
Differentiable Convex Optimization Layers
Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter
Neural Information Processing Systems, 2019

𝑥⋆ 𝜃 = argmin
+

𝑓 𝑥; 𝜃

subject to 𝑔(𝑥; 𝜃) ≤ 0
ℎ 𝑥; 𝜃 = 0

Convex optimization layers

• A convex optimization problem can be viewed as a function mapping a pa-
rameter θ ∈ Rp to a solution x?(θ); this map is sometimes differentiable.

• Prior work has shown how to differentiate through convex cone programs.

• We show how to differentiate through high-level descriptions of convex opti-
mization programs, specified in a domain-specific language for convex opti-
mization.

• We implement our method in CVXPY, TensorFlow 2.0, and PyTorch.

Domain-specific languages (DSLs)

• DSLs for convex optimization make it easy to specify, solve convex problems

• Modern DSLs (CVXPY, CVXR, Convex.jl, CVX) based on disciplined convex
programming (DCP) [2].

• DCP is a library of functions (atoms) with known curvature and monotonicity,
and a composition rule for combining them.

p0

DSL Front End Analyzer

LP

QP

SDP

CFP

Back Ends

Si

S2

S1

...
...

Sk

Rewriting System

pn

Solver

Solution map

We represent a parametrized disciplined convex program as the composition
R ◦ s ◦ C:

• The canonicalizer C converts a DCP-compliant program to the problem data
for a convex cone program

• The solver s solves a convex cone program

• The retriever R retrieves a solution for the original program

We mildly restrict DCP to ensure that C and R are affine. This means we can
differentiate through the DSL, without explicitly backpropagating through it.

Disciplined parametrized programming

We introduce disciplined parametrized programming (DPP). DPP programs
have the form

minimize f0(x, θ)

subject to fi(x, θ) ≤ f̃i(x, θ), i = 1, . . . ,m1,
gi(x, θ) = g̃i(x, θ), i = 1, . . . ,m2,

• θ ∈ Rp is a parameter,

• fi are convex, f̃i are concave

• gi and g̃i are affine

DPP is a subset of DCP that does parameter-dependent analysis:

• parameters are treated as affine

• the product of a parameter-affine and parameter-free expression is affine

DPP guarantees that C and R are affine.

Differentiation
The adjoint of the derivative of a disciplined parametrized program is

DTS(θ) = DTC(θ)DTs(A, b, c)DTR(x̃?).

Because C and R are affine, DTC and DTR are easy to compute. We use prior
work to differentiate through s [1].

cvxpylayers

Available at www.github.com/cvxgrp/cvxpylayers.

Specify a problem using CVXPY 1.1:

1 import cvxpy as cp

2

3 m, n = 20, 10

4 x = cp.Variable ((n, 1))

5 F = cp.Parameter ((m, n))

6 g = cp.Parameter ((m, 1))

7 lambd = cp.Parameter ((1, 1), nonneg=True)

8 objective_fn = cp.norm(F @ x - g) + lambd * cp.norm(x)

9 constraints = [x >= 0]

10 problem = cp.Problem(cp.Minimize(objective_fn), constraints)

11 assert problem.is_dpp ()

Convert CVXPY problem to a PyTorch layer:

1 from cvxpylayers.torch import CvxpyLayer

2

3 layer = CvxpyLayer(problem , parameters =[F, g, lambd], variables =[x])

Differentiate:

1 import torch

2

3 F_t = torch.randn(m, n, requires_grad=True)

4 g_t = torch.randn(m, 1, requires_grad=True)

5 lambd_t = torch.rand(1, 1, requires_grad=True)

6 x_star , = layer(F_t , g_t , lambd_t)

7 x_star.sum().backward ()

Experiments

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8
train
test

Figure 1: Gradients (black lines) of the
logistic test loss with respect to the
training data.

0 20 40 60 80 100
iteration

0.9

1.0

1.1

1.2

1.3

1.4

1.5

av
er

ag
e 

co
st

Figure 2: Per-iteration cost while learn-
ing an ADP policy for stochastic con-
trol.

References

[1] A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Differentiating
through a cone program. In: Journal of Applied and Numerical Optimiza-
tion 1.2 (2019), pp. 107–115.

[2] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In: Global
optimization. Springer, 2006, pp. 155–210.


