
Automatic Generation of Explicit Quadratic Programming Solvers

Maximilian Schaller Daniel Arnström Alberto Bemporad Stephen Boyd

Stanford University, September 12 2025



Parametric convex optimization

parametric convex optimization problem, a.k.a. multiparametric program:

minimize f0(x , θ)
subject to fi (x , θ) ≤ 0, i = 1, . . . ,m,

hi (x , θ) = 0, i = 1, . . . , q

▶ x ∈ Rn is the optimization variable

▶ f0 is convex objective function

▶ f1, . . . , fm are convex inequality constraint functions

▶ h1 . . . , hq are affine equality constraint functions

▶ θ ∈ Θ ⊆ Rp is the parameter

2



Applications

▶ control, supply chain, finance

– repeatedly solve problem with different data (‘context’)
– these applications require total reliability
– and sometimes real-time guarantees

▶ machine learning

– fit multiple models with different hyper-parameters
– refit model periodically as distribution shifts

3



Solution methods

we assume parametrized problem is given in a domain specific language such as CVXPY

solution approaches:

▶ parse, form, and solve problem for each θ

▶ use Parameter in CVXPY to avoid re-compilation

▶ use CVXPYgen to generate custom solver (in C or Rust) for parametrized problem

this talk: a special case in which the generated solver is explicit, not iterative

▶ applies only to small quadratic programs of special form

▶ still widely useful

4



Multiparametric quadratic programming

parametric QP:
minimize (1/2)xTPx + (u + Uθ)T x
subject to Ax ≤ v + V θ,

▶ x ∈ Rn is the variable

▶ θ ∈ Θ ⊆ Rp is the parameter

▶ P ∈ Sn
++ , u ∈ Rn, U ∈ Rn×p, A ∈ Rm×n, v ∈ Rm, and V ∈ Rm×p are given

▶ solution map is θ 7→ x⋆(θ)

▶ dual solution map is θ 7→ λ⋆(θ)

5



Piecewise affine solution map

▶ solution map is piecewise affine on K polyhedral regions:

x⋆ = Fkθ + gk when Hkθ ≤ jk , k = 1, . . . ,K

(dual solution map is also piecewise affine, with same regions)

▶ set of active constraints is A = {i | (Ax⋆)i = (v + V θ)i}
▶ solution x⋆ is affine function of θ for each set of active constraints
▶ can search over all 2m possible active sets and

– determine if it can occur
– if so, compute Fk , gk ,Hk , jk

▶ can construct tree for efficient search for region, given θ

6



Explicit parametric QP solver

▶ ahead of time: pre-compute coefficient matrices for regions and search tree

▶ on-line: given θ

– determine region k for which Hkθ ≤ jk holds
– evaluate x⋆ = Fkθ + gk

▶ table lookup, followed by evaluating affine function

▶ super fast, with bounded solve time

▶ division free

▶ can implement in reduced precision

▶ only practical when memory to store coefficient matrices is small enough

7



CVXPYgen

▶ CVXPYgen (Schaller et al. 2022) is a general purpose code generator for CVXPY

▶ CVXPYgen now supports explicit QP solver option

▶ relies on explicit QP solver package PDAQP (Arnström et al. 2022)

▶ generates flat C code for solver, Python interface, documentation, . . .

8



Example: Portfolio optimization

▶ choose portfolio weights w ∈ RN for N financial assets

▶ wi ≥ 0 is fraction of portfolio value invested in asset i , w1 + · · ·+ wN = 1

▶ asset return mean µ ∈ RN , covariance Σ ∈ SN
++

▶ Markowitz portfolio construction: maximize risk-adjusted return

maximize µTw − γwTΣw
subject to 1Tw = 1, w ≥ 0,

variable w ∈ RN , parameter µ ∈ RN , risk aversion hyper-parameter γ > 0

▶ we consider case where Σ and γ are fixed, µ is a parameter

9



Portfolio optimization

▶ N = 7 stocks with largest market capitalization as of January 1, 2017

▶ Σ is sample covariance over years 2017 and 2018; γ = 2

▶ generated explicit solver has K = 127 regions

▶ test on 250 problem instances with µ the one-year trailing asset return average for
each trading day in 2019

10



Generating the explicit solver

1 import cvxpy as cp

2 from cvxpygen import cpg

3

4 N, Sigma , gamma = ...

5 w = cp.Variable(N, name=’w’)

6 mu = cp.Parameter(N, name=’mu’)

7

8 obj = cp.Maximize(mu @ w - gamma * cp.quad_form(w, Sigma))

9 constr = [cp.sum(w) == 1, w >= 0]

10 prob = cp.Problem(obj , constr)

11

12 cpg.generate_code(prob , solver=’explicit ’)

11



Data structure

1 typedef struct {

2 cpg_float *w; // primal variable w

3 } CPG_Prim_t;

4

5 typedef struct {

6 cpg_float d0; // dual variable d0

7 cpg_float *d1; // dual variable d1

8 } CPG_Dual_t;

9

10 typedef struct {

11 CPG_Prim_t *prim; // primal solution

12 CPG_Dual_t *dual; // dual solution

13 } CPG_Result_t;

12



Using the explicit solver in C

1 #include ...

2

3 int main(int argc , char *argv []){

4

5 cpg_update_mu (0, 0.01);

6 cpg_solve ();

7 printf("%f\n", CPG_Result.prim ->w[0]);

8 printf("%f\n", cpg_obj ());

9

10 return 0;

11

12 }

13



Using the explicit solver in CVXPY

1 from code_dir.cpg_solver import cpg_solve

2 prob.register_solve(’explicit ’, cpg_solve)

3

4 mu.value = ...

5 prob.solve(method=’explicit ’)

6

7 print(f’w: {w.value}’)

8 print(f’dual: {constr [1]. dual_value}’)

9 print(f’obj: {obj.value}’)

14



Timing and code size

Solve (Python) Solve (C) Gen. + compile Binary size

CVXPY 0.5441 ms – – –
CVXPYgen iterative 0.0502 ms 0.0070 ms 5.1 s 76 KB
CVXPYgen explicit 0.0113 ms 0.0005 ms 20.8 s 234 KB

15



Conclusions

▶ solution of a QP is piecewise affine function of linear objective coefficients and
righthand sides of constraints

▶ can explicitly compute coefficient matrices that define regions and solution map
(when the number of regions is small enough)

▶ CVXPYgen now supports explicit QP solving
▶ generated solvers are

– typically 100× to 10000× faster than iterative methods
– suitable for real-time safety-critical applications

16



References

M. Schaller, D. Arnström, A. Bemporad, and S. Boyd, “Automatic Generation of
Explicit Quadratic Programming Solvers”, arXiv preprint arXiv:2506.11513, 2025

▶ https://stanford.edu/~boyd/papers/cvxpygen_mpqp.html

CVXPY documentation

▶ https://www.cvxpy.org

Code

▶ https://github.com/cvxgrp/cvxpygen

▶ https://github.com/darnstrom/pdaqp

17

https://stanford.edu/~boyd/papers/cvxpygen_mpqp.html
https://www.cvxpy.org
https://github.com/cvxgrp/cvxpygen
https://github.com/darnstrom/pdaqp

