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Abstract

We consider a network of devices, such as generators, fixed loads, deferrable loads,
and storage devices, each with its own dynamic constraints and objective, connected by
lossy capacitated lines. The problem is to minimize the total network objective subject
to the device and line constraints, over a given time horizon. This is a large optimiza-
tion problem, with variables for consumption or generation in each time period for
each device. In this paper we develop a decentralized method for solving this problem.
The method is iterative: At each step, each device exchanges simple messages with its
neighbors in the network and then solves its own optimization problem, minimizing
its own objective function, augmented by a term determined by the messages it has
received. We show that this message passing method converges to a solution when the
device objective and constraints are convex. The method is completely decentralized,
and needs no global coordination other than synchronizing iterations; the problems to
be solved by each device can typically be solved extremely efficiently and in parallel.
The method is fast enough that even a serial implementation can solve substantial prob-
lems in reasonable time frames. We report results for several numerical experiments,
demonstrating the method’s speed and scaling, including the solution of a problem
instance with over 10 million variables in 17 minutes for a serial implementation; with
decentralized computing, the solve time would be less than one second.

∗All authors are members of the Information Systems Laboratory, Department of Electrical Engineering,
Stanford University
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1 Introduction

A traditional power grid is operated by solving a number of optimization problems. At the
transmission level, these problems include unit commitment, economic dispatch, optimal
power flow (OPF), and security-constrained OPF (SCOPF). At the distribution level, these
problems include loss minimization and reactive power compensation. With the exception
of the SCOPF, these optimization problems are static with a modest number of variables
(often less than 10000), and are solved on time scales of 5 minutes or more. However, the
operation of next generation electric grids (i.e., smart grid) will rely critically on solving large-
scale, dynamic optimization problems involving hundreds of thousands of devices jointly
optimizing tens to hundreds of millions of variables, on the order of seconds rather than
minutes [ET11, LVH12]. More precisely, the distribution level of a smart grid will include
various types of active dynamic devices, such as distributed generators based on solar and
wind, batteries, deferrable loads, curtailable loads, and electric vehicles, whose control and
scheduling amount to a very complex power management problem [TSBC11, CI12].

In this paper, we consider a general problem, which we call the optimal power scheduling
problem (OPSP), in which a network of dynamic devices are connected by lossy capacitated
lines, and the goal is to jointly minimize a network objective subject to local constraints on
the devices and lines. The network objective is the sum of the objective functions of each
device. These objective functions extend over a given time horizon and encode operating
costs such as fuel consumption and constraints such as limits on power generation or con-
sumption. In addition, the objective functions encode dynamic objectives and constraints
such as limits on ramp rates or charging limits. The variables for each device consist of its
consumption or generation in each time period and can also include local variables which
represent internal states of the device over time, such as the state of charge of a storage
device.

When all device objective functions and line constraints are convex, the OPSP is a convex
optimization problem, which can in principle be solved efficiently [BV04]. If not all device
objective functions are convex, we can solve a relaxed form of the OPSP which can be used
to find good, local solutions to the OPSP. The optimal value of the relaxed OPSP also
gives a lower bound for the optimal value of the OPSP which can be used to evaluate the
suboptimality of a local solution.

For any network, the corresponding OPSP contains at least as many variables as the
number of devices multiplied by the length of the time horizon. For large networks with
hundreds of thousands of devices and a time horizon with tens or hundreds of time periods,
the extremely large number of variables present in the corresponding OPSP makes solving it
in a centralized fashion computationally impractical, even when all device objective functions
are convex.

We propose a decentralized optimization method which efficiently solves the OPSP by
distributing computation across every device in the network. This method, which we call
prox-average message passing, is iterative: At each iteration, every device passes simple
messages to its network neighbors and then solves an optimization problem that minimizes
the sum of its own objective function and a simple regularization term that only depends on
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the messages it received from its network neighbors in the previous iteration. As a result,
the only non-local coordination needed between devices for prox-average message passing
is synchronizing iterations. When all device objective functions are convex, we show that
prox-average message passing converges to a solution of the OPSP.

Our algorithm can be used several ways. It can be implemented in a traditional way
on a single computer or cluster of computers, by collecting all the device constraints and
objectives. We will demonstrate this use with an implementation that runs on a single 8-core
computer. A more interesting use is in a peer-to-peer architecture. In this architecture, each
device contains its own processor, which carries out the required local dynamic optimization
and exchanges messages with its neighbors on the network. In this setting, the devices do
not need to divulge their objectives or constraints; they must only support a simple protocol
for interacting with the neighbors. Our algorithm ensures that the network power flows will
converge to their optimal values, even though each device has very little information about
the rest of the network, and only exchanges limited messages with its immediate neighbors.

Due to recent advances in convex optimization [WB10, MB12, MWB11], in many cases
the optimization problems that each device solves in each iteration of prox-average message
passing can be executed at millisecond or even microsecond time-scales on inexpensive,
embedded processors. Since this execution can happen in parallel across all devices, the
entire network can execute prox-average message passing at kilohertz rates. We present a
series of numerical examples to illustrate this fact by using prox-average message passing to
solve instances of the OPSP with up to 10 million variables serially in 17 minutes. (This is on
an 8-core computer; with 64 cores, the time would be around 2 minutes.) Using decentralized
computing, the solve time would be essentially independent of the size of the network and
measured in fractions of a second.

We note that although the primary application for our method is power management, it
can easily be adapted to more general resource allocation and graph-structured optimization
problems [RAW10].

Related work. The use of optimization in power systems dates back to the 1920s and has
traditionally concerned the optimal dispatch problem [Hap77], which aims to find the lowest
cost method for generating and delivering power to consumers, subject to physical generator
constraints. With the advent of computer and communication networks, many different
ways to numerically solve this problem have been proposed [Zhu09] and more sophisticated
variants of optimal dispatch have been introduced, such as OPF, economic dispatch, and
dynamic dispatch [CR90], which extend optimal dispatch to include various reliability and
dynamic constraints. For reviews of optimal and economic dispatch as well as general power
systems, we direct the reader to [BV99] and the book and review papers cited above.

When modeling AC power flow, the OPSP is a dynamic version of the OPF [Car62],
extending the latter to include many more types of devices such as storage units. The
OPSP also introduces a time horizon with coupling constraints between variables across
time periods. The OPF has been a fundamental problem in power systems for over 50 years
and is known to be non-convex. Recently, it was shown that the OPF can be solved exactly in
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certain circumstances by recasting it as a semidefinite program and solving its dual problem
[LL12].

Distributed optimization methods are naturally applied to power networks given the
graph-structured nature of the transmission and distribution networks. There is an exten-
sive literature on distributed optimization methods, dating back to the early 1960s. The
prototypical example is dual decomposition [DW60, Eve63], which is based on solving the
dual problem by a gradient method. In each iteration, all devices optimize their local (pri-
mal) variables based on current prices (dual variables). Then the dual variables are updated
to account for imbalances in supply and demand, with the goal being to determine prices
for which supply equals demand.

Unfortunately, dual decomposition methods are not robust, requiring many technical
conditions, such as strict convexity and finiteness of all local cost functions, for both theo-
retical and practical convergence. One way to loosen these technical conditions is to use an
augmented Lagrangian [Hes69, Pow69, Ber82], resulting in the method of multipliers. This
subtle change allows the method of multipliers to converge under mild technical conditions,
even when the local cost functions are not strictly convex or necessarily finite. However, this
method has the disadvantage of no longer being separable across subsystems. To achieve
both separability and robustness for distributed optimization, we can instead use the alter-
nating direction method of multipliers (ADMM) [GM75, GM76, Eck94, BPC+11]. ADMM is
very closely related to many other algorithms, and is identical to Douglas-Rachford operator
splitting; see, e.g., the discussion in [BPC+11, §3.5].

Building on the work of [LL12], a distributed algorithm was recently proposed [LZT11]
to solve the dual OPF using a standard dual decomposition on subsystems that are maximal
cliques of the power network. Augmented Lagrangian methods (including ADMM) have
previously been applied to the study of power systems with static, single period objective
functions on a small number of distributed subsystems, each representing regional power
generation and consumption [KB97]. For an overview of related decomposition methods
applied to power flow problems, we direct the reader to [KB00, Bal06] and the references
therein.

Outline. The rest of this paper is organized as follows. In §2 we give the formal definition
of our network model. In §3 we give examples of how to model specific devices such as
generators, deferrable loads and energy storage systems in our formal framework. In §4,
we describe the role that convexity plays in the OPSP and introduce the idea of convex
relaxations as a tool to find solutions to the OPSP in the presence of non-convex device
objective functions. In §5 we derive the prox-average message passing equations. In §6 we
present a series of numerical examples, and in §7 we discuss how our framework can be easily
extended to include use cases we do not explicitly cover in this paper.
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2 Network model

2.1 Formal definition

A network consists of a finite set of terminals T , a finite set of devices D, and a finite set
of nets N . The sets D and N are both partitions of T . Thus, each terminal is associated
with exactly one device and exactly one net. Equivalently, a network can be defined as a
bipartite graph with one set of vertices given by devices, the other set of vertices given by
nets, and edges given by terminals.

Each terminal t ∈ T has an associated power schedule pt = (pt(1), . . . , pt(T )) ∈ RT ,
where T is a given time horizon. Here pt(τ) is the amount of energy consumed by device d
through terminal t in time period τ , where t ∈ d (i.e., terminal t is associated with device
d). When pt(τ) < 0, −pt(τ) is the energy generated by device d through terminal t in time
period τ . The set of all terminal power schedules is denoted p. This is a function from T
(the set of terminals) into RT (time periods); we can identify p with a |T |×T matrix, whose
rows are the terminal power schedules.

For each device d ∈ D, pd consists of the set of power schedules of terminals associated
with d, which we identify with a |d| × T matrix whose rows are taken from the rows of
p corresponding to the terminals in d. Each device d has an associated objective function
fd : R|d|×T → R ∪ {+∞}, where we set fd(pd) = ∞ to encode constraints on the power
schedules for the device. When fd(pd) < ∞, we say that pd is a set of realizable power
schedules for device d, and we interpret fd(pd) as the cost (or revenue, if negative) to device
d for the power schedules pd.

Similarly, for each net n ∈ N , pn consists of the set of power schedules of terminals
associated with n, which we identify with a |n| × T matrix whose rows are taken from
the rows of p corresponding to the terminals in n. Each net n is a lossless energy carrier
(commonly referred to as a bus in power systems literature), which is represented by the
constraint

∑

t∈n

pt(τ) = 0, τ = 1, . . . , T. (1)

In other words, in each time period the power flows on each net balance.
For any terminal, we define the average net power imbalance p̄ : T → RT , as

p̄t =
1

|n|
∑

t′∈n

pt′ , (2)

where t ∈ n, i.e., terminal t is associated with net n. In other words, p̄t(τ) is the average
power schedule of all terminals associated with the same net as terminal t at time τ . We
overload this notation for devices by defining p̄d = (p̄i1 , . . . , p̄i|d|), where device d is associated
with terminals i1, . . . , i|d|. Using an identical notation for nets, we can see that p̄n simply
contains |n| copies of the average net power imbalance for net n. The net power balance
constraint for all terminals can be equivalently expressed as p̄ = 0.
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Optimal power scheduling problem. We say that a set of power schedules p : T → RT

is feasible if fd(pd) < ∞ for all d ∈ D (i.e., all devices’ power schedules are realizable),
and p̄ = 0 (i.e., power balance holds across all nets). We define the network objective as
f(p) =

∑

d∈D fd(pd). The optimal power scheduling problem (OPSP) is

minimize f(p)
subject to p̄ = 0,

(3)

with variable p : T → RT . We refer to p as optimal if it solves (3), i.e., globally minimizes
the objective among all feasible p. We refer to p as locally optimal if it is a locally optimal
point for (3).

Dual variables and locational marginal prices. Suppose p0 is a set of optimal power
schedules, that also minimizes the Lagrangian

f(p) +
∑

t∈T

T
∑

τ=1

y0t (τ)p̄t(τ),

with no power balance constraint, where y0 : T → RT . In this case we call y0 a set of
optimal Lagrange multipliers or dual variables. When p0 is a locally optimal point, which
also locally minimizes the Lagrangian, then we refer to y0 as a set of locally optimal Lagrange
multipliers.

The dual variables y0 are related to the traditional concept of locational marginal prices
L0 : T → RT by rescaling the dual variables associated with each terminal according to the
size of its associated net, i.e., L0

t = y0t /|n|, where t ∈ n. This rescaling is due to the fact
that locational marginal prices are the dual variables associated with the constraints in (1)
rather than their scaled form used in (3) [EW02].

2.2 Discussion

We now describe our model in a more intuitive, less formal manner. Devices include genera-
tors, loads, energy storage systems, and other power sources, sinks, and converters. Terminals
are ports on a device through which power flows, either into or out of the device (or both, at
different times, as in a storage device). Nets are used to model ideal lossless uncapacitated
connections between terminals over which power is transmitted; losses, capacities, and more
general connection constraints between a set of terminals can be modeled with the addition
of a device and individual nets which connect each terminal to the new device. Our net-
work model does not specify nor require a specific type of energy transport mechanism (e.g.,
DC, single or 3-phase AC), but rather can abstractly model arbitrary heterogeneous energy
transport and exchange mechanisms.

The objective function of a device is used to measure the cost (which can be negative,
representing revenue) associated with a particular mode of operation, such as a given level of
consumption or generation of power. This cost can include the actual direct cost of operating
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Figure 1: A simple network (left), and its transformation into standard form (right).

according to the given power schedules, such as a fuel cost, as well as other costs such as CO2

generation, or costs associated with increased maintenance and decreased system lifetime due
to structural fatigue. The objective function can also include local variables other than power
schedules, such as the state of charge of a storage device.

Constraints on the power schedules and internal variables for a device are encoded by
setting the objective function to +∞ for power schedules that violate the constraints. In
many cases, a device’s objective function will only take on the values 0 and +∞, indicating
no local preference among feasible power schedules.

2.3 Example transformation to abstract network model

We illustrate how a traditional power network can be recast into our network model in figure
1. The original power network, shown on the left, contains 2 loads, 3 buses, 2 generators,
and a single battery storage system. We can transform this small power grid into our model
by representing it as a network with 11 terminals, 8 devices (3 of them transmission lines),
and 3 nets, shown on the right of figure 1. Terminals are shown as small filled circles. Single
terminal devices, which are used to model loads, generators, and the battery, are shown as
boxes. The transmission lines are two terminal devices represented by solid lines. The nets
are shown as dashed rounded boxes. Terminals are associated with the device they touch
and the net in which they are contained.

The set of terminals can be partitioned by either the devices they are associated with, or
the nets in which they are contained. Figure 2 shows the network in figure 1 as a bipartite
graph, with devices on the left and nets on the right.
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Figure 2: The network in figure 1 represented as a bipartite graph. Devices (boxes)
are shown on the left with their associated terminals (dots). The terminals are con-
nected to their corresponding nets (solid boxes) on the right.

3 Device examples

We present a few examples of how common devices can be modeled in our framework. We
note that these examples are intentionally kept simple, but could easily be extended to more
refined objectives and constraints. In these examples, it is easier to discuss operational costs
and constraints for each device separately. A device’s objective function is equal to the
device’s cost function unless any constraint is violated, in which case we set the objective
value to +∞.

Generator. A generator is a single-terminal device with power schedule pgen, which gen-
erates power over a range, Pmin ≤ −pgen ≤ Pmax, and has ramp-rate constraints

Rmin ≤ −Dpgen ≤ Rmax,

which limit the change of power levels from one period to the next. Here, the operator
D ∈ R(T−1)×T is the forward difference operator, defined as

(Dx)(τ) = x(τ + 1)− x(τ), τ = 1, . . . , T − 1.

The cost function for a generator has the separable form

ψgen(pgen) =
T
∑

τ=1

φ(−pgen(τ)),
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where φ : R → R gives the cost of operating the generator at a given power level over a
single time period. This function is typically, but not always, convex and increasing. It could
be piecewise linear, or, for example, quadratic:

φ(u) = αu2 + βu,

where α, β > 0.
More sophisticated models of generators allow for them to be switched on or off, with

an associated cost each time they are turned on or off. When switched on, the generator
operates as described above. When the generator is turned off, it generates no power but
can still incur costs for other activities such as idling.

Transmission line. A transmission line is a two terminal device that transmits power
across some distance with power schedules p1 and p2 and zero cost function. The sum
p1 + p2 represents the loss in the line and is always nonnegative. The difference p1 − p2
can be interpreted as twice the power flow from terminal one to terminal two. A line has a
maximum flow capacity, which is given by

|p1 − p2| ≤ Cmax,

as well as a loss function, &(p1, p2) : R
2×T → RT

+, which defines the constraint

p1 + p2 + &(p1, p2) = 0.

In many cases, & is a convex function with &(0, 0) = 0. Under a simple resistive model, &
is a convex quadratic function of p1 and p2. Under a model for AC power transmission, the
feasible region defined by power loss is given by an ellipse [LTZ12].

Storage device. A battery is a single terminal energy storage device with power schedule
pbat, which can take in or deliver energy, depending on whether it is charging or discharging.
The charging and discharging rates are limited by the constraints −Dmax ≤ pbat ≤ Cmax,
where Cmax ∈ RT and Dmax ∈ RT are the maximum charging and discharging rates. At
time t, the charge level of the battery is given by local variables

q(τ) = qinit +
τ
∑

t=1

pbat(t), τ = 1, . . . , T,

where qinit is the initial charge. It has zero cost function and the charge level must not exceed
the battery capacity, i.e., 0 ≤ q(τ) ≤ Qmax, τ = 1, . . . , T . It is common to constrain the
terminal battery charge q(T ) to be some specified value or to match the initial charge qinit.

More sophisticated battery models include (possibly state-dependent) charging and dis-
charging inefficiencies as well as charge leakage. In addition, they can include costs which
penalize excessive charge-discharge cycling.
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Fixed load. A fixed energy load is a single terminal device with zero cost function which
consists of a desired consumption profile, l ∈ RT . This consumption profile must be satisfied
in each period, i.e., we have the constraint pload = l.

Thermal load. A thermal load is a single terminal device with power schedule ptherm which
consists of a heat store (room, cooled water reservoir, refrigerator), with temperature profile
θ ∈ RT , which must be kept within minimum and maximum temperature limits, θmin ∈ RT

and θmax ∈ RT . The temperature of the heat store evolves according to

θ(τ +1) = θ(τ)+ (µ/c)(θamb(τ)− θ(τ))− (η/c)ptherm(τ), τ = 1, . . . , T − 1, θ(1) = θinit,

where 0 ≤ ptherm ≤ Hmax is the cooling power consumption profile, Hmax ∈ RT is the
maximum cooling power, µ is the ambient conduction coefficient, η is the heating/cooling
efficiency, c is the heat capacity of the heat store, θamb ∈ RT is the ambient temperature
profile, and θinit is the initial temperature of the heat store. A thermal load has zero cost
function.

More sophisticated models include temperature-dependent cooling and heating efficien-
cies for heat pumps, more complex dynamics of the system whose temperature is being
controlled, and additional additive terms in the thermal dynamics, to represent occupancy
or other heat sources.

Deferrable load. A deferrable load is a single terminal device with zero cost function that
must consume a minimum amount of power over a given interval of time, which is charac-
terized by the constraint

∑D
τ=A pload(τ) ≥ E, where E is the minimum total consumption for

the time interval τ = A, . . . , D. The energy consumption in each time period is constrained
by 0 ≤ pload ≤ Lmax. In some cases, the load can only be turned on or off in each time
period, i.e., pload(τ) ∈ {0, Lmax} for τ = A, . . . , D.

Curtailable load. A curtailable load is a single terminal device which does not impose
hard constraints on its power requirements, but instead penalizes the shortfall between a
desired load profile l ∈ RT and delivered power. In the case of a linear penalty, its cost
function is given by

α(l − pload)+,

where (z)+ = max(0, z), pload ∈ RT is the amount of electricity delivered to the device, and
α > 0 is a penalty parameter.

Electric vehicle. An electric vehicle is a single terminal device with power schedule pev
which has a desired charging profile cdes ∈ RT and can be charged within a time interval
τ = A, . . . , D. To avoid excessive charge cycling, we assume that the electric vehicle battery
cannot be discharged back into the grid (in more sophisticated vehicle-to-grid models, this
assumption is relaxed), so we have the constraints 0 ≤ pev ≤ Cmax, where Cmax ∈ RT
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is the maximum charging rate. We assume that cdes(τ) = 0 for τ /∈ {A, . . . , D}, and for
τ = A, . . . , D, the charge level is given by

q(τ) = qinit +
τ
∑

t=A

pev(t),

where qinit is the initial charge of the vehicle when it is plugged in at time τ = A.
We can model electric vehicle charging as a deferrable load, where we require a given

charge level to be achieved at some time. A more realistic model is as a combination of a
deferrable and curtailable load, with cost function

α
D
∑

τ=A

(cdes(τ)− q(τ))+,

where α > 0 is a penalty parameter. Here cdes(τ) is the desired charge level at time τ , and
cdes(τ)− q(τ))+ is the shortfall.

External tie with transaction cost. An external tie is a connection to an external
source of power. We represent this as a single terminal device with power schedule pex. In
this case, pex(τ)− = max{−pex(τ), 0} is the amount of energy pulled from the source, and
pex(τ)+ = max{pex(τ), 0} is the amount of energy delivered to the source, at time τ . We
have the constraint |pex(τ)| ≤ Emax(τ), where Emax ∈ RT is the transaction limit.

We suppose that the prices for buying and selling energy are given by c± γ respectively,
where c(τ) is the midpoint price, and γ(τ) > 0 is the difference between the price for buying
and selling (i.e., the transaction cost). The cost function is then

−(c− γ)T (pex)+ + (c+ γ)T (pex)− = −cTpex + γT |pex|,
where |pex|, (pex)+, and (pex)− are all interpreted elementwise.

4 Convexity

4.1 Devices

We call a device convex if its objective function is a convex function. A network is convex
if all of its devices are convex. For convex networks, the OPSP is a convex optimization
problem, which means that in principle we can efficiently find a global solution [BV04].
When the network is not convex, even finding a feasible solution for the OPSP can become
difficult, and finding and certifying a globally optimal solution to the OPSP is generally
intractable. However, special structure in many practical power distribution problems allows
us to guarantee optimality in certain cases.

In the examples from §3, the fixed load, thermal load, curtailable load, electric vehicle,
and external tie are all convex devices using the constraints and objective functions given,
as is the battery if we do not use its more sophisticated model. A deferrable load is convex
if we drop the constraint that it can only be turned on or off. We discuss the convexity
properties of the generator and transmission line in the following section.
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Figure 3: Left : Cost function for a generator that can be turned off. Right : Its
convex relaxation.

4.2 Relaxations

One technique to deal with non-convex networks is to use convex relaxations. We use the
notation genv to denote the convex envelope [Roc70] of the function g. There are many
equivalent definitions for the convex envelope, for example, genv = (g∗)∗, where g∗ denotes
the convex conjugate of the function g. We can equivalently define genv to be the largest
convex lower bound of g. If g is a convex, closed, proper (CCP) function, then g = genv.

We define the relaxed optimal power scheduling problem (rOPSP) as

minimize f env(p)
subject to p̄ = 0,

(4)

with variable p : T → RT . This is a convex optimization problem, whose optimal value
can in principle be computed efficiently, and whose optimal objective value is a lower bound
for the optimal objective value of the OPSP. In some cases, we can guarantee a priori that
a solution to the rOPSP will also be a solution to the OPSP based on a property of the
network objective such as monotonicity. Even when the relaxed solution does not satisfy
all of the constraints in the unrelaxed problem, it can be used as a starting point to help
construct good, local solutions to the unrelaxed problem. The suboptimality of these local
solutions can then be bounded by the gap between their network objective and the lower
bound provided by the solution to the rOPSP. If this gap is small for a given local solution,
we can guarantee that it is nearly optimal.

Generator. When a generator is modeled as in §3 and is always powered on, it is a convex
device. However, when given the ability to be powered on and off, the generator is no longer
convex. In this case, we can relax the generator objective function so that its cost for power
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Figure 4: Left : Feasible sets of a transmission lines with no loss (black) and AC loss
(grey). Right : Their convex relaxations.

production in each time period, given in figure 3, is a convex function. This allows the
generator to produce power in the interval [0, Pmin].

Transmission line. In a lossless transmission line, we have &(p1, p2) = 0, and thus the set
of feasible power schedules is the line segment

L = {(p1, p2) | p1 = −p2, p2 ∈ [−Cmax/2, Cmax/2]},

as shown in figure 4 in black. When the transmission line has losses, in most cases the loss
function & is a convex function of the input and output powers, which leads to a feasible
region like the grey arc in figure 4. For example, using a lumped Π model and under the
common assumption that the voltage magnitude is fixed [BV99], a transmission line with
series admittance g − ib gives the quadratic loss

&(p1, p2) = (1/2α)((p1 + p2)
2 + (p1 − p2)

2/β2), (5)

where α = 2g and β = 2b.
The feasible set of a relaxed transmission line is given by the convex hull of the original

transmission line’s constraints. The right side of figure 4 shows examples of this for both
lossless and lossy transmission lines. Physically, this relaxation gives lossy transmission lines
the ability to discard some additional power beyond what is simply lost to heat. Since
electricity is generally a valuable commodity in power networks, the transmission lines will
generally not throw away any additional power in the optimal solution to the rOPSP, leading
to the power line constraints in the rOPSP being tight and thus also satisfying the unrelaxed
power line constraints in the original OPSP. As was shown in [LTZ12], when the network is
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a tree, this relaxation is always tight. In addition, when all locational marginal prices are
positive and no other non-convexities exist in the network, the tightness of the line constraints
in the rOPSP can be guaranteed in the case of networks that have separate phase shifters
on each loop in the networks whose shift parameter can be freely chosen [SL12].

5 Decentralized method

We begin this section by deriving the prox-average message passing equations assuming
that all the device objective functions are convex closed proper (CCP) functions. We then
compare the computational and communication requirements of prox-average message pass-
ing with a centralized solver for the OPSP. The additional requirements that the functions
are closed and proper are technical conditions that are in practice satisfied by any convex
function used to model devices. We note that we do not require either finiteness or strict con-
vexity of any device objective function, and that all results apply to networks with arbitrary
topology.

Whenever we have a set of variables that maps terminals to time periods, x : T → RT

(which we can also associate with a |T |×T matrix), we will use the same index and over-line
notation for the variables x as we do for power schedules p. For example, xt ∈ RT consists
of the time period vector of values of x associated with terminal t and x̄t = (1/|n|)∑t′∈n xt′ ,
where t ∈ n, with similar notation for indexing x by devices and nets.

5.1 Prox-average message passing

We derive the prox-average message passing equations by reformulating the OPSP using
the alternating direction method of multipliers (ADMM) and then simplifying the resulting
equations. We refer the reader to [BPC+11] for a thorough overview of ADMM.

We first rewrite the OPSP as

minimize
∑

d∈D fd(pd) +
∑

n∈N gn(zn)
subject to p = z,

(6)

with variables p, z : T → RT , where gn(zn) is the indicator function on the set {zn : z̄n =
0}. We use the notation from [BPC+11] and, ignoring a constant, form the augmented
Lagrangian

Lρ(p, z, u) =
∑

d∈D

fd(pd) +
∑

n∈N

gn(zn) + (ρ/2)‖p− z + u‖22, (7)

with the scaled dual variables u = y/ρ : T → RT , which we associate with a |T |×T matrix.
Because devices and nets are each partitions of the terminals, the last term of (7) can be
split across either devices or nets, i.e.,

(ρ/2)‖p− z + u‖22 =
∑

d∈D

(ρ/2)‖pd − zd + ud‖22 =
∑

n∈N

(ρ/2)‖pn − zn + un‖22.
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The resulting ADMM algorithm is then given by the iterations

pk+1
d := argmin

pd

(

fd(pd) + (ρ/2)‖pd − zkd + uk
d‖22

)

, d ∈ D,

zk+1
n := argmin

zn

(

g(zn) + (ρ/2)‖zn − uk
n − pk+1

n ‖22
)

, n ∈ N ,

uk+1
n := uk

n + (pk+1
n − zk+1

n ), n ∈ N ,

where the first step is carried out in parallel by all devices, and then the second and third
steps are carried out in parallel by all nets.

Since gn(zn) is simply an indicator function for each net n, the second step of the algorithm
can be computed analytically and is given by

zk+1
n := uk

n + pk+1
n − ūk

n − p̄k+1
n .

By plugging this quantity into the u update step, the algorithm can be simplified further to
yield the prox-average message passing algorithm:

1. Proximal power schedule update.

pk+1
d := proxfd,ρ

(pkd − p̄kd − uk
d), d ∈ D. (8)

2. Scaled price update.
uk+1
n := uk

n + p̄k+1
n , n ∈ N . (9)

The proximal function for a function f is given by

proxf,ρ(x) = argmin
y

(

f(y) + (ρ/2)‖x− y‖22
)

, (10)

which is guaranteed to exist when f is CCP [Roc70].
We can now see where the name prox-average message passing comes from. In each

iteration, every device computes the proximal function of its objective function, with an
argument that depends on messages passed to it through its terminals by its neighboring
nets in the previous iteration (p̄kd and uk

d). Then, every devices passes to its terminals the
newly computed power schedules, pk+1

d , which are then passed to the terminals’ associated
nets. Every net computes its new average power imbalance, p̄k+1

n , updates its dual variables,
uk+1
n , and broadcasts these values to its associated terminals’ devices. Since p̄kn is simply |n|

copies of the same vector for all k, we can see that all terminals connected to the same net
have the same value for their dual variables throughout the algorithm, i.e., for all values of
k, uk

t = uk
t′ whenever t, t

′ ∈ n for any n ∈ N .
As an example, consider the network represented by figures 1 and 2. The prox-average

algorithm performs the power schedule update on the devices (the boxes on the left in figure
2). The devices share the respective power profiles via the terminals, and the nets (the solid
boxes on the right) compute the scaled price update. For any network, the prox-average
algorithm can be thought of as alternating between devices (on the left) and nets (on the
right).
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Convergence. We make a few comments about the convergence of prox-average message
passing. Since prox-average message passing is a version of ADMM, all convergence results
that apply to ADMM also apply to prox-average message passing. In particular, when all
devices have closed, convex, proper (CCP) objective functions and a feasible solution to the
OPSP exists, the following hold.

1. Residual convergence. p̄k → 0 as k → ∞,

2. Objective convergence.
∑

d∈D fd(pkd) +
∑

n∈N gn(pkn) → f # as k → ∞,

3. Dual variable convergence. ρuk = yk → y# as k → ∞,

where f # is the optimal value for the OPSP, and y# are the optimal dual variables. The proof
of these conditions can be found in [BPC+11]. As a result of the third condition, the optimal
locational marginal prices L# can be found for each net n ∈ N by setting L#

n = y#n/|n|.

Stopping criterion. Following [BPC+11], we can define primal and dual residuals, which
for prox-average message passing simplify to

rk = p̄k, sk = ρ((pk − p̄k)− (pk−1 − p̄k−1)).

We give a simple interpretation of each residual. The primal residual is simply the net
power imbalance across all nets in the network, which is the original measure of primal
feasibility in the OPSP. The dual residual is equal to the difference between the current and
previous iterations of the difference between power schedules and their average net power.
The locational marginal price at each net is determined by the deviation of all associated
terminals’ power schedule from the average power on that net. As the change in these
deviations approaches zero, the corresponding locational marginal prices converge to their
optimal values.

We can define a simple criterion for terminating prox-average message passing when

‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual,

where εpri and εdual are, respectively, primal and dual tolerances. We can normalize both of
these quantities to network size by the relation

εpri = εdual = εabs
√

|T |T ,

for some absolute tolerance εabs > 0.

Choosing a value of ρ. Numerous examples show that the value of ρ can have a dramatic
effect on the rate of convergence of ADMM and prox-average message passing. Many good
methods for picking ρ in both offline and online fashions are discussed in [BPC+11]. We
note that unlike other versions of ADMM, the scaling parameter ρ enters very simply into
the prox-average equations and can thus be modified online without incurring any additional
computational penalties, such as having to re-factorize a matrix.

We can modify the prox-average message passing algorithm with the addition of a third
step
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3. Parameter update and price rescaling.

ρk+1 := h(ρk, rk, sk),

uk+1 :=
ρk

ρk+1
uk+1,

for some function h. We desire to pick an h such that the primal and dual residuals are of
similar size throughout the algorithm, i.e., ρk‖rk‖2 ≈ ‖sk‖2 for all k. To accomplish this
task, we use a simple proportional-derivative controller to update ρ, choosing h to be

h(ρk) = ρk exp(λvk + µ(vk − vk−1)),

where vk = ρk‖rk‖2/‖sk‖2 − 1 and λ and µ are nonnegative parameters chosen to control
the rate of convergence. Typical values of λ and µ are between 10−3 and 10−1.

When ρ is updated in such a manner, convergence is sped up in many examples, some-
times dramatically. Although it can be difficult to prove convergence of the resulting algo-
rithm, a standard trick is to assume that ρ is changed only for a large but bounded number
of iterations, at which point it is held constant for the remainder of the algorithm, thus
guaranteeing convergence.

Non-convex case. When one or more of the device objective functions is non-convex, we
can no longer guarantee that prox-average message passing converges to the optimal value
of the OPSP or even that it converges at all (i.e., reaches a fixed point). Prox functions
for non-convex devices must be carefully defined as the set of minimizers in (10) is no
longer necessarily a singleton. Even when they can be defined, prox functions of non-convex
functions are intractable to compute in many cases.

One solution to these issues is to use prox-average message passing to solve the rOPSP. It
is easy to show that f env(p) =

∑

d∈D f env
d (pd). As a result, we can run prox-average message

passing using the proximal functions of the relaxed device objective functions. Since f env
d

is a CCP function for all d ∈ D, prox-average message passing in this case is guaranteed
to converge to the optimal value of the rOPSP and yield the optimal relaxed locational
marginal prices.

5.2 Discussion

In order to compute the prox-average messages, devices and nets only require knowledge
of who their network neighbors are, the ability to send small vectors of numbers to those
neighbors in each iteration, and the ability to store small amounts of state information
and efficiently compute prox functions (devices) or averages (nets). As all communication
is local and peer-to-peer, prox-average message passing supports the ad hoc formation of
power networks, such as micro grids, and is robust to device failure and unexpected network
topology changes.

Due to recent advances in convex optimization [WB10, MB12, MWB11], many of the prox
function calculations that devices must perform can be very efficiently executed at millisecond
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or microsecond time-scales on inexpensive, embedded processors. Since all devices and all
nets can each perform their computations in parallel, the time to execute a single, network
wide prox-average message passing iteration (ignoring communication overhead) is equal to
the sum of the maximum computation time over all devices and the maximum computation
time of all nets in the network. As a result, the computation time per iteration is small and
essentially independent of the size of the network.

In contrast, solving the OPSP in a centralized fashion requires complete knowledge of the
network topology, sufficient communication bandwidth to centrally aggregate all devices ob-
jective function data, and sufficient centralized computational resources to solve the resulting
OPSP. In large, real-world networks, such as the smart grid, all three of these requirements
are generally unattainable. Having accurate and timely information on the global connec-
tivity of all devices is infeasible for all but the smallest of dynamic networks. Centrally
aggregating all device objective functions would require not only infeasible bandwidth and
data storage requirements at the aggregation site, but also the willingness of all devices to
expose what could be proprietary function parameters in their objective functions. Finally,
a centralized solution to the OPSP requires solving an optimization problem with Ω(|T |T )
variables, which leads to an identical lower bound on the time scaling for a centralized solver,
even if problem structure is exploited. As a result, the centralized solver cannot scale to solve
the OPSP on very large networks.

6 Numerical examples

We illustrate the speed and scaling of prox-average message passing with a range of numerical
examples. In the first two sections, we describe how we generate network instances for our
examples. We then describe our implementation, showing how multithreading can exploit
problem parallelism and how our method would scale in a fully peer-to-peer implementation.
Lastly, we present our results, and demonstrate how the number of prox-average iterations
needed for convergence is essentially independent of network size and also significantly de-
creases when the algorithm is seeded with a reasonable warm-start.

6.1 Network topology

We generate a network instance by first picking the number of nets N . We generate the
locations xi ∈ R2, i = 1, . . . , N by drawing them uniformly at random from [0,

√
N ]2. (These

locations will be used to determine network topology.) Next, we introduce transmission lines
into the network as follows. We first connect a transmission line between all pairs of nets i
and j independently and with probability

γ(i, j) = αmin(1, d2/‖xi − xj‖22).

In this way, when the distance between i and j is smaller than d, they are connected with
a fixed probability α > 0, and when they are located farther than distance d apart, the
probability decays as 1/‖xi − xj‖22. After this process, we add a transmission line between
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Figure 5: A sample random network. Devices are color-coded: generators are in
green, batteries are in blue, and loads are in red. Edges represent transmission lines.

any isolated net and its nearest neighbor. We then introduce transmission lines between
distinct connected components by selecting two connected components uniformly at random
and then selecting two nets, one inside each component, uniformly at random and connecting
them by a transmission line. We continue this process until the network is connected.

For the network instances we present, we chose parameter values d = 0.15 and α = 0.8
as the parameters for generating our network. This results in networks with an average
degree of 2.3. Using these parameters, we generated networks with 100 to 30000 nets, which
resulted in optimization problems with approximately 30 thousand to 10 million variables.

6.2 Devices

After we generate the network topology described above, we randomly attach a single (one-
terminal) device to each net according to the distribution in table 1. The models for each
device in the network are identical to the ones given in section 3, with model parameters
chosen in a manner we describe below. Figure 5 shows an example network for N = 100 (30
thousand variables) generated in this fashion.

For simplicity, our examples only include networks with the devices listed below. For all
devices, the time horizon was chosen to be T = 96, indicating 15 minute intervals for a 24
hour power schedule, with the time period τ = 1 corresponding to midnight.

Generator. Generators have the quadratic cost functions given in §3 and are divided into
three types: small, medium, and large. In each case, we allow the generator to be turned on
and off by setting Pmin = 0. Small generators have the smallest maximum power output, but
the largest ramp rates, while large generators have the largest maximum power output, but
the slowest ramp rates. Medium generators lie in between. Large generators are generally
more efficient than small and medium generators which is reflected in their cost function by
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Device Fraction

Generator 0.2
Battery 0.1
Fixed load 0.5
Deferrable load 0.1
Curtailable load 0.1

Table 1: Fraction of one-terminal devices present in the generated networks.

Pmin Pmax Rmax α β

Large 0 50 3 0.001 0.1
Medium 0 20 5 0.005 0.2
Small 0 10 10 0.02 1

Table 2: Generator parameters.

having smaller values of α and β. Whenever a generator is placed into a network, its type
is selected uniformly at random, and its parameters are taken from the appropriate row in
table 2.

Battery. For a given instance of a battery, its parameters are generated by setting qinit =
0 and selecting Qmax uniformly at random from the interval [20, 50]. The charging and
discharging rates are selected to be equal (i.e., Cmax = Dmax) and drawn uniformly at
random from the interval [5, 10].

Fixed load. The load profile for a fixed load instance is a sinusoid,

l(τ) = c+ a sin(2π(τ − φ0)/T ), τ = 1, . . . , T,

with the amplitude a chosen uniformly at random from the interval [1, 5], and the DC term
c chosen so that c = a+ u, where u is chosen uniformly at random from the interval [0, 0.5],
which ensures that the load profile remains elementwise positive. The phase shift φ0 is chosen
uniformly at random from the interval [60, 72], ensuring that the load profile peaks between
the hours of 3pm and 6pm.

Deferrable load. For an instance of a deferrable load, we choose E uniformly at random
from the interval [500, 1000]. The start time index A is chosen uniformly at random from
the discrete set {1, . . . , T − 7}. The end time index D is then chosen uniformly at random
over the set {A+ 7, . . . , T}, so that the minimum time window to satisfy the load is 8 time
periods (2 hours). We set the maximum power so that it is possible to satisfy the total energy
constraint by only operating in half of the available time periods, i.e., Lmax = 2E/(D −A).
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Curtailable loads. For an instance of a curtailable load, the desired load l is constant
over all time periods with a magnitude chosen uniformly at random from the interval [5, 15].
The penalty parameter α is chosen uniformly at random from the interval [1, 2].

Transmission line. For an instance of a transmission line, we choose its parameters by
first solving the OPSP with lossless, uncapacitated lines, where we add a small quadratic
cost function ε(p21 + p22), with ε = 10−3, to each transmission line in order to help spread
power flow throughout the network. Using the flow values given by the solution to that
problem, we set Cmax = max(10, 2Fmax) for each line, where Fmax is equal to the maximum
flow (from the solution to the lossless problem) along that line over all time periods. We
use the loss function for transmission lines with a series admittance g− ib given by (5). The
value of g is chosen independently and uniformly at random from the interval [0.1, 1]. After
we pick Cmax and g, the value of b is chosen such that the loss when transmitting power
at maximum capacity is uniformly at random between 5 to 15 percent of the transmitted
power, |p1 − p2|/2.

6.3 Serial multithreaded implementation

Our OPSP solver is implemented in C++, with the core prox-average message passing equa-
tions occupying fewer than 25 lines of C++ (excluding problem setup and classes). The code
is compiled with gcc 4.4.5 on an 8-core, 3.4GHz Intel Xeon processor with 16GB of RAM
running the Debian OS. We used the compiler option -O3 to leverage full code optimization.

To approximate a fully distributed implementation, we use gcc’s implementation of
OpenMP (version 3.0) and multithreading to parallelize the computation of the prox func-
tions for the devices. We use 8 threads (one per core) to solve each example. Assuming
perfect load balancing, this means that 8 prox functions are being evaluated in parallel.
Effectively, we evaluate the prox functions by stepping serially through the devices in blocks
of size 8. We do not, however, parallelize the computation of the dual update over the nets
since the overhead of spawning threads dominates the vector operation itself.

The prox functions for fixed loads and curtailable loads are separable over τ and can
be computed analytically. For more complex devices, such as a generator, battery, or de-
ferrable load, we compute the prox function using CVXGEN [MB12]. The prox function for
a transmission line is computed by projecting onto the convex hull of the line constraints.

For a given network, we solve the associated OPSP with an absolute tolerance εabs = 10−3.
This translates to three digits of accuracy in the solution. The CVXGEN solvers used to
evaluate the prox operators for some devices have an absolute tolerance of 10−8. For our
ρ-update function, h, we use the parameter values λ = 0.005 and µ = 0.01 and clip our
values of ρ to be between εabs and 1/εabs to prevent roundoff error.

6.4 Peer-to-peer implementation

We have not yet created a fully peer-to-peer, bulk synchronous parallel [Val90, MAB+10]
implementation of prox-average message passing, but have carefully tracked prox-average
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solve times in our serial implementation in order to facilitate a first order analysis of such
a system. In a peer-to-peer implementation, the proximal power schedule updates occur in
parallel across all devices followed by (scaled) price updates occurring in parallel across all
nets. As previously mentioned, the computation time per prox-average iteration is thus the
maximum time, over all devices, to evaluate the proximal function of their objective, added
to the maximum time across all nets to average their terminal power schedules and add that
quantity to their existing price vector. Since evaluating the prox function for some devices
requires solving a convex optimization problem, whereas the price update only requires a
small number of vector operations that can be performed as a handful of SIMD instructions,
the compute time for the price update is negligible in comparison to the proximal power
schedule update. The determining factor in solve time, then, is in evaluating the prox
functions for the power schedule update. In our examples, the maximum time taken to
evaluate any prox function is 1ms. To solve a problem with N = 30000 nets (10 million
variables) with approximately 500 iterations of our prox-average algorithm then takes only
500ms.

In practice, the actual solve time would clearly be dominated by network communication
latencies and actual runtime performance will be determined by how quickly and reliably
packets can be delivered. As a result, in a true peer-to-peer implementation, a negligible
amount of time is actually spent on computation. However, it goes without saying that many
other issues must be addressed with a peer-to-peer protocol, including handling network
delays and security.

6.5 Results

We first consider a single example: a network instance with N = 3000 (1 million variables).
Figure 6 shows that after fewer than 500 iterations of prox-average message passing, both
the relative suboptimality and the average net power imbalance are both less than 10−3.
The convergence rates for other network instances over the range of sizes we simulated are
similar.

In figure 7, we present average timing results for solving the OPSP for a family of exam-
ples, with networks of size N = 100, 300, 1000, 3000, 10000, and 30000. For each network
size, we generated and solved 20 network instances to generate average solve times and con-
fidence intervals around those averages. For network instances with N = 30000 nets, the
problem has approximately 10 million variables, which we solve serially using prox-average
message passing in 17 minutes on average.

For a peer-to-peer implementation, the runtime of prox-average message passing should
be essentially constant, and in particular independent of the size of the network. For our
multithreaded implementation, with bounded computation, this would be reflected by a
runtime that only increases linearly with the number of nets in a network instance. By fitting
a line to figure 7, we find that our parallel implementation scales as O(N1.03). The slight
discrepancy between this and the ideal exponent of 1 is accounted for by implementation
details such as operating system background processes consuming some compute cycles and
slightly imperfect load balancing across all 8 cores in our system.
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Figure 6: The relative suboptimality (left) and primal infeasibility (right) of prox-
average message passing on a network instance with N = 3000 nets (1 million vari-
ables). The dashed line shows when the stopping criterion is satisfied.
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Figure 7: Average prox-average execution times for a family of networks on 8 cores.
Error bars show 95% confidence bounds. The dotted line shows the least-squares fit
to the data on a log-log scale, resulting in an exponent of 1.03.
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Figure 8: Number of warm start iterations needed to converge for various perturba-
tions of load profiles.

We note that figure 7 shows cold start runtimes for solving the OPSP. If we have access
to a good estimate of the power schedules and locational marginal prices for each terminal,
we can use these estimates to warm start our OPSP solver. To show the effect of warm-
starting, we solve a specific problem instance with N = 3000 nets (1 million variables). We
define Kcold to be the number of iterations needed to solve an instance of this problem. We
then uniformly scale the load profiles of each device by separate and independent lognormal
random variables. The new load profiles, l̂, are obtained from the original load profiles l
according to

l̂ = l exp(σX),

where X ∼ N (0, 1), and σ > 0 is given. Using the solution of the original problem to warm
start our solver, we solve the perturbed problem and report the number of iterations Kwarm

needed to solve it. Figure 8 shows the ratio Kwarm/Kcold as we vary σ, and indicates the
significant computational savings that warm-starting can achieve, even under relatively large
perturbations.

7 Extensions

Receding horizon control. The speed with which prox-average message passing con-
verges on very large networks shows its applicability in coordinating real time decisions
across massive networks of devices. A direct extension of our work to real-time network
operation can be achieved using receding horizon control (RHC) [Mac02, Bem06]. In RHC,
we solve the OPSP at each time step to determine conditional consumption and generation
profiles for every device over the next T time periods. We then execute the first step of
these profiles and resolve the OPSP using new information and measurements that have
become available. RHC has been successfully applied to a wide range of areas, including
power systems, and allows us to take advantage of warm starting our algorithm, which we
have shown to significantly decrease the number of iterations needed for convergence.
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Hierarchical models. The power gird has a natural hierarchy, with generation and trans-
mission occurring at the highest level and residential consumption and distribution occurring
at the most granular. Prox-average message passing can be easily extended into hierarchi-
cal interactions by scheduling messages on different time scales and between systems at the
similar levels of the hierarchy [CLCD07].

We can recursively apply prox-average message passing at each level of the hierarchy.
At the highest level, all regional systems exchange their proximal updates once they have
computed their own prox-function. It can be shown that computing this function for a
given region is equivalent to computing a partial minimization over the sum of the objective
functions of devices located inside that region, subject to intra-region power balance. This
too can be computed using prox-average message passing. This process can be continued
down to the individual device level, at which point the device must solve its own prox function
directly as the base case.

Local stopping criteria and ρ updates. The stopping criterion and the algorithm we
propose to update ρ in §5 both currently require global device coordination — specifically
the global values of the primal and dual residuals at each iteration. In principle, these could
be computed in a decentralized fashion across the network by gossip algorithms [Sha08],
but that would require many rounds of gossip in between each iteration of prox-average
message passing, significantly increasing runtime. We are currently investigating methods
by which both the stopping criterion and different values of ρ can be independently chosen
by individual devices or even individual terminals, all based only on local information, such
as the primal and dual residuals of a given device and its neighboring nets.

8 Conclusion

We have presented a fully decentralized method for dynamic network energy management
based on message passing between devices. Prox-average message passing is simple and
highly extensible, relying solely on peer to peer communication between devices that ex-
change energy. When the resulting network optimization problem is convex, prox-average
message passing converges to the optimal value and gives optimal locational marginal prices.
We have presented a parallel implementation that shows the time per iteration and the
number of iterations needed for convergence of prox-average message passing are essentially
independent of the size of the network. As a result, prox-average message passing can scale
to extremely large networks with almost no increase in solve time.
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