

Automatic Generation of Explicit Quadratic Programming Solvers

Maximilian Schaller Daniel Arnström Alberto Bemporad **Stephen Boyd**

Stanford University, September 12 2025

Parametric convex optimization

parametric convex optimization problem, a.k.a. multiparametric program:

$$\begin{aligned} & \text{minimize} && f_0(x, \theta) \\ & \text{subject to} && f_i(x, \theta) \leq 0, \quad i = 1, \dots, m, \\ & && h_i(x, \theta) = 0, \quad i = 1, \dots, q \end{aligned}$$

- ▶ $x \in \mathbf{R}^n$ is the optimization variable
- ▶ f_0 is convex objective function
- ▶ f_1, \dots, f_m are convex inequality constraint functions
- ▶ h_1, \dots, h_q are affine equality constraint functions
- ▶ $\theta \in \Theta \subseteq \mathbf{R}^p$ is the **parameter**

Applications

- ▶ control, supply chain, finance
 - repeatedly solve problem with different data ('context')
 - these applications require total reliability
 - and sometimes real-time guarantees
- ▶ machine learning
 - fit multiple models with different hyper-parameters
 - refit model periodically as distribution shifts

Solution methods

we assume parametrized problem is given in a domain specific language such as CVXPY

solution approaches:

- ▶ parse, form, and solve problem for each θ
- ▶ use Parameter in CVXPY to avoid re-compilation
- ▶ use CVXPYgen to generate custom solver (in C or Rust) for parametrized problem

this talk: a special case in which the generated solver is **explicit**, not iterative

- ▶ applies only to **small quadratic programs** of special form
- ▶ still widely useful

Multiparametric quadratic programming

parametric QP:

$$\begin{aligned} & \text{minimize} && (1/2)x^T Px + (u + U\theta)^T x \\ & \text{subject to} && Ax \leq v + V\theta, \end{aligned}$$

- ▶ $x \in \mathbf{R}^n$ is the variable
- ▶ $\theta \in \Theta \subseteq \mathbf{R}^p$ is the parameter
- ▶ $P \in \mathbf{S}_{++}^n$, $u \in \mathbf{R}^n$, $U \in \mathbf{R}^{n \times p}$, $A \in \mathbf{R}^{m \times n}$, $v \in \mathbf{R}^m$, and $V \in \mathbf{R}^{m \times p}$ are given
- ▶ solution map is $\theta \mapsto x^*(\theta)$
- ▶ dual solution map is $\theta \mapsto \lambda^*(\theta)$

Piecewise affine solution map

- ▶ solution map is **piecewise affine** on K polyhedral regions:

$$x^* = F_k \theta + g_k \quad \text{when} \quad H_k \theta \leq j_k, \quad k = 1, \dots, K$$

(dual solution map is also piecewise affine, with same regions)

- ▶ set of active constraints is $\mathcal{A} = \{i \mid (Ax^*)_i = (v + V\theta)_i\}$
- ▶ solution x^* is affine function of θ for each set of active constraints
- ▶ can search over all 2^m possible active sets and
 - determine if it can occur
 - if so, compute F_k, g_k, H_k, j_k
- ▶ can construct tree for efficient search for region, given θ

Explicit parametric QP solver

- ▶ **ahead of time:** pre-compute coefficient matrices for regions and search tree
- ▶ **on-line:** given θ
 - determine region k for which $H_k\theta \leq j_k$ holds
 - evaluate $x^* = F_k\theta + g_k$
- ▶ table lookup, followed by evaluating affine function
- ▶ super fast, with bounded solve time
- ▶ division free
- ▶ can implement in reduced precision
- ▶ only practical when memory to store coefficient matrices is small enough

CVXPYgen

- ▶ CVXPYgen (Schaller et al. 2022) is a general purpose code generator for CVXPY
- ▶ CVXPYgen now supports explicit QP solver option
- ▶ relies on explicit QP solver package PDAQP (Arnström et al. 2022)
- ▶ generates flat C code for solver, Python interface, documentation, . . .

Example: Portfolio optimization

- ▶ choose portfolio weights $w \in \mathbf{R}^N$ for N financial assets
- ▶ $w_i \geq 0$ is fraction of portfolio value invested in asset i , $w_1 + \dots + w_N = 1$
- ▶ asset return mean $\mu \in \mathbf{R}^N$, covariance $\Sigma \in \mathbf{S}_{++}^N$
- ▶ **Markowitz portfolio construction:** maximize risk-adjusted return

$$\begin{aligned} & \text{maximize} && \mu^T w - \gamma w^T \Sigma w \\ & \text{subject to} && \mathbf{1}^T w = 1, \quad w \geq 0, \end{aligned}$$

variable $w \in \mathbf{R}^N$, parameter $\mu \in \mathbf{R}^N$, risk aversion hyper-parameter $\gamma > 0$

- ▶ we consider case where Σ and γ are fixed, μ is a parameter

Portfolio optimization

- ▶ $N = 7$ stocks with largest market capitalization as of January 1, 2017
- ▶ Σ is sample covariance over years 2017 and 2018; $\gamma = 2$
- ▶ generated explicit solver has $K = 127$ regions
- ▶ test on 250 problem instances with μ the one-year trailing asset return average for each trading day in 2019

Generating the explicit solver

```
1 import cvxpy as cp
2 from cvxpygen import cpg
3
4 N, Sigma, gamma = ...
5 w = cp.Variable(N, name='w')
6 mu = cp.Parameter(N, name='mu')
7
8 obj = cp.Maximize(mu @ w - gamma * cp.quad_form(w, Sigma))
9 constr = [cp.sum(w) == 1, w >= 0]
10 prob = cp.Problem(obj, constr)
11
12 cpg.generate_code(prob, solver='explicit')
```

Data structure

```
1  typedef struct {
2      cpg_float      *w;           // primal variable w
3  } CPG_Prim_t;
4
5  typedef struct {
6      cpg_float      d0;          // dual variable d0
7      cpg_float      *d1;          // dual variable d1
8  } CPG_Dual_t;
9
10 typedef struct {
11     CPG_Prim_t *prim;          // primal solution
12     CPG_Dual_t *dual;          // dual solution
13 } CPG_Result_t;
```

Using the explicit solver in C

```
1 #include ...
2
3 int main(int argc, char *argv[]){
4
5     cpg_update_mu(0, 0.01);
6     cpg_solve();
7     printf("%f\n", CPG_Result.prim->w[0]);
8     printf("%f\n", cpg_obj());
9
10    return 0;
11
12 }
```

Using the explicit solver in CVXPY

```
1 from code_dir.cpg_solver import cpg_solve
2 prob.register_solve('explicit', cpg_solve)
3
4 mu.value = ...
5 prob.solve(method='explicit')
6
7 print(f'w: {w.value}')
8 print(f'dual: {constr[1].dual_value}')
9 print(f'obj: {obj.value}')
```

Timing and code size

	Solve (Python)	Solve (C)	Gen. + compile	Binary size
CVXPY	0.5441 ms	–	–	–
CVXPYgen iterative	0.0502 ms	0.0070 ms	5.1 s	76 KB
CVXPYgen explicit	0.0113 ms	0.0005 ms	20.8 s	234 KB

Conclusions

- ▶ solution of a QP is piecewise affine function of linear objective coefficients and righthand sides of constraints
- ▶ can explicitly compute coefficient matrices that define regions and solution map (when the number of regions is small enough)
- ▶ CVXPYgen now supports explicit QP solving
- ▶ generated solvers are
 - typically $100\times$ to $10000\times$ faster than iterative methods
 - suitable for real-time safety-critical applications

References

M. Schaller, D. Arnström, A. Bemporad, and S. Boyd, “Automatic Generation of Explicit Quadratic Programming Solvers”, arXiv preprint *arXiv:2506.11513*, 2025

- ▶ https://stanford.edu/~boyd/papers/cvxpygen_mpqp.html

CVXPY documentation

- ▶ <https://www.cvxpy.org>

Code

- ▶ <https://github.com/cvxgrp/cvxpygen>
- ▶ <https://github.com/darnstrom/pdaqp>