Automatic Generation of Explicit Quadratic Programming Solvers

Maximilian Schaller ~ Daniel Arnstrom Alberto Bemporad Stephen Boyd

Stanford University, September 12 2025

Parametric convex optimization

parametric convex optimization problem, a.k.a. multiparametric program:

minimize fo(x,0)
subject to fi(x,0) <0, i=1,...,m,

> x € R" is the optimization variable

» fy is convex objective function

» fi,...,fy are convex inequality constraint functions
» hi...,hq are affine equality constraint functions

> 0 € © C R” is the parameter

Applications

» control, supply chain, finance
— repeatedly solve problem with different data (‘context’)
— these applications require total reliability
— and sometimes real-time guarantees

» machine learning

— fit multiple models with different hyper-parameters
— refit model periodically as distribution shifts

Solution methods
we assume parametrized problem is given in a domain specific language such as CVXPY

solution approaches:
» parse, form, and solve problem for each 6
P> use Parameter in CVXPY to avoid re-compilation

» use CVXPYgen to generate custom solver (in C or Rust) for parametrized problem

this talk: a special case in which the generated solver is explicit, not iterative
» applies only to small quadratic programs of special form
> still widely useful

Multiparametric quadratic programming

parametric QP:
minimize (1/2)x" Px + (u+ U#)Tx
subject to Ax < v+ V0,

» x € R" is the variable
» 0 c © C R is the parameter
PeStl, ,ueR" UecR™P AcR™" veR" and V € R"*" are given

v

» solution map is 0 — x*(0)

v

dual solution map is 6 — A*(60)

Piecewise affine solution map

» solution map is piecewise affine on K polyhedral regions:
x*=F0+gc when HO<j,, k=1,....K

(dual solution map is also piecewise affine, with same regions)
> set of active constraints is A = {i | (Ax*); = (v + V0);}
» solution x* is affine function of 6 for each set of active constraints

» can search over all 2™ possible active sets and

— determine if it can occur
— if so, compute Fy, gk, Hx, jk

P can construct tree for efficient search for region, given 6

Explicit parametric QP solver

>

| 4

vvyyypy

v

ahead of time: pre-compute coefficient matrices for regions and search tree

on-line: given 6
— determine region k for which Hi6 < ji holds
— evaluate x* = Fi0 + gx

table lookup, followed by evaluating affine function
super fast, with bounded solve time
division free

can implement in reduced precision

only practical when memory to store coefficient matrices is small enough

CVXPYgen

> CVXPYgen (Schaller et al. 2022) is a general purpose code generator for CVXPY
> CVXPYgen now supports explicit QP solver option
> relies on explicit QP solver package PDAQP (Arnstrom et al. 2022)

> generates flat C code for solver, Python interface, documentation, ...

Example: Portfolio optimization

choose portfolio weights w € RV for N financial assets
w; > 0 is fraction of portfolio value invested in asset i, w; +---4+wy =1

asset return mean p € RN, covariance ¥ € Sﬁ\r’+

vvyyypy

Markowitz portfolio construction: maximize risk-adjusted return

maximize u'w—yw’Zw
subjectto 1"Tw=1, w >0,

variable w € RV, parameter 1 € RV, risk aversion hyper-parameter v > 0

» we consider case where ¥ and ~ are fixed, p is a parameter

Portfolio optimization

> N =7 stocks with largest market capitalization as of January 1, 2017
> Y is sample covariance over years 2017 and 2018; v = 2
P generated explicit solver has K = 127 regions

> test on 250 problem instances with p the one-year trailing asset return average for
each trading day in 2019

10

Generating the explicit solver

1 import cvxpy as cp
> from cvxpygen import cpg

4+ N, Sigma, gamma =
w = cp.Variable(N, name=

obj = cp.Maximize(mu @ w
constr = [cp.sum(w) == 1
10 prob = cp.Problem(obj, c

12 cpg.generate_code (prob,

Jw))

mu = cp.Parameter (N, name=’mu’)

- gamma * cp.quad_form(w,
, w >= 0]
onstr)

solver=’explicit’)

Sigma))

11

Data structure

typedef struct {
cpg_float *W
} CPG_Prim_t;

typedef struct {
cpg_float do;
cpg_float *d1l;
} CPG_Dual_t;

typedef struct {
CPG_Prim_t *prim;
CPG_Dual_t *dual;
} CPG_Result_t;

/7

//
//

//
//

primal variable w

dual variable dO
dual variable di

primal solution
dual solution

12

Using the explicit solver in C

#include

int main(int argc, char *argv[]){

1
2
3
4
5 cpg_update_mu(0, 0.01);
6 cpg_solve();

7 printf ("%f\n", CPG_Result.prim->w[0]);
s printf ("%f\n", cpg_obj());

9

10 return O;

11

12}

13

Using the explicit solver in CVXPY

© 0 N o o B~ W N R

from code_dir.cpg_solver import cpg_solve
prob.register_solve(’explicit’, cpg_solve)

mu.value =
prob.solve (method=’explicit’)

print (f’w: {w.valuel}’)
print (f’dual: {constr[1].dual_valuel}’)
print(f’obj: {obj.valuel}’)

14

Timing and code size

Solve (Python) Solve (C) | Gen. + compile | Binary size
CVXPY 0.5441 ms - - -
CVXPYgen iterative 0.0502 ms 0.0070 ms 51s 76 KB
CVXPYgen explicit 0.0113 ms 0.0005 ms 208 s 234 KB

15

Conclusions

> solution of a QP is piecewise affine function of linear objective coefficients and
righthand sides of constraints

» can explicitly compute coefficient matrices that define regions and solution map
(when the number of regions is small enough)

» CVXPYgen now supports explicit QP solving

> generated solvers are

— typically 100x to 10000x faster than iterative methods
— suitable for real-time safety-critical applications

16

References

M. Schaller, D. Arnstrom, A. Bemporad, and S. Boyd, “Automatic Generation of
Explicit Quadratic Programming Solvers”, arXiv preprint arXiv:2506.11513, 2025

> https://stanford.edu/~boyd/papers/cvxpygen_mpqgp.html

CVXPY documentation
> https://wuw.cvxpy.org

Code
» https://github.com/cvxgrp/cvxpygen
> https://github.com/darnstrom/pdaqgp

17

https://stanford.edu/~boyd/papers/cvxpygen_mpqp.html
https://www.cvxpy.org
https://github.com/cvxgrp/cvxpygen
https://github.com/darnstrom/pdaqp

