw − γwTΣw
subject to 1Tw = 1, w ≥ 0,

where the portfolio weights w ∈ RN are the variable and the parameter is θuser = µ with
Θuser = [−1, 1]N . This means that we expect no annualized returns beyond ±100%. The
covariance matrix Σ ∈ SN

++ and the risk-aversion factor γ > 0 are given.

Problem instances. We take N = 7 assets. To obtain data we choose the 7 stocks with
the largest market capitalization as of January 1, 2017, listed in table 4. We compute Σ by
first taking the sample covariance of the 7 assets’ daily returns in the years 2017 and 2018,
and then annualizing the result. We choose γ = 2. We generate 250 problem instances where
µ is taken as the one-year trailing average of returns for 250 trading days in the year 2019.

Results. We have n = N = 7 variables, m = N = 7 inequality constraints, and p = N = 7
parameters. We find K = 127 regions, only one less than the maximum 2m potential
combinations of investing in an asset or not, since the constraint 1Tw = 1 prevents w = 0
(not investing in any asset). Table 5 shows the average solve times and binary sizes.

18

6 Conclusions

We have added new functionality to the code generator CVXPYgen that generates an explicit
solver (in C) for a parametrized convex optimization problem, when that is tractable. The
user can prototype a problem in CVXPY, with code close to the math and convenient names
for multiple variables and parameters, using a generic iterative solver; a change of one option
in code generation will generate an explicit solver for the parametrized problem. For typical
(small) problems from various application domains, our numerical experiments show the
generated explicit solvers exhibit solve times at (or below) one microsecond, giving up to
three orders of magnitude speedup over an iterative solver.

References

[AA24] D. Arnström and D. Axehill. A high-performant multi-parametric quadratic
programming solver. In 2024 IEEE 63rd Conference on Decision and Control
(CDC), pages 303–308, 2024.

[AAB+19] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differen-
tiable convex optimization layers. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32, 2019.

[ABA24] D. Arnström, D. Broman, and D. Axehill. Exact worst-case execution-time anal-
ysis for implicit model predictive control. IEEE Transactions on Automatic
Control, 69(10):7190–7196, 2024.

[AVDB18] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system
for convex optimization problems. Journal of Control and Decision, 5(1):42–60,
2018.

[BB91] S. Boyd and C. Barratt. Linear controller design: Limits of performance, vol-
ume 78. Citeseer, 1991.

[BBD+17] S. Boyd, E. Busseti, S. Diamond, R. Kahn, K. Koh, P. Nystrup, and J. Speth.
Multi-period trading via convex optimization. Foundations and Trends in Opti-
mization, 3(1):1–76, 2017.

[BBM+02] A. Bemporad, F. Borrelli, M. Morari, et al. Model predictive control based on
linear programming – the explicit solution. IEEE transactions on automatic
control, 47(12):1974–1985, 2002.

[BBM03] F. Borrelli, A. Bemporad, and M. Morari. Geometric algorithm for multipara-
metric linear programming. Journal of optimization theory and applications,
118:515–540, 2003.

19

[BBM17] F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid
systems. Cambridge University Press, 2017.

[Bem04] A. Bemporad. Hybrid Toolbox - User’s Guide, 2004. http://cse.lab.

imtlucca.it/~bemporad/hybrid/toolbox.

[Bem15] A. Bemporad. A multiparametric quadratic programming algorithm with poly-
hedral computations based on nonnegative least squares. IEEE Transactions on
Automatic Control, 60(11):2892–2903, 2015.

[Ber99] D. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

[BF03] A. Bemporad and C. Filippi. Suboptimal explicit receding horizon control via
approximate multiparametric quadratic programming. Journal of optimization
theory and applications, 117:9–38, 2003.

[BF06] A. Bemporad and C. Filippi. An algorithm for approximate multiparametric
convex programming. Computational optimization and applications, 35:87–108,
2006.

[BJK+24] S. Boyd, K. Johansson, R. Kahn, P. Schiele, and T. Schmelzer. Markowitz
portfolio construction at seventy. Journal of Portfolio Management, 50(8):117–
160, 2024. Also available at https://arxiv.org/pdf/2401.05080.

[Bla16] L. Blackmore. Autonomous precision landing of space rockets. In Frontiers of
Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium,
volume 46, pages 15–20. The Bridge Washington, DC, 2016.

[BM07] A. Bemporad and M. Morari. Robust model predictive control: A survey. In
Robustness in identification and control, pages 207–226. Springer, 2007.

[BMDP02] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.

[BNC+17] R. Byrne, T. Nguyen, D. Copp, B. Chalamala, and I. Gyuk. Energy manage-
ment and optimization methods for grid energy storage systems. IEEE Access,
6:13231–13260, 2017.

[BOPS11] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace. Ultra-fast stabilizing model
predictive control via canonical piecewise affine approximations. IEEE Transac-
tions on Automatic Control, 56(12):2883–2897, 2011.

[BSM+17] G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and S. Boyd.
Embedded code generation using the OSQP solver. In IEEE Conference on
Decision and Control, pages 1906–1911. IEEE, 2017.

20

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
https://arxiv.org/pdf/2401.05080

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[BV18] S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors,
Matrices, and Least Squares. Cambridge University Press, 2018.

[CA25] G. Chari and B. Açıkmeşe. QOCO: A quadratic objective conic optimizer with
custom solver generation. arXiv preprint arXiv:2503.12658, 2025.

[CB17] G. Cimini and A. Bemporad. Exact complexity certification of active-set meth-
ods for quadratic programming. IEEE Transactions on Automatic Control,
62(12):6094–6109, 2017.

[CP11] P. Combettes and J. Pesquet. Proximal splitting methods in signal processing.
Fixed-point algorithms for inverse problems in science and engineering, pages
185–212, 2011.

[CP16] A. Chambolle and T. Pock. An introduction to continuous optimization for
imaging. Acta Numerica, 25:161–319, 2016.

[DB16] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[DCB13] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded
systems. In European Control Conference (ECC), pages 3071–3076. IEEE, 2013.

[DHL17] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for math-
ematical optimization. SIAM Review, 59(2):295–320, 2017.

[DJ14] A. Domahidi and J. Jerez. FORCES Professional. Embotech GmbH, 2014.

[Fia83] A. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Pro-
gramming. Academic Press, London, U.K., 1983.

[FNB20] A. Fu, B. Narasimhan, and S. Boyd. CVXR: An R package for disciplined convex
optimization. Journal of Statistical Software, 94(14):1–34, 2020.

[GB14] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-
ming, version 2.1, 2014.

[GBN11] A. Gupta, S. Bhartiya, and P. Nataraj. A novel approach to multiparametric
quadratic programming. Automatica, 47(9):2112–2117, 2011.

[GC24] P. Goulart and Y. Chen. Clarabel: An interior-point solver for conic programs
with quadratic objectives. arXiv preprint arXiv:2405.12762, 2024.

[GK00] R. Grinold and R. Kahn. Active portfolio management. McGraw Hill New York,
2000.

21

[GMW19] P. Gill, W. Murray, and M. Wright. Practical optimization. SIAM, 2019.

[GN72] T. Gal and J. Nedoma. Multiparametric linear programming. Management
Science, 18(7):406–422, 1972.

[GPM89] C. Garcia, D. Prett, and M. Morari. Model predictive control: Theory and
practice – a survey. Automatica, 25(3):335–348, 1989.

[HKJM13] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. Multi-parametric toolbox
3.0. European Control Conference (ECC), pages 502–510, 2013.

[Hol06] G. Holzmann. The power of 10: Rules for developing safety-critical code. Com-
puter, 39(6):95–99, 2006.

[JG03] T. Johansen and A. Grancharova. Approximate explicit constrained linear model
predictive control via orthogonal search tree. IEEE Transactions on Automatic
Control, 58(5):810–815, 2003.

[JJST06] T. Johansen, W. Jackson, R. Schreiber, and P. Tondel. Hardware synthesis
of explicit model predictive controllers. IEEE Transactions on control systems
technology, 15(1):191–197, 2006.

[JM06] C. Jones and M. Morrari. Multiparametric linear complementarity problems. In
Proceedings of the 45th IEEE Conference on Decision and Control, pages 5687–
5692. IEEE, 2006.

[KB14] A. Keshavarz and S. Boyd. Quadratic approximate dynamic programming for
input-affine systems. International Journal of Robust and Nonlinear Control,
24(3):432–449, 2014.

[KC16] B. Kouvaritakis and M. Cannon. Model Predictive Control. Springer, 2016.

[KS72] H. Kwakernaak and R. Sivan. Linear optimal control systems. Wiley-InterScience
New York, 1972.

[L0̈4] J. Löfberg. YALMIP: A toolbox for modeling and optimization in Matlab. In
IEEE International Conference on Robotics and Automation (ICRA), pages 284–
289. IEEE, 2004.

[Mar52] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[MB10] J. Mattingley and S. Boyd. Real-time convex optimization in signal processing.
IEEE Signal Processing Magazine, 27(3):50–61, 2010.

[MB12] J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded convex
optimization. Optimization and Engineering, 13:1–27, 2012.

22

[MR64] O. Mangasarian and J. Rosen. Inequalities for stochastic nonlinear programming
problems. Operations Research, 12:143–154, 1964.

[Nar13] R. Narang. Inside the Black Box: A Simple Guide to Quantitative and High-
frequency Trading. John Wiley & Sons, 2013.

[NOBL25] O. Nnorom, G. Ogut, S. Boyd, and P. Levis. Aging-aware battery control via
convex optimization. arXiv preprint arXiv:2505.09030, 2025.

[NW06] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[OCPB16] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory
and Applications, 169(3):1042–1068, 2016.

[ODP+16] R. Oberdieck, N. Diangelakis, M. Papathanasiou, I. Nascu, and E. Pistikopoulos.
POP – Parametric optimization toolbox. Industrial & Engineering Chemistry
Research, 55(33):8979–8991, 2016.

[Pal25] D. Palomar. Portfolio Optimization: Theory and Application. Cambridge Uni-
versity Press, 2025.

[PS10] P. Patrinos and H. Sarimveis. A new algorithm for solving convex parametric
quadratic programs based on graphical derivatives of solution mappings. Auto-
matica, 46(9):1405–1418, 2010.

[RMD+17] J. Rawlings, D. Mayne, M. Diehl, et al. Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing Madison, WI, 2017.

[ROL+23] A. Ravera, A. Oliveri, M. Lodi, A. Bemporad, W. Heemels, E. Kerrigan, and
M. Storace. Co-design of a controller and its digital implementation: The MOBY-
DIC2 toolbox for embedded model predictive control. IEEE Transactions on
Control Systems Technology, 31(6):2871–2878, 2023.

[SBD+22] M. Schaller, G. Banjac, S. Diamond, A. Agrawal, B. Stellato, and S. Boyd.
Embedded code generation with CVXPY. IEEE Control Systems Letters, 6:2653–
2658, 2022.

[SBG+20] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An
operator splitting solver for quadratic programs. Mathematical Programming
Computation, 12(4):637–672, 2020.

[TJB03a] P. Tøndel, T. Johansen, and A. Bemporad. An algorithm for multi-parametric
quadratic programming and explicit MPC solutions. Automatica, 39(3):489–497,
2003.

23

[TJB03b] P. Tøndel, T. Johansen, and A. Bemporad. Evaluation of piecewise affine control
via binary search tree. Automatica, 39(5):945–950, 2003.

[UMZ+14] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd. Convex
optimization in Julia. In 2014 first workshop for high performance technical
computing in dynamic languages, pages 18–28. IEEE, 2014.

[VFK+21] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli,
B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl. acados – a modular open-
source framework for fast embedded optimal control. Mathematical Programming
Computation, pages 1–37, 2021.

[WB09] Y. Wang and S. Boyd. Fast model predictive control using online optimization.
IEEE Transactions on Control Systems Technology, 18(2):267–278, 2009.

[ZE10] M. Zibulevsky and M. Elad. L1-L2 optimization in signal and image processing.
IEEE Signal Processing Magazine, 27(3):76–88, 2010.

24

	Introduction
	Parametric convex optimization
	Related work
	Contribution
	Outline

	Explicit solution of parametric QPs
	Parametric QP
	Optimality conditions
	Explicit parametric QP solver

	Code generation
	Domain-specific languages for optimization
	Code generation for explicitly solving QPs

	Hello world
	Modeling and code generation
	C interface
	CVXPY interface

	Applications
	Monotone regression
	Power management
	Model predictive control
	Portfolio optimization

	Conclusions

